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Abstract

It is well known that investigation on exact solutions of nonlinear fractional partial differential equations (PDEs) is a very

difficult work compared with integer-order nonlinear PDEs. In this paper, based on the separation method of semi-fixed

variables and integral bifurcation method, a combinational method is proposed. By using this new method, a class of generalized

time-fractional thin-film equations are studied. Under two kinds of definitions of fractional derivatives, exact solutions of two

generalized time-fractional thin-film equations are investigated respectively. Different kinds of exact solutions are obtained and

their dynamic properties are discussed. Compared to the results in the existing references, the types of solutions obtained in

this paper are abundant and very different from those in the existing references. Investigation shows that the solutions of the

model defined by Riemann-Liouville differential operator converge faster than those defined by Caputo differential operator. It

is also found that the profiles of some solutions are very similar to solitons, but they are not true soliton solutions. In order

to visually show the dynamic properties of these solutions, the profiles of some representative exact solutions are illustrated by

3D-graphs.
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1 Introduction

It has been more than three hundred and twenty years since the concept of fractional cal-

culus was born in 1695. However, compared with the applications of integer-order calculus,

the applications of fractional calculus are not broad enough. The number of fractional dif-

ferential models is really too small compared to the number of fractional differential models

though some mathematical models have been established by using fractional calculus since

the 1960s. Fortunately, many complex problems in natural science fields such as mathemat-

ical mechanics, control theory, signal processing, aerodynamics, chemistry, biology and so

forth can be accurately described by fractional differential models now. However, it becomes

difficult to solve the nonlinear fractional differential models. The main reason is that many

classical methods in the field of integer-order cannot be directly applied to solve fractional

differential equations. So, investigations on exact solutions of nonlinear fractional partial

differential equations (PDEs) is a very difficult work. On the other hand, the definitions of

fractional derivatives are various, without a unified definition like integer-order derivative at

all. This brings great inconvenience to the applications, especially in the modeling, choosing

which fractional differential operator to build the model, is also often a more trouble for

scientific researchers. In the long process of practice, people still feel that the most classic,

the most commonly used and best represent the dominance definitions of fractional deriva-

tives are only two, namely Riemann-Liouville fractional derivative and Caputo fractional

derivative. Therefore, it is very meaningful to develop the solution method of fractional

partial differential equations (PDEs) under the definitions of these two fractional differential

operators.

With the deepening of research, some methods for investigating exact solutions or approx-

imate analytical solutions of fractional differential equations have been proposed successively.

Some representative methods include Adomian decomposition method [1,2], homotopy anal-

ysis method [3,4], invariant analysis method [5,6], fractional variational iteration method

[7-9], invariant subspace method [10-12], method of fractional complex transformation [13-

15] and the method of separating variables [16-18], etc. However, compared with nonlinear

integer-order models, real nonlinear fractional models for developing solution methods are

shortage. In order to make up for this deficiency, many researchers directly changed some

classical integer-order PDEs into fractional PDEs to study, so as to develop new solution

methods for more complex nonlinear fractional PDEs. From a mathematical point of view,

it is meaningful and very necessary to do so in the current shortage of mathematical models.
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Very unfortunately, in the above methods, we found that the method of fractional com-

plex transformation appeared in Refs. [13-15] is based on a wrong fractional chain rule which

given by Jumarie in Refs. [19-21]. Indeed, Jumarie’s fractional chain rule has been verified

that it is wrong in Refs. [22-24]. This means peoples need to redesign some new methods to

solve those more complex nonlinear fractional PDEs. For this purpose, based on the sepa-

ration method of variables and combined with other methods such as homogenous balanced

principle, idea of invariant subspace, integral bifurcation method, we introduced several new

combinational methods [24-27] for investigating exact solutions of nonlinear time-fractional

PDEs, recently. The common point of these methods is that exact solutions of some nonlin-

ear time-fractional PDEs are obtained by using the modified separation method of variable

together with other methods. Obviously, the mentioned several methods in [24-27] unlike

the traditional separation method of variables. Specifically speaking, the function T (t) in

the traditional separation method of variables u(x, t) = v(x)T (t) is fixed into some specific

special functions such as Mittag-Leffler functions or power function. So, we call this modified

separation method of variables as separation method of semi-fixed variables or separation

method of variables of semi-fixed form.

In this paper, based on the separation method of semi-fixed variables [28] and integral

bifurcation method [29-32], we will improve the combinational method named separation

variable method combined with integral bifurcation method [33]. By using this improved

method, we will investigate exact solutions and their dynamic properties of a class of time-

fractional generalized thin-film equations [34] formed as follows:

∂αu

∂tα
= −f(u)uxxxx − g(u)uxuxxx − h(u)(uxx)

2 − l(u)(ux)
2uxx

+p(u)uxx + q(u)(ux)
2 + k(u),

(1.1)

where ∂α

∂tα
can be Riemann-Liouville or Caputo fractional differential operator and u =

u(x, t), x ∈ R, t > 0, 0 < α < 1.

Especially, when f(u) = ηu, g(u) = 3η, h(u) = 2η, l(u) = 0, p(u) = 2βu, q(u) =

2β, k(u) = δu, Eq. (1.1) becomes the following model

∂αu

∂tα
= δu− η[uuxxxx + 3uxuxxx + 2(uxx)

2] + 2β(uuxx + u2
x). (1.2)

When f(u) = ηu, g(u) = 4η, h(u) = 3η, l(u) = 0, p(u) = 2βu + δ, q(u) = 2β, k(u) = 0,

Eq. (1.1) becomes the following model

∂αu

∂tα
= 2β(ux)

2 − η[uuxxxx + 4uxuxxx + 3(uxx)
2] + (2βu+ δ)uxx. (1.3)
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The organization of this paper is as follows: In Sec. 2, we will introduce modified

method of separation of semi-fixed variables based on the definitions of fractional derivatives

and properties of Mittag-Leffler functions. In Sec. 3, we will investigate exact solutions

and dynamic properties of the generalized time-fractional thin-film equation (1.2) under the

definition of Riemann-Liouville fractional operator. In Sec. 4, similarly we will investigate

exact solutions and dynamic properties of Eq. (1.3) under the definition of Riemann-Liouville

fractional operator. In Sec. 4, we will investigate exact solutions of Eqs. (1.2) and (1.3)

under the definition of Caputo fractional operator.

2 Brief introduction of preliminary knowledge and method

2.1 Definitions of fractional derivatives and properties of Mittag-Leffler functions

Definition 1 ([35]) If the function f(t) is a continuous function, then the Riemann-Liouville

fractional derivative of f(t) of α-order is defined by

RL
a Dα

t f(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1f(τ)dτ, (Re(α) > 0), (2.1)

where t > a, n− 1 ≤ α < n, n = [α] + 1, n ∈ N+.

Definition 2 ([36]) If the function f(t) is a n-order smooth function, then the Caputo

fractional derivative of f(t) of α-order is defined by

C
a D

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ, (Re(α) > 0), (2.2)

where t > a, n− 1 < α ≤ n, n = [α] + 1, n ∈ N+.

Property 1 ( [35, 36]) Under definitions of Riemann-Liouville fractional derivative and

Caputo fractional derivative, the fractional derivatives of Mittag-Leffler functions and power

function have the following properties

RL
0 Dα

t

[
tα−1Eα,α (λt

α)
]
= λtα−1Eα,α (λt

α) , (2.3)

RL
0 Dα

t tγ =
Γ(1 + γ)

Γ(1 + γ − α)
tγ−α, γ > −1, (2.4)

C
0 D

α
t Eα (λt

α) = λEα (λt
α) , (2.5)

C
0 D

α
t tγ =

Γ(1 + γ)

Γ(1 + γ − α)
tγ−α, γ > 0, (2.6)
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where 0 < α < 1, t > 0.

Proof of (2.3). According to the definition of the two parameter Mittag-Leffler function

and formula of derivative of the power function, it is easy to know that

RL
0 Dα

t

[
tα−1Eα,α (λt

α)
]
= RL

0 Dα
t

[
tα−1

∞∑
k=0

λktkα

Γ(kα + α)

]

= RL
0 Dα

t

[
tα−1

Γ(α)
+ tα−1

∞∑
k=1

λktkα

Γ(kα + α)

]
= RL

0 Dα
t

[
tα−1

Γ(α)
+

∞∑
k=1

λk tkα+α−1

Γ(kα + α)

]

=
t−1

Γ(0)
+

∞∑
k=1

λk

Γ(kα + α)

Γ(kα + α)tkα−1

Γ(kα)
= 0 + λtα−1

∞∑
k=1

λk−1 t(k−1)α

Γ[(k − 1)α + α]

= λtα−1

∞∑
n=0

λn tnα

Γ(nα + α)
= λtα−1Eα,α (λt

α) ,

where t−1

Γ(0)
= 0 due to Γ(0) = ∞.

Property 2 The function tα−1Eα,α (λt
α) must be a fundamental solution of the following

linear fractional ordinary differential equation (ODE)

RL
0 Dα

t y(t)− λy(t) = 0. (2.7)

Proof. Making Laplace transformation in both sides of Eq. (2.7), it yields

L[RL
0 Dα

t y(t); s]− λL[y(t); s] = 0.

According to the property of Laplace transformation of Riemann-Liouville fractional deriva-

tive, we get

sαY (s)−RL
0 Dα−1

t y(t)|t=0 − λY (s) = 0. (2.8)

Writing the initial constant RL
0 Dα−1

t y(t)|t=0 = C0 and then solving Eq. (2.8), we obtain

Y (s) =
C0

sα − λ
. (2.9)

Making inverse transformation of Laplace transformation in both sides of Eq. (2.9), we

obtain a special solution of the linear fractional ODE (2.7) as follows:

y(t) = C0t
α−1Eα,α (λt

α) , (2.10)

thus the function tα−1Eα,α (λt
α) is indeed a fundamental solution of the fractional linear

ODE (2.7).
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On the other hand, directly substituting the function tα−1Eα,α (λt
α) into Eq. (2.7), it is

easy to verify that the linear fractional ODE (2.7) is identity. This illustrates the correctness

of the property (2.3) by another way.

2.2 Brief introduction of separation method of semi-fixed variables

It is well known that a linear fractional PDE can always be separated into two independent

differential systems (equations) by traditional separation method of variables. For example,

we discuss a linear fractional wave equation as follows:

∂αu(x, t)

∂tα
= c2

∂2βu(x, t)

∂x2β
, (2.11)

where ∂α

∂tα
and ∂2β

∂x2β are fractional differential operators of Riemann-Liouville type or Caputo

type, and t > 0, x ∈ R, 0 < α < 1, 0.5 < β < 1. Let us assume that Eq. (2.11) has solution

formed as

u(x, t) = v(x)T (t), (2.12)

where v = v(x), T = T (t). Substituting (2.12) into (2.11), we get

v
dαT

dtα
= c2T

d2βv

dx2β
. (2.13)

Separating the variables, Eq. (2.13) can be reduced to

dαT
dtα

T
= c2

d2βv
dx2β

v
= λ, (2.14)

where λ is nonzero constant. Obviously, Eq. (2.14) can be reduced to the following two

independent fractional equations

dαT

dtα
− λT = 0, (2.15)

d2βv

dx2β
− λv = 0. (2.16)

However, for a nonlinear fractional PDE, we may not be able to separate it into two

independent fractional ODEs by traditional separation method of variables. For example, a

nonlinear time-fractional PDE formed as

∂αu

∂tα
= δu+ ηu2 + κ

∂

∂x

(
u
∂u

∂x

)
(2.17)
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cannot be separated into two independent differential systems by use of (2.12). Substituting

(2.12) into (2.17), we get

v
dαT

dtα
= δvT + ηT 2v2 + κT 2

(
dv

dx

)2

+ κT 2v
d2v

dx2
. (2.18)

It is easy to find that the equation (2.18) cannot be separated into two independent differ-

ential equations as in (2.13). But, if we modify the separation expression of variables (2.12)

as

u(x, t) = v(x)tα−1Eα,α (λt
α) (2.19)

or

u(x, t) = v(x)Eα (λt
α) . (2.20)

When ∂α

∂tα
=RL

0 Dα
t is Riemann-Liouville fractional differential operator, substituting (2.19)

into (2.17), we obtain

[(λ− δ)v]tα−1Eα,α (λt
α) =

[
ηv2 + κ

(
dv

dx

)2

+ κv
d2v

dx2

]
[tα−1Eα,α (λt

α)]2. (2.21)

Taking λ = δ, Eq. (2.21) can be reduced to a nonlinear ODE as follows:

ηv2 + κ

(
dv

dx

)2

+ κv
d2v

dx2
= 0. (2.22)

Similarly, when ∂α

∂tα
=C

0 Dα
t is Caputo fractional differential operator, substituting (2.20) into

(2.17), we obtain

[(λ− δ)v]Eα (λt
α) =

[
ηv2 + κ

(
dv

dx

)2

+ κv
d2v

dx2

]
[Eα (λt

α)]2. (2.23)

Taking λ = δ, Eq. (2.23) also can be reduced to Eq. (2.22).

Obviously, this modified separation method of variables is very convenient in sometimes.

To test the efficiency of the modified separation method of variables introduced above, we

next discuss exact solutions and dynamic properties of Eqs. (1.2) and (1.3) under the

definitions of Riemann-Liouville and Caputo differential differential operators in the below

three sections.
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3 Exact solutions of Eq. (1.2) under Riemann-Liouville

fractional differential operator

When ∂α

∂tα
=RL

0 Dα
t is Riemann-Liouville fractional differential operator, the equation (1.2)

can be rewritten as

RL
0 Dα

t u = δu− η(uuxxxx + 3uxuxxx + 2u2
xx) + 2β(uuxx + u2

x). (3.1)

According separation method of semi-fixed introduced above, we assume that the Eq. (3.1)

has solutions formed as

u = [a0 + a1v(x)] t
α−1Eα,α(λt

α), (3.2)

Obviously, the separation transformation (3.2) is not the same as those in the Refs. [24-28,

33], because we replace the one-parameter Mittag-Leffler function Eα(λt
α) and the power

function tγ with the two-parameter Mittag-Leffler function tα−1Eα,α(λt
α) at here. Although

this is only a small improvement, but it works very well, please see the discussion below.

Substituting (3.2) into (3.1), we get

(λ− δ)(a0 + a1v)t
α−1Eα,α(λt

α) =
[
− η(a0a1 + a21v)vxxxx − 3ηa21vxvxxx − 2ηa21v

2
xx

+2βa1(a0 + a1v)vxx + 2βa21v
2
x

]
[tα−1Eα,α(λt

α)]2.
(3.3)

In above equation, taking

λ = δ (3.4)

and letting the coefficient of Mittag-Leffler function [tα−1Eα,α(λt
α)]2 equal zero, Eq. (3.3)

can be reduced to a nonlinear ordinary differential equation (ODE) as follows:

η(a0a1 + a21v)vxxxx + 3ηa21vxvxxx + 2ηa21v
2
xx − 2βa1(a0 + a1v)vxx − 2βa21v

2
x = 0. (3.5)

Integrating (3.5) twice and letting the first integral constant equal zero, it yields

ηa1(a0 + a1v)vxx +
1

2
ηa21v

2
x − βa21v

2 − 2βa0a1v = g, (3.6)

where g is the second integral constant. Letting vx ≡ dv

dx
= y, Eq.(3.6) can be reduced to a

planar dynamical system as follows:
dv

dx
= y,

dy

dx
=

−1

2
ηa21y

2 + βa21v
2 + 2βa0a1v + g

ηa1(a0 + a1v)
.

(3.7)
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Obviously, the dy
dx

cannot be defined at v = −a0
a1
, so the system (3.7) is not equivalent to the

equation (3.6) at v = −a0
a1
. However, v = −a0

a1
is a trivial solution of equation (3.6). In order

to obtain a completely equivalent system to the equation (3.6) no mater how the function v

vary, we make a scalar transformation as follows:

dx = (a0 + a1v)dτ, (3.8)

where τ is a parameter. Under the transformation (3.8), the singular system (3.7) is reduced

to a regular system as follows:
dv

dτ
= (a0 + a1v)y,

dy

dτ
= −1

2
a1y

2 +
βa1
η

v2 +
2βa0
η

v +
g

ηa1
.

(3.9)

Obviously, both systems (3.7) and (3.9) have a same first integral as follows:

y2 =

2βa1
3η

v3 + 2βa0
η

v2 + 2g
ηa1

v + h

a0 + a1v
, (3.10)

where h is a new integral constant.

Case 1. If a0 ̸= 0, g = 0 and h = 0, then Eq. (3.10) can be reduced to

y = ±
v

√
2βa21
3η

v2 +
8βa0a1
3η

v +
2βa20
η

a0 + a1v
. (3.11)

Substituting (3.11) into first equation of system (3.9) to integrate, we get∫
dv

v
√
a+ bv + cv2

= ±
∫

dτ, (3.12)

where a =
2βa20
η

, b =
8βa0a1
3η

, c =
2βa21
3η

. We write ∆ = b2 − 4ac, q = 4ac − b2 and ϵ = ±1.

It is easy to know that ∆ =
16β2a20a

2
1

9η2
> 0 and q = −16β2a20a

2
1

9η2
< 0.

When a > 0, ∆ > 0, completing the integrals in (3.12) and then reducing it, we get

2a+ bv + 2
√
a
√
a+ bv + cv2

v
= Ceϵ

√
aτ , (3.13)

where C is integral constant. Solving (3.13), it yields

v =
4aC exp(ϵ

√
aτ)

C2 exp(2ϵ
√
aτ) + (b2 − 4ac)− 2bC exp(

√
aτ)

. (3.14)

In order to facilitate the next discussions, in the following calculation processes, we take the

integral constant C into some special values for obtaining the exact solutions of parametric

form.
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(i) when ηβ > 0, (i.e. a > 0, c > 0), taking the integral constant C = ∆, the solution

(3.14) can be reduced to

v =
2a sech(

√
a τ)

ϵ
√
∆− b sech(

√
a τ)

=

3a0 sech

(
a0

√
2β

η
τ

)
ϵa1 − 2a1 sech

(
a0

√
2β

η
τ

) , (3.15)

where τ is a parameter. Substituting (3.15) into the transformation (3.8) and then integrate

it, we get

x = a0τ −
√

6η

β
tanh−1

[
2 + ϵ√

3
tanh

(
a0

√
β

2η
τ

)]
. (3.16)

Thus, substituting the Eq.(3.15) and (3.4) into (3.2) and combining with (3.16), we can

obtain an exact solution of parametric form of Eq. (3.1) as follows:



u =

a0 +
3a0 sech

(
a0

√
2β

η
τ

)
ϵ− 2 sech

(
a0

√
2β

η
τ

)
 tα−1Eα,α(δt

α),

x = a0τ −
√

6η

β
tanh−1

[
2 + ϵ√

3
tanh

(
a0

√
β

2η
τ

)]
.

(3.17)

(ii) when ηβ < 0 , (i.e. a < 0, c < 0), as in the case (i), integrating (3.12) and taking

the integral constant C = π
2
, we get another exact solution of (3.6) as follows:

v =
2a sec(

√
−a τ)

ϵ
√
∆− b sec(

√
−a τ)

=

3a0 sec

(
a0

√
−2β

η
τ

)
ϵa1 − 2a1 sec

(
a0

√
−2β

η
τ

) . (3.18)

where τ is a parameter. Indeed, by using the transformation of sech(iτ) = sec(τ), (i =
√
−1),

the solution (3.18) can also be directly converted by (3.15). Substituting (3.18) into the

transformation (3.8), we get

x = a0τ +

√
−6η

β
arctan

[
2 + ϵ√

3
tan

(
a0

√
− β

2η
τ

)]
(3.19)

Substituting the Eq.(3.18) and (3.4) into (3.2) and combining with (3.19), we can obtain an

exact solution of Eq.(3.1) as follow:
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

u =

a0 +
3a0 sec

(
a0

√
−2β

η
τ

)
ϵ− 2 sec

(
a0

√
−2β

η
τ

)
 tα−1Eα,α(δt

α),

x = a0τ +

√
−6η

β
arctan

[
2 + ϵ√

3
tan

(
a0

√
− β

2η
τ

)]
.

(3.20)

(iii) when ηβ > 0, (i.e. a > 0, c > 0), taking the integral constant C = −b, the solution

(3.14) can be reduced to

v =
−ab sech2

(√
a
2

τ
)

b2 − ac
[
1 + ϵ tanh

(√
a
2

τ
)]2 =

−12a0 sech2

(
a0

√
β

2η
τ

)
16a1 − 3a1

[
1 + ϵ tanh

(
a0

√
β

2η
τ

)]2 , (3.21)

where τ is a parameter. Substituting (3.21) into the transformation (3.8) and then integrate

it, we get

x = a0τ − 1

ϵ

√
6η

β
tanh−1

[√
3

4

(
1 + ϵ tanh

(
a0

√
β

2η
τ

))]
(3.22)

Substituting the Eq.(3.21) and (3.4) into (3.2) and combining with (3.22), we can obtain an

exact solution of Eq.(3.1) as follow:



u =

a0 −
12a0 sech2

(
a0

√
β

2η
τ

)
16− 3

[
1 + ϵ tanh

(
a0

√
β

2η
τ

)]2
 tα−1Eα,α(δt

α),

x = a0τ − 1

ϵ

√
6η

β
tanh−1

[√
3

4

(
1 + ϵ tanh

(
a0

√
β

2η
τ

))]
.

(3.23)

Case 2. If a0 ̸= 0, g ̸= 0 (or g ̸= 2βa20
3

) and h =
2a0(3g−2βa20)

3ηa21
, then Eq. (3.10) can be

reduced to

y = ±

√
2β

3η
v2 +

4βa0
3ηa1

v +
6g − 4βa20

3ηa21
. (3.24)

(i) when ηβ > 0 and β(g − βa20) > 0, Eq. (3.24) can be reduced to

y = ±

√
2β

3η

√
v2 +

2a0
a1

v +
3g − 2βa20

βa21
(3.25)
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Substituting (3.25) into the first equation of (3.7) and then integrating it, we get two solutions

of hyperbolic sine function as follows

v = ± 1

a1

√
3(g − βa20)

β
sinh

(√
2β

3η
x+ C

)
− a0

a1
, (3.26)

where C is an arbitrary constant and the next cases are the same as this, we will not repeat

the reference to this statement. Substituting (3.26) and (3.4) into (3.2), we obtain two exact

solutions of Eq. (3.1) as follows:

u =

√
3(g − βa20)

β
sinh

(√
2β

3η
x+ C

)
tα−1Eα,α(δt

α) (3.27)

and

u = −

√
3(g − βa20)

β
sinh

(√
2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.28)

(ii) when ηβ < 0 and β(g − βa20) < 0, Eq.(3.24) can be written as:

y = ±

√
−2β

3η

√
−v2 − 2a0

a1
v − 3g − 2βa20

βa21
(3.29)

Similarly, substituting (3.29) into the first equation of (3.7) and integrating it, we get two

periodic solutions as follows:

v = ±

√
3(βa20 − g)

βa21
sin

(√
−2β

3η
x+ C

)
− a0

a1
. (3.30)

Substituting (3.30) and (3.4) into (3.2), we can obtain two exact solutions of Eq. (3.1) as

follows:

u =

√
3(βa20 − g)

β
sin

(√
−2β

3η
x+ C

)
tα−1Eα,α(δt

α) (3.31)

and

u = −

√
3(βa20 − g)

β
sin

(√
−2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.32)

Case 3. If a0 ̸= 0, g =
2βa20
3

and h = 0, then Eq. (3.10) can be reduced to

y = ±

√
2β

3η
v2 +

4βa0
3ηa1

v. (3.33)
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(i) when ηβ > 0, substituting (3.33) into the first equation of (3.7) and integrating it, we

get a exact solution as follow:

v =
2a0
a1

sinh2

(√
β

6η
x+ C

)
. (3.34)

Substituting (3.34) and (3.4) into (3.2) and setting the integral constant as zero, we obtain

an exact solution of Eq.(3.1) as follows:

u = a0 cosh

(√
2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.35)

(ii) when ηβ < 0, substituting (3.33) into the first equation of (3.7) and integrating it, we

get a exact solution as follow:

v = −2a0
a1

sin2

(√
− β

6η
x+ C

)
(3.36)

or

v = −a0
a1

[
1− cos

(√
−2β

3η
x+ C

)]
. (3.37)

Respectively substituting (3.36) and (3.37) into (3.2) in the parametric condition (3.4), we

can obtain two exact solutions of Eq. (3.1) as follows:

u = a0

[
1− 2 sin2

(√
− β

6η
x+ C

)]
tα−1Eα,α(δt

α) (3.38)

or

u = a0 cos

(√
−2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.39)

Case 4. If a0 = 0, g ̸= 0 and h = 0, then Eq. (3.10) can be reduced to

y = ±

√
2β

3η
v2 +

2g

ηa21
. (3.40)

(i) when ηβ > 0 and gβ > 0, Eq.(3.40) can be written as:

y = ±

√
2β

3η

√
v2 +

3g

βa21
. (3.41)

Substituting (3.41) into the first equation of (3.7) and integrating it, we have∫
dv√

v2 +
3g

βa21

= ±
∫ √

2β

3η
dx. (3.42)
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Solving (3.42), we obtain two solutions of hyperbolic function type of Eq.(3.5) as below:

v = ± 1

a1

√
3g

β
sinh

(√
2β

3η
x+ C

)
. (3.43)

Substituting (3.43) and (3.4) into (3.2), we obtain two exact solutions of Eq.(3.1) as follows:

u =

√
3g

β
sinh

(√
2β

3η
x+ C

)
tα−1Eα,α(δt

α) (3.44)

and

u = −
√

3g

β
sinh

(√
2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.45)

(ii) when ηβ > 0 and gβ < 0, Eq.(3.40) can be written as:

y = ±

√
2β

3η

√
v2 −

(
− 3g

βa21

)
. (3.46)

Substituting (3.46) into the first equation of (3.7) and integrating it, we have∫
dv√

v2 −
(
− 3g

βa21

) = ±
∫ √

2β

3η
dx. (3.47)

Solving (3.47), we obtain a hyperbolic cosine function solution of Eq.(3.5) as below:

v =
1

a1

√
−3g

β
cosh

(√
2β

3η
x+ C

)
. (3.48)

Substituting (3.48) and (3.4) into (3.2), we can obtain an exact solution of Eq.(3.1) as follows:

u =

√
−3g

β
cosh

(√
2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.49)

(iii) when ηβ < 0 and gβ < 0, Eq.(3.40) can be written as:

y = ±

√
−2β

3η

√(
− 3g

βa21

)
− v2. (3.50)

Substituting (3.50) into the first equation of (3.7) and integrating it, we have∫
dv√(

− 3g
βa21

)
− v2

= ±
∫ √

−2β

3η
dx. (3.51)
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Solving (3.51), we obtain a smooth periodic solution of Eq.(3.5) as below:

v =
1

a1

√
−3g

β
cos

(√
−2β

3η
x+ C

)
. (3.52)

Substituting (3.52) and (3.4) into (3.2), we can obtain an exact solution of Eq.(3.1) as follows:

u =

√
−3g

β
cos

(√
−2β

3η
x+ C

)
tα−1Eα,α(δt

α). (3.53)

Case 5. If ηβ > 0, a0 = 0, g = 0 and h = 0, then Eq. (3.10) can be reduced to

y = ±

√
2β

3η
v. (3.54)

Substituting Eq.(3.54) into the first equation of (3.7) and integrating it, we can get two

general solutions of exponential function type as follows:

v = C exp

(√
2β

3η
x

)
(3.55)

and

v = C exp

(
−

√
2β

3η
x

)
. (3.56)

Respectively substituting the (3.55) and (3.56) into Eq.(3.2) in the parametric condition

(3.4), we can get two unbounded solutions of Eq. (3.1) as follows:

u = a1C exp

(√
2β

3η
x

)
tα−1Eα,α(δt

α) (3.57)

and

u = a1C exp

(
−

√
2β

3η
x

)
tα−1Eα,α(δt

α). (3.58)

In order to intuitively show the dynamic profiles and properties of above solutions, as ex-

amples, the 3D-graphs of the solutions (3.17), (3.20), (3.23), (3.38) and (3.49) are illustrated,

which are shown in Figs.1-5, respectively.
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(a) case of ϵ = 1 (b) case of ϵ = −1

Fig. 1. The 3D-graphs of dynamical profiles of the solution (3.17) under

the fixed parameters a0 = −5, η = 4, β = 0.5, δ = −2, α = 0.5.

As can be seen from Fig.1b, the profile of the solution (3.17) is very similar to a bright

soliton when ϵ = −1. However, the solution (3.17) is not a soliton solution after all because

it is not a traveling wave solution, which has been explained very clearly in Ref. [37].

(a) case of ϵ = 1 (b) case of ϵ = −1

Fig. 2. The 3D-graphs of dynamical profiles of the solution (3.20) under

the fixed parameters a0 = −5, η = −4, β = 0.5, δ = −2, α = 0.5.
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(a) case of ϵ = 1 (b) case of ϵ = −1

Fig. 3. The 3D-graphs of dynamical profiles of the solution (3.23) under

the fixed parameters a0 = 5, η = 4, β = 0.5, δ = −2, α = 0.5.

As can be seen from Fig.3a and Fig.3b, the profiles of the solution (3.23) are very similar

to two dark solitons. But, the solution (3.23) is not soliton solution yet due to it is not

travelling wave solution. So, do any other forms of soliton solutions exist in this kind of

nonlinear time-fractional PDEs such as Eq. (1.2)? For now, this is also a very challenging

issue.

(a) case of α = 0.25 (b) case of α = 0.5
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(c) case of α = 0.75 (d) case of α = 0.8

Fig. 4. The 3D-graphs of dynamical profiles of the solution (3.38) under the

fixed parameters a0 = −3, η = −1, β = 0.5, δ = −2, C = 0.

As can be seen from Fig. 4, the profile of the solution (3.38) occurred a mutation phenomenon

at α = 0.75. This is obviously a very anomalous phenomenon, which is unlikely to occur in

cases of integer-order nonlinear PDEs. Currently we do not know the cause of the mutation

(anomalous phenomenon), perhaps caused by the singularity of the two-parameter Mittag-

Leffler function tα−1Eα,α(δt
α).

(a) case of α = 0.25 (b) case of α = 0.5
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(c) case of α = 0.75 (d) case of α = 0.8

Fig. 5. The 3D-graphs of dynamical profiles of the solution (3.49) under the

fixed parameters a1 = 1, g = −3, η = 1, β = 2, δ = −1, C = 0.

Similarly, as can be seen from Fig. 5, the profile of the solution (3.49) appeared a mutation

phenomenon at α = 0.75, perhaps caused by the singularity of the two-parameter Mittag-

Leffler function tα−1Eα,α(δt
α), too.

4 Exact solutions of Eq. (1.3) under Riemann-Liouville

differential operator

When ∂α

∂tα
=RL

0 Dα
t is Riemann-Liouville fractional differential operator, the equation (1.3)

can be rewritten as

RL
0 Dα

t u = 2β(ux)
2 − η[uuxxxx + 4uxuxxx + 3(uxx)

2] + (2βu+ δ)uxx. (4.1)

According separation method of semi-fixed introduced above, we assume that Eq. (4.1) has

solutions formed as

u = v(x)tα−1Eα,α(λt
α). (4.2)

Substituting (4.2) into (4.1), we have

(λv − δvxx)t
α−1Eα,α(λt

α) = [−ηvvxxxx − 4ηvxvxxx − 3ηv2xx

+2βvvxx + 2βv2x][t
α−1Eα,α(λt

α)]2.
(4.3)
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In (4.3), letting each coefficient of the functions tα−1Eα,α(λt
α) and [tα−1Eα,α(λt

α)]2 equal

zero, we obtain λv − δvxx = 0,

ηvvxxxx + 4ηvxvxxx + 3ηv2xx − 2βvvxx − 2βv2x = 0.
(4.4)

The first equation in (4.4) is linear ODE, but the second equation in (4.4) is nonlinear ODE.

From the theory of ODEs, we know that a solution of the first equation in (4.4) is not

necessarily a solution of the second equation in (4.4), but a solution of the second equation

may be a solution of the first equation. Therefore, we plan to solve the second nonlinear

ODE in (4.4) firstly, and then substitute the obtained results into the first linear ODE in

(4.4) to obtain corresponding parametric condition.

Integrating the second equation in (4.4) twice and setting the first integral constant as

zero, it yields

ηv2x + ηvvxx − βv2 = g, (4.5)

where g is the second integral constant. Letting dv
dx

= y, Eq. (4.5) can be reduced to the

following planar dynamic system
dv

dx
= y,

dy

dx
=

g + βv2 − ηy2

ηv
.

(4.6)

Eq. (4.6) has a first integral as follows:

y2 =

g
η
v2 + β

2η
v4 + h

v2
, (4.7)

where h is new integral constant. Taking the integral constant h = 0, Eq. (4.7) can be

reduced to

y = ±

√
g

η
+

β

2η
v2. (4.8)

Substituting (4.8) into the first equation dv
dx

= y in (4.6) to integrate, we get∫
dv√

g
η
+ β

2η
v2

= ±
∫

dx. (4.9)

When ηβ > 0 and gβ > 0, solving (4.9), we obtain two general solutions of the second

equation in (4.4) as follows:

v =

√
2g

β
sinh

(√
β

2η
x+ C

)
(4.10)
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and

v = −
√

2g

β
sinh

(√
β

2η
x+ C

)
, (4.11)

where C are two arbitrary constants and we will not repeat the reference to this statement

in the below discussions. Respectively plugging (4.10) and (4.11) into the first equation (i.e.

λv − δvxx = 0) in (4.4), it yields[
λ

√
2g

β
− δβ

2η

√
2g

β

]
sinh

(√
β

2η
x+ C

)
= 0, (4.12)

−
[
λ

√
2g

β
− δβ

2η

√
2g

β

]
sinh

(√
β

2η
x+ C

)
= 0. (4.13)

In Eqs. (4.12) and (4.13), letting the coefficient of the function sinh
(√

β
2η

x+ C
)

equal

zero, it yields

λ

√
2g

β
− δβ

2η

√
2g

β
= 0. (4.14)

Solving (4.14), we obtain a parametric condition as follows:

λ =
δβ

2η
. (4.15)

Thus, respectively plugging (4.10), (4.11) and the parametric condition (4.15) into (4.2), we

obtain two exact solutions of Eq. (4.1) as follows:

u =

√
2g

β
sinh

(√
β

2η
x+ C

)
tα−1Eα,α

(
δβ

2η
tα
)

(4.16)

and

u = −
√

2g

β
sinh

(√
β

2η
x+ C

)
tα−1Eα,α

(
δβ

2η
tα
)
. (4.17)

When ηβ < 0 and gβ < 0, solving (4.9), we obtain two general solutions of the second

equation in (4.4) as follows:

v =

√
−2g

β
sin

(√
− β

2η
x+ C

)
(4.18)

and

v = −
√
−2g

β
sin

(√
− β

2η
x+ C

)
. (4.19)
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Respectively plugging (4.18) and (4.19) into the first equation (i.e. λv − δvxx = 0) in (4.4),

it yields [
λ

√
−2g

β
− δβ

2η

√
−2g

β

]
sin

(√
− β

2η
x+ C

)
= 0, (4.20)

−
[
λ

√
−2g

β
− δβ

2η

√
−2g

β

]
sin

(√
− β

2η
x+ C

)
= 0. (4.21)

In Eqs. (4.20) and (4.21), letting the coefficient of the function sin
(√

− β
2η

x+ C
)
equal

zero, it yields

λ

√
−2g

β
− δβ

2η

√
−2g

β
= 0. (4.22)

Solving (4.22), we obtain a parametric condition as follows:

λ =
δβ

2η
. (4.23)

Thus, respectively plugging (4.18), (4.19) and the parametric condition (4.23) into (4.2), we

obtain two exact solutions of Eq. (4.1) as follows:

u =

√
−2g

β
sin

(√
− β

2η
x+ C

)
tα−1Eα,α

(
δβ

2η
tα
)

(4.24)

and

u = −
√

−2g

β
sin

(√
− β

2η
x+ C

)
tα−1Eα,α

(
δβ

2η
tα
)
. (4.25)

By using the same method, under ηβ > 0 and gβ < 0, we obtain an exact solutions of

Eq. (4.1) as follows:

u =

√
−2g

β
cosh

(√
β

2η
x+ C

)
tα−1Eα,α

(
δβ

2η
tα
)
. (4.26)

When g = 0, h = 0 and ηβ > 0, Eq. (4.7) can be reduced to

y = ±

√
β

2η
v. (4.27)

Substituting (4.27) into the first equation dv
dx

= y in (4.6) to integrate, we get two solutions

of Eq. (4.5) as follows:

v = C exp

(√
β

2η
x

)
(4.28)
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and

v = C exp

(
−

√
β

2η
x

)
. (4.29)

As in determining parametric condition of (4.16) and (4.17), we also obtain λ = δβ
2η
. Respec-

tively plugging (4.28), (4.29) and above parametric condition into (4.2), we obtain two exact

solutions of Eq. (4.1) as follows:

u = C exp

(√
β

2η
x

)
tα−1Eα,α

(
δβ

2η
tα
)

(4.30)

and

u = C exp

(
−

√
β

2η
x

)
tα−1Eα,α

(
δβ

2η
tα
)
. (4.31)

In order to intuitively show the dynamic profiles and properties of above solutions, as

examples, the 3D-graphs of the solutions (4.24) and (4.26) are illustrated, which are shown

in Fig. 6 and Fig.7.

(a) case of α = 0.25 (b) case of α = 0.75

Fig. 6. The 3D-graphs of dynamical profiles of the solution (4.24) under the

fixed parameters C = 3, g = −4, η = −3, β = 2, δ = 1.

As can be seen from Fig. 6, the profile of the solution (4.24) occurred mutation phe-

nomenon at α = 0.75 caused by the singularity of the two-parameter Mittag-Leffler function

tα−1Eα,α(δt
α).
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(a) case of α = 0.25 (b) case of α = 0.75

Fig. 7. The 3D-graphs of dynamical profiles of the solution (4.26) under the

fixed parameters C = 1, g = −3, η = 1, β = 2, δ = −1.

Similarly, as can be seen from Fig. 7 that the profile of the solution (4.26) appeared a

mutation phenomenon at α = 0.75, too.

5 Exact solutions of Eqs. (1.2) and (1.3) under Caputo

fractional differential operator

5.1 Exact solutions of Eq. (1.2) under Caputo operator

When ∂α

∂tα
= C

0D
α
t is Caputo differential operator, Eq. (1.2) can be rewritten as

C
0D

α
t u = δu− η(uuxxxx + 3uxuxxx + 2u2

xx) + 2β(uuxx + u2
x). (5.1)

According separation method of semi-fixed introduced above, we assume that Eq. (5.1) has

solutions formed as

u = [a0 + a1v(x)]Eα(λt
α). (5.2)

Substituting (5.2) into (5.1), we get

(λ− δ)(a0 + a1v)Eα(λt
α) =

[
− η(a0a1 + a21v)vxxxx − 3ηa21vxvxxx − 2ηa21v

2
xx

+2βa1(a0 + a1v)vxx + 2βa21v
2
x

]
[Eα(λt

α)]2.
(5.3)

In Eq. (5.3), we directly take

λ = δ, (5.4)
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so that Eq. (5.3) can be reduced to

η(a0a1 + a21v)vxxxx + 3ηa21vxvxxx + 2ηa21v
2
xx − 2βa1(a0 + a1v)vxx − 2βa21v

2
x = 0. (5.5)

Obviously, Eq.(5.5) is same to Eq. (3.5) completely, so they have the same exact solutions.

Therefore, directly plugging those exact solutions of Eq. (3.5) given in Sec. 3 into Eq. (5.2),

we can easily obtain different kinds of exact solutions of Eq. (5.1) as follows:

Case 1. When a0 ̸= 0, g = 0 and h = 0, Eq. (5.1) has exact solutions as follows:

u =

a0 +
3a0 sech

(
a0

√
2β

η
τ

)
ϵ− 2 sech

(
a0

√
2β

η
τ

)
Eα(δt

α),

x = a0τ −
√

6η

β
tanh−1

[
2 + ϵ√

3
tanh

(
a0

√
β

2η
τ

)]
,

(5.6)

and 

u =

a0 −
12a0 sech2

(
a0

√
β

2η
τ

)
16− 3

[
1 + ϵ tanh

(
a0

√
β

2η
τ

)]2
Eα(δt

α),

x = a0τ − 1

ϵ

√
6η

β
tanh−1

[√
3

4

(
1 + ϵ tanh

(
a0

√
β

2η
τ

))]
,

(5.7)

where ηβ > 0. 

u =

a0 +
3a0 sec

(
a0

√
−2β

η
τ

)
ϵ− 2 sec

(
a0

√
−2β

η
τ

)
Eα(δt

α),

x = a0τ +

√
−6η

β
arctan

[
2 + ϵ√

3
tan

(
a0

√
− β

2η
τ

)]
,

(5.8)

where ηβ < 0.

Case 2. When a0 ̸= 0, g ̸= 0 (or g ̸= 2βa20
3

) and h =
2a0(3g−2βa20)

3ηa21
, Eq. (5.1) has exact

solutions as follows:

u =

√
3(g − βa20)

β
sinh

(√
2β

3η
x+ C

)
Eα(δt

α) (5.9)
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and

u = −

√
3(g − βa20)

β
sinh

(√
2β

3η
x+ C

)
Eα(δt

α), (5.10)

where ηβ > 0 and β(g − βa20) > 0.

u =

√
3(βa20 − g)

β
sin

(√
−2β

3η
x+ C

)
Eα(δt

α) (5.11)

and

u = −

√
3(βa20 − g)

β
sin

(√
−2β

3η
x+ C

)
Eα(δt

α) (5.12)

where ηβ < 0 and β(g − βa20) < 0.

Case 3. When a0 ̸= 0, g =
2βa20
3

and h = 0, Eq. (5.1) has exact solutions as follows:

u = a0 cosh

(√
2β

3η
x+ C

)
Eα(δt

α), (5.13)

where ηβ > 0.

u = a0

[
1− 2 sin2

(√
− β

6η
x+ C

)]
Eα(δt

α) (5.14)

or

u = a0 cos

(√
−2β

3η
x+ C

)
Eα(δt

α), (5.15)

where ηβ < 0.

Case 4. When a0 = 0, g ̸= 0 and h = 0, Eq. (5.1) has exact solutions as follows:

u =

√
3g

β
sinh

(√
2β

3η
x+ C

)
Eα(δt

α) (5.16)

and

u = −
√

3g

β
sinh

(√
2β

3η
x+ C

)
Eα(δt

α), (5.17)

where ηβ > 0 and gβ > 0.

26



u =

√
−3g

β
cosh

(√
2β

3η
x+ C

)
Eα(δt

α), (5.18)

where ηβ > 0 and gβ < 0.

u =

√
−3g

β
cos

(√
−2β

3η
x+ C

)
Eα(δt

α), (5.19)

where ηβ < 0 and gβ < 0.

Case 5. When ηβ > 0, a0 = 0, g = 0 and h = 0, Eq. (5.1) has exact solutions as

follows:

u = a1C exp

(√
2β

3η
x

)
Eα(δt

α) (5.20)

and

u = a1C exp

(
−

√
2β

3η
x

)
Eα(δt

α). (5.21)

In order to intuitively show the dynamic profiles and properties of above solutions, as

examples, the 3D-graphs of the solutions (5.6) and (5.7) are illustrated, which are shown in

Fig. 8 and Fig.9.

(a) case of ϵ = 1 (b) case of ϵ = −1

Fig. 8. The 3D-graphs of dynamical profiles of the solution (5.6) under the

fixed parameters a0 = −5, η = 4, β = 0.5, δ = −2, α = 0.5.
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Comparing Fig. 8 and Fig. 1, it is easy to find that their shapes are very similar, only

the amplitude decay degree is different. This is due to the difference of the Mittag-Leffler

functions tα−1Eα,α (δt
α) and Eα (δt

α) in the solutions (5.6) and (3.17). It can be seen that

the solution (3.17) is only one more factor tα−1 than the solution (5.6). So that the solution

(3.17) converges faster than the solution (5.6) when t → +∞.

(a) case of ϵ = 1 (b) case of ϵ = −1

Fig. 9. The 3D-graphs of dynamical profiles of the solution (5.7) under the

fixed parameters a0 = 5, η = 4, β = 0.5, δ = −2, α = 0.5.

Similarly, comparing Fig. 9 and Fig. 3, it can be found that their shapes are also similar and

only their amplitude decay degree is different. This is due to the difference of the Mittag-

Leffler functions tα−1Eα,α (δt
α) and Eα (δt

α) in the solutions (5.7) and (3.20). Also, it is easy

to find that the solution (3.20) is only one more factor tα−1 than the solution (5.7). So that

the solution (3.20) converges faster than the solution (5.7) when t → +∞.

5.2 Exact solutions of Eqs.(1.3) under Caputo operator

When ∂α

∂tα
= C

0D
α
t is Caputo differential operator, Eq. (1.3) can be rewritten as

C
0D

α
t u = 2β(ux)

2 − η[uuxxxx + 4uxuxxx + 3(uxx)
2] + (2βu+ δ)uxx. (5.22)

According separation method of semi-fixed introduced above, we assume that Eq. (5.22)

has solutions formed as

u = v(x)Eα(λt
α). (5.23)
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Substituting (5.23) into (5.22), we get

(λv − δvxx)Eα(λt
α) = [−ηvvxxxx − 4ηvxvxxx − 3ηv2xx

+2βvvxx + 2βv2x][Eα(λt
α)]2.

(5.24)

In (5.24), letting each coefficient of the functions tα−1Eα,α(λt
α) and [tα−1Eα,α(λt

α)]2 equal

zero, we obtain λv − δvxx = 0,

ηvvxxxx + 4ηvxvxxx + 3ηv2xx − 2βvvxx − 2βv2x = 0.
(5.25)

Obviously, Eq. (5.25) is same to Eq. (4.4) completely, so they have the same exact solutions.

Therefore, directly plugging those exact solutions of Eq. (4.4) given in Sec. 4 into Eq. (5.23),

we can easily obtain different kinds of exact solutions of Eq. (5.22) as follows:

When ηβ > 0 and gβ > 0, we obtain two general solutions of Eq. (5.22) as follows:

u =

√
2g

β
sinh

(√
β

2η
x+ C

)
Eα

(
δβ

2η
tα
)

(5.26)

and

u = −
√

2g

β
sinh

(√
β

2η
x+ C

)
Eα

(
δβ

2η
tα
)
. (5.27)

When ηβ < 0 and gβ < 0, we obtain two general solutions of Eq. (5.22) as follows:

u =

√
−2g

β
sin

(√
− β

2η
x+ C

)
Eα

(
δβ

2η
tα
)

(5.28)

and

u = −
√

−2g

β
sin

(√
− β

2η
x+ C

)
Eα

(
δβ

2η
tα
)
. (5.29)

When ηβ > 0 and gβ < 0, we obtain an exact solutions of Eq. (5.22) as follows:

u =

√
−2g

β
cosh

(√
β

2η
x+ C

)
Eα

(
δβ

2η
tα
)
. (5.30)

When g = 0, h = 0 and ηβ > 0, we obtain two general solutions of Eq. (5.22) as follows:

u = C exp

(√
β

2η
x

)
Eα

(
δβ

2η
tα
)

(5.31)
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and

u = C exp

(
−

√
β

2η
x

)
Eα

(
δβ

2η
tα
)
. (5.32)

In order to intuitively show the dynamic profiles and properties of above solutions, as

examples, the 3D-graphs of the solutions (5.28) and (5.30) are illustrated, which are shown

in Fig. 10 and Fig. (11).

(a) case of α = 0.25 (b) case of α = 0.75

Fig. 10. The 3D-graphs of dynamical profiles of the solution (5.28) under the

fixed parameters C = 3, g = −4, η = −3, β = 2, δ = 1.

As can be seen from Fig. 10 that the profile of the solution (5.28) has not mutation phe-

nomenon at α = 0.75, this is because the one-parameter Mittag-Lefler function Eα

(
− δβ

2η
tα
)

in the solution (5.28) has no singularity.

Comparing Fig. 10 and Fig. 6, it can be found that their shapes are also similar and only

their amplitude decay degree is different. This is due to the difference of the Mittag-Leffler

functions tα−1Eα,α (δt
α) and Eα (δt

α) in the solutions (5.28) and (4.24). Also, it is easy to

find that the solution (4.24) is only one more factor tα−1 than the solution (5.28). Therefore,

the solution (4.24) converges faster than the solution (5.28) as t → +∞.

30



(a) case of α = 0.25 (b) case of α = 0.75

Fig. 11. The 3D-graphs of dynamical profiles of the solution (5.30) under the

fixed parameters C = 1, g = −3, η = 1, β = 2, δ = −1.

As can be seen from Fig. 11 that the profile of the solution (5.30) has not mutation phe-

nomenon at α = 0.75 yet due to the one-parameter Mittag-Lefler function Eα

(
− δβ

2η
tα
)
in

the solution (5.30) has no singularity.

Similarly, comparing Fig. 11 and Fig. 7, it can be found that their shapes are also

similar and only their amplitude decay degree is different. This is due to the difference of

the Mittag-Leffler functions tα−1Eα,α (δt
α) and Eα (δt

α) in the solutions (5.30) and (4.26).

Also, it is easy to find that the solution (4.26) is only one more factor tα−1 than the solution

(5.30). Thus, the solution (4.26) converges faster than the solution (5.30) as t → +∞.

6 Conclusions

In this work, based on a modified separation method of variables and the integral bifurcation

method, a combinational method is proposed. By using this new method, two generalized

time-fractional thin-film equations are studied. Under two definitions of Riemann-Liouville

and Caputo fractional derivatives, exact solutions of the two generalized time-fractional

thin-film equations are investigated respectively.

Under the definition of Riemann-Liouville fractional differential operator, when g = h =

0, a0 ̸= 0, we obtained three kinds of exact solutions of parametric form such as (3.17),

(3.20) and (3.23) of the generalized time-fractional thin-film equation (1.2). In the other

parametric conditions, we obtained twelve explicit solutions such as (3.27), (3.28), (3.31),

(3.32), (3.38), (3.39), (3.44), (3.45), (3.49), (3.53), (3.57) and (3.58) of the generalized time-
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fractional thin-film equation (1.2). Under the definition of Riemann-Liouville fractional

differential operator, when h = 0, we obtained six explicit solutions such as (4.16), (4.17),

(4.24), (4.25), (4.30) and (4.31) of the generalized time-fractional thin-film equation (1.3).

Under the definition of Caputo fractional differential operator, by using similar method,

we obtained different kinds of exact solutions of two generalized time-fractional thin-film

equations (1.2) and (1.3). Obviously, the types of exact solution of these two time-fractional

generalized time-fractional thin-film equations are very richer more than those in the existing

references.

The investigations shew that the solutions of Eqs. (1.2) and (1.3) defined by Caputo

fractional differential operator are very similar to those of Eqs. (1.2) and (1.3) defined

by Riemann-Liouville fractional differential operator, only their Mittag-Leffler functions are

different. It is found that the solutions of Eqs. (1.2) and (1.3) defined by Riemann-Liouville

differential operator converge faster than those defined by Caputo differential operator. It is

also found that all solutions of Eqs. (1.2) and (1.3) defined by Riemann-Liouville differential

operator occurred mutation phenomenon at α = 0.75. This is obviously a very anomalous

phenomenon, which is unlikely to occur in cases of integer-order nonlinear PDEs.

Among these solutions of Eqs. (1.2) and (1.3) mentioned above, we found that all of

them are not soliton solutions. However, when α = 1, the integer-order generalized thin-film

equations exist soliton solutions. This implies that its soliton solutions will disappear when

an integer-order nonlinear PDE is changed into a nonlinear time-fractional PDE. So, must

there necessarily be any forms of soliton solutions for nonlinear fractional PDEs? This is a

very interesting question, but in the present way, we cannot answer it with certainty, maybe

someone (readers) can answer it in the future.
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