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Abstract

Plastering is dominated manually, exhibiting low levels of automation and inconsistent finished quality. A comprehensive

review of literature indicates that extant plastering robots demonstrate a subpar performance when tasked with rectifying

defects in transition area. The limitations encompass a lack of capacity to independently evaluate the quality of work or

perform remedial plastering procedures. To address this issue, this research describes the system design of the Puttybot and a

paradigm of plastering to solve the stated problems. The Puttybot consists of a mobile chassis, lift platform, and a macro/micro

manipulator. The force-controlled scraper parameters have been calibrated to dynamically modify their rigidity in response

to the applied putty. This strategy utilizes Convolutional Neural Networks to identify plastering defects and executes the

plastering operation with force feedback. This paradigm’s effectiveness was validated during an autonomous plastering trial

wherein a large-scale wall was processed without human involvement.
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Abstract

Plastering is dominated manually, exhibiting low levels of automation and incon-
sistent finished quality. A comprehensive review of literature indicates that extant
plastering robots demonstrate a subpar performance when tasked with rectifying
defects in transition area. The limitations encompass a lack of capacity to indepen-
dently evaluate the quality of work or perform remedial plastering procedures. To
address this issue, this research describes the system design of the Puttybot and a
paradigm of plastering to solve the stated problems. The Puttybot consists of amobile
chassis, lift platform, and a macro/micro manipulator. The force-controlled scraper
parameters have been calibrated to dynamically modify their rigidity in response
to the applied putty. This strategy utilizes Convolutional Neural Networks to iden-
tify plastering defects and executes the plastering operation with force feedback.
This paradigm’s effectiveness was validated during an autonomous plastering trial
wherein a large-scale wall was processed without human involvement.
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1 INTRODUCTION

The level of automation within the construction industry remains relatively limited1. This sector, on a global scale, confronts
significant challenges stemming from labor costs, while also contending with safety concerns and issues related to construction
efficiency2. Consequently, the relatively low degree of automation, along with the associated high costs and scarcity of labor,
have spurred the exploration of construction robots as a potential solution.
Current construction robots commonly exhibit semi-automated features, as they lack the capability to independently evalu-

ate construction quality or determine appropriate corrective measures. Instead, engineers must manually prescribe the robots’
actions based on on-site observations and contextual understanding. Notably, plastering operations remain predominantly reliant
on manual interventions. Existing plastering robots heavily rely on precise initial positioning and necessitate continuous worker
intervention to achieve accuracy and adequately cover expansive wall surfaces3. This reliance on worker proficiency introduces
substantial repeatability errors during position alignment, manifesting as visible imperfections in the transitional areas between
adjacent workstations, which subsequently require manual rectification. To address these challenges, this paper introduces a
paradigm for robot plastering, enhancing the quality of plastering across multiple workstations while ensuring stability and
resilience. The achievement of full autonomy holds the potential to mitigate the prevalent labor shortages in this domain.
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1.1 Contributions of the paper
This study proposes a plastering robot characterized by the employment of a macro/micro manipulator and a paradigm of the
robot plastering. The main contributions of this study are as follows.
(1) A novel paradigm for the robot plastering is proposed. The validity of the robot’s workflow and plastering strategy has

been verified through autonomous plastering conducted across multiple workstations.
(2) A motorized scraper is proposed for putty plastering. The system has the capability to not only control the inclination

angle of the scraper blade in relation to the wall but also adjust its stiffness, enabling precise and intricate plastering operations.
(3) A Convolutional Neural Network-based plastering quality recognition method is proposed. This functionality empowers

the robot to autonomously assess the quality of each plastering task. Consequently, the implementation of plastering quality
control is accomplished through the formulation of corrective measures when substandard quality is detected.
(4) Autonomous plastering is achieved for a large-scale wall. The overall consistency of the plastering quality is guaranteed

through multiple movements of the mobile chassis at each moving station. During the entire process, no human intervention is
needed.
In Section 3, the robot system is comprehensively outlined, encompassing its essential hardware components and software

architecture. Notably, the incorporation of the macro/micro manipulator optimizes the working space, elevates the quality of
plastering, and enhances overall robustness. In Section 4, an exposition is provided on the control method of the Puttybot, which
utilize the generalized kinematic inverse solution and impedance control. Moreover, the application of the AMCL algorithm for
localization and navigation functions is elucidated. In Section 5, a plastering paradigm with proposed robot is introduced. To
ensure compliance with the thickness and flatness requirements of the applied putty, we first discussed the key parameters that
most significantly affect plastering quality and designed a robotic plastering workflow including automatic position alignment,
target wall calibration. To achieve a smooth transition of the putty applied in two adjacent workstations, some techniques are
proposed, which will be introduced in this section. Section 6 introduces two Convolutional Neural Networks that effectively
monitor the quality of plastering. A strategy based on the network outputs is proposed to determine appropriate adjustments to
the plastering parameters based on the detected quality. In Section 7, a comprehensive experimental demonstration is presented.
Through the integration of the proposed technologies in this experiment, the automatic application of putty on a large-scale wall
is successfully achieved. Finally, in Section 8, the conclusions drawn from the research findings are discussed, along with an
outlook on potential avenues for future research.

2 RELATEDWORK

At present, interior finishing robots find primary application in various tasks such as floor tiling4,5, ceiling installation6, tiling7,
wall polishing8, painting9, plastering3, and quality inspection10. Within the domain of plastering robots, a distinction can be
made based on whether their operations entail direct contact with the working environment.

2.1 Related painting and plaster spraying robots
Several researchers have conducted studies on plaster spraying robots, exploring the possibility of direct wall spraying without
the need for scraping. The concept of a painting robot shares similarities with a putty spraying robot, as both operate in a non-
contact manner with the wall. One notable example in this field is Pictobot9, which specializes in painting high-rise warehouse
walls. Before commencing the spraying process, Pictobot scans and reconstructs the scene by integrating ToF camera data with
robotic arm motions. It then segments the resulting 3D point cloud, generates a painting sequence, and plans the spray posture
to ensure consistent paint thickness. However, it is important to note that Pictobot is a semi-automatic system that requires
human assistance for precise positioning the platform and navigating around doors and windows. Another notable development
in the field includes the introduction of a digital design plaster11 and an interactive robot for ornamental work12. In both cases,
a manipulator equipped with a spraying gun is employed to carry out the plastering tasks. The trajectory of the robot’s operation
can be carefully designed and followed, enabling the realization of various coating layers and shapes. Selen et al.13 proposed
a mobile robot capable of plaster spraying on building elements. This system is designed to adapt the spraying distance and
velocity after each spraying iteration. Additionally,14 and15 provide insights into system composition and control planning,
offering a mathematical perspective on the subject matter.
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Interior finishing tasks like painting and plaster spraying without force perception or contact have made significant advance-
ments. However, in the case of plastering, the desired level of surface smoothness and base putty adhesion cannot be achieved
without the additional step of scraping. Furthermore, tasks that involve force-controlled contact encounter issues of instability
and unreliable performance due to imprecise measurement of interaction forces. To address these challenges, researchers have
devised a specially designed end effector to offer effective solutions.

2.2 Plastering machines/robots

FIGURE 1 Plastering robots:(A)OKIBO plastering robot (B)CMU plastering robot (C)Plastering robot with a soft scraper
(D)Plastering robot with a spring scraper (E)Semi-automatic wall-plastering machine.

The interior finishing robot company OKIBO from Israel16 has developed a robot capable of both spraying and scraping tasks.
The scraping operation is performed autonomously, eliminating the need for manual intervention. The end effector is equipped
with a soft rubber scraper, and a thin layer of putty is applied. The target wall surface consists of KNAUF gypsum boards, known
for their smoothness and superior flatness compared to concrete walls. However, even after the robot completes the process,
some vertical scratches may remain on the wall, as illustrated in Fig. 1 -A. When dealing with cement-based materials and
adhesive putty, the actuator and soft scraper may not meet the required putty thickness standards. Additionally, in the case of
vertical plastering, putty can accumulate on the soft scraper, leading to inaccuracies in the scraper’s processing angle. This issue
becomes more pronounced when working with sticky putty. A rigid scraper is employed as the end effector for handling sticky
putty, as depicted in Fig. 1 -B. By performing horizontal processing, the impact of accumulated putty caused by gravity can
be minimized. However, the occurrence of scratches on the putty due to the scraper’s edge remains unpredictable. To address
this issue, Joshua et al.17 proposed an image classification approach for defect detection and subsequent re-plastering. In a
similar vein, Marsela et al.18 utilized a camera to assess the deformation of the scraper, as shown in Fig. 1 -C, and regulated the
inclination of the knife relative to the putty surface. Nonetheless, despite the precise control of the end effector, the elimination
of scratches remains challenging. Additionally, the presence of putty on the scraper obstructs the camera’s detection capabilities,
limiting the effectiveness of this particular method. Li et al.19 introduced a robotic system featuring a spring-loaded scraper
as the end effector, as illustrated in Fig. 1 -D. The system leverages a neural network to classify defects and determine the
optimal scraping direction. However, noticeable streaks persist in the putty between neighboring working areas. The Machine
Manufacturing Co20 developed a semi-automatic wall-plastering machine equipped with a lifting mechanism to address the
limited reach of human workers. However, manual alignment and adjustment of the machine’s position in relation to the wall
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are still necessary. One drawback of this machine is its limited autonomy, as workers need to manually align the station for each
operation. Furthermore, this machine tends to consume more material than manual methods due to the increased amount of
cement mortar that falls during the plastering process, as depicted in Fig. 1 -E.
Researchers commonly utilize scrapers made of materials with low stiffness, lacking the ability to adjust their stiffness accord-

ing to the specific properties of the putty being used. Furthermore, the control of scraping angles in these machines is not
dynamically regulated. Another drawback of current plastering robots lies in the strategy employed to ensure the desired flatness
across the entire area during multi-station plastering.
Another crucial aspect of plastering automation pertains to the monitoring of quality. The inherent complexity of fluid putty’s

rheological properties leads to variations in surface shape, hardness, and viscosity over time21. Unlike rigid objects, putty can-
not be handled in a fixed manner across different states. Consequently, it becomes imperative to assess the outcome after each
plastering process and adaptively adjust the parameters accordingly. Quality monitoring assumes a pivotal role in plastering
automation. Yan et al.10 introduced a robotic system designed for autonomous quality inspection and assessment. This system
employs cameras and laser scanners to scan entire rooms, detecting any structural defects. Liu et al.22 implemented a con-
crete crack-detection method using U-net networks for vision data analysis. Elbehiery et al.23 devised a control method that
integrates image processing andmorphological operation techniques to evaluate the surface quality of tiles. Furthermore, Convo-
lutional Neural Networks24,17,25 have been employed to detect and assess surface quality. These methodologies serve as valuable
references for the monitoring of plastering quality.

3 SYSTEM DESCRIPTION

The Puttybot is an interior finishing mobile robot platform that employs a macro/micro manipulator, as shown in Fig. 2 . The
macro manipulator is a 6-DOF UR5 robot arm capable of large-scale motions. The micro manipulator is a 3-DOF parallel
platform that helps to quickly respond to changes in the surface of the putty through precise motions. The combination of
macro/micro manipulators can avoid manipulator singularity in a constrained environment and improve the dynamic response
to variations in the wall surface26.

3.1 Robot platform
As shown in Fig. 2 , the Puttybot is mainly composed of a two-wheel drive mobile chassis, lift platform, UR5 robot arm, a
parallel platform and a motorized scraper.

FIGURE 2 Robot hardware composition
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To realize the communication between the various components, a Robot Operating System (ROS) was used as the software
framework, and the communication frequency was 100 Hz, as shown in Fig. 3 . The main components are as followed.

FIGURE 3 Robot module composition and system communication framework

• A control PC with an Intel Core i9-8950HK CPU@2.90GHz*12, and GeForce GTX1080 GPU running on Ubuntu 18.04
was used.

• The 6-DOF robot arm is a UR5 serial manipulator with a maximum payload of 5 kg and a control frequency of 125 Hz.

• The 3-DOF parallel platform is a 3-RPS parallel platform. The maximum payload and control frequency of each of the
embedded linear motors are 4 kg and 200 Hz, respectively.

• Themotorized scrapermounted at the end of themanipulator is themain component that contacts the wall, and its real-time
response frequency can reach up to 1 kHz.

• The lift platform is equipped with a wire draw encoder, Realsense D435i, and 2D laser sensor.

3.2 Micro manipulator and the motorized scraper
The micro manipulator is a parallel platform designed as a 3-RPS mechanism, which stands for a 3-revolute-prismatic-spherical
parallel mechanism. It consists of a base that is connected to the end of the UR5 manipulator, and a moving plate equipped
with a motorized scraper. For the parallel platform, the linear motor used is the MightyZAP L12-20PT-3, which provides a
peak force of 40 N. Additionally, a laser sensor with a resolution of 0.1 mm, specifically the SensoPart FT50-RLA-220-S1L8, is
incorporated into the system. The motorized scraper includes various components such as an aluminum scraper (250 mm × 90
mm), a rotary torque sensor, a GP22C gear reducer with a reduction ratio of 109:1, a Maxon DCX22 motor with a peak torque
of 0.9 Nm, and an encoder.
During interior finishing tasks, the motorized scraper comes into contact with the putty or wall, requiring it to be durable and

resistant to corrosion. It is also important to monitor the state of the putty for optimal operation. The putty scraper is connected
to the moving plate through a hinge, and its rotation is driven by a servo motor. A rotary torque sensor is positioned between
the output shaft of the servo motor and the hinge shaft to measure the contact force exerted by the scraper. The assembly of the
micro manipulator with the scraper can be observed in Fig. 4 .
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FIGURE 4 Micro manipulator with motorized scraper: the left side presents an exploded view of the parallel platform.

To prevent contamination of the finished surface and minimize wastage of putty, a specialized mechanism has been incor-
porated to effectively remove residual putty from the scraper, as depicted in Fig. 2 . This mechanism effectively removes any
remaining putty from the scraper, which is then collected in a designated putty bucket for recycling purposes. The cleaning
scraper is constructed using resilient manganese steel, ensuring its suitability for various scraper positions and postures.

4 CONTROL METHOD

4.1 Macro/micro manipulator control
4.1.1 Position control of the macro/micro manipulator
The 6-DOF UR5 manipulator and 3-DOF parallel platform are connected serially forming a 9-DOF redundant manipulator.
Denoting the Cartesian velocity of the end tip as ẋ, we have:

ẋ = J �̇ (1)

where J is a 6×9 Jacobian matrix, and �̇ is a 9×1 vector representing the velocities of the actuators. The Jacobian matrix can be
formulated with two sub-matrixes as:

J =
[

JM Jm
]

(2)

where JM represents the Jacobian matrix mapping the UR5 robot joint velocity to its end effector velocity, and Jm represents
the Jacobian matrix mapping the linear actuator velocity to the velocity of the moving plate:

Jm =
[W
5 R 0
0 W

5 R

]

JRPS (3)

where W5 R represents the rotation matrix of the macro manipulator’s end with respect to the world coordinate system, and JRPS
represents the Jacobian matrix of the parallel platform.
The relationship between the joint velocity and the velocity of the end effector is obtained by solving for JRPS , W5 R, and JM

with generalized kinematic inverse solution.
For operation in limited space, a position control method for redundant manipulator is utilized. The comprehensive kinetic

model and its solution have been elaborated upon in the work by Chen D et al.27.
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4.1.2 Control of the scraper force
A conventional impedance control method is applied when the scraper contacts the putty, as shown in Fig. 5 . The desired
rotation angle of the scraper is specified according to the working conditions, whereas the desired impedance factors (stiffness
and damping) are set in program. The contact force is measured using the rotary torque sensor mounted at the hinge of the
scraper plate. To obtain the exact contact force, the measured value is subtracted by the weight of the mechanical part. The
desired contact force following the impedance control is formulated:

FIGURE 5 Force control framework

fim = Kim(�des − �act) +Dim(�̇des − �̇act) (4)

Where the fim is the calculated torque by the impedance controller, theKim and theDim represents the stiffness and the damping
parameters. �des represents the target degree of the scraper, and �act can be obtained by the encoder. The desired contact force
fim following the impedance model is realized by a PID control that regulates the force by comparing its actual value measured
from the torque sensor.

4.2 Mobile chassis navigation and positioning method
The Robot Operating System (ROS) incorporates the AdaptiveMonte Carlo Localization (AMCL) algorithm to achieve accurate
localization of the robot using a 2D floor map. AMCL utilizes a collection of particle filters within the 2D map to track and
estimate the robot’s position. This approach, based on Monte Carlo fusion algorithms, is particularly effective for large-scale
localization tasks28.
To facilitate accurate localization, the implementation of AMCL incorporates a laser sensor mounted on the top of lift plat-

form. Considering the specific characteristics of the interior finishing environment and the motion capabilities of the mobile
chassis, the AMCL is configured with a minimum of 1000 particles and a maximum of 6000 particles. This configuration allows
for effective real-time position updates at a frequency of 10 Hz.

5 PLASTERING PARADIGMWITH THE PROPOSED ROBOT

5.1 The essential parameter for fine plastering
The coordinate system utilized by the Puttybot is illustrated in Fig. 6 .Ob denotes the origin of the UR5 base coordinate system,
and Ot signifies the origin of the end effector coordinate system. Notably, the end effector coordinate system is positioned at the
center of the moving plate within the parallel mechanism.
During the plastering process, the Puttybot performs adjustments to three key angles, namely � , �, and �S . Considering that

in plastering, the moving plate holding the scraper moves along the Yb axis, then � represents the yaw angle. The yaw angular
motion facilitates the control of putty thinness. On the other hand, � denotes the roll angle. The roll angle describes the tilt angle
of the scraper with respect the wall. By setting the roll angle, only the bottom edge of the scraper will leave a putty stripe after
each lateral scraping. Lastly, �S corresponds to the scraper rotation angle, which governs the attainment of putty flatness.
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FIGURE 6 The three key parameters � , � and �S used for describing the automatic plastering process. � represents the yaw
angle of the moving plate (rotation aroundZb). � denotes the roll angle of the moving plate (rotation around Yb). �s corresponds
to the rotation of the scraper plate. Ob denotes the origin of the UR5 base coordinate system, and Ot signifies the origin of the
end effector coordinate system.

5.2 Workflow
5.2.1 Localization of target wall
Once the mobile chassis has arrived near the target wall, a calibration procedure is employed to determine its precise location
with respect to the robot’s position. This calibration method is visually depicted in Fig. 7 . The end of the robot’s manipulator is
guided along a straight path, specifically along the Yb axis. Meanwhile, the moving plate of the parallel mechanism is maintained
parallel to the wall, aided by the laser displacement sensors that provide the necessary positional information. By measuring the
generated values of Δlaser and Δrun distance between adjacent positions, the inclination angle of the wall when projected on
the ground can be accurately calculated.

�M = �W = arcsin( Δlaser
Δrun distance

) (5)

At the outset, the orientation of the moving plate with respect to the wall is indeterminate. However, utilizing distance mea-
surement feedback from the three laser sensors, its orientation is promptly adjusted to align parallel to the wall. By ensuring this
parallel alignment, any observed changes in the measured normal distance correspond proportionally to the displacement of the
end effector. Ultimately, a straight-line fitting approach is employed to determine the calibration line, as depicted in Fig. 8 .
In Fig. 10 (b), the red and blue curves depict the calibrated and actual paths, respectively. Throughout the scraping process,

the actual path is adjusted based on the varying measured torque caused by the unevenness of the wall surface, ensuring the
continuity of the operation. The scraping operation is performed in the calibration direction.

TABLE 1 Stiffness and damping coefficients

Category Stiffness Damping

Scraper-Soft 5 0.2
Scraper-Standard 20 0.1
Scraper-Hard 50 0.1
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FIGURE 7 Calibration of the wall’s position: Ob denotes the origin of the UR5 base coordinate system. �M is the calculated
angle of the wall, and �W is the actual angle of the wall.

FIGURE 8 Recognition of the target wall surface: the moving plate armed with laser sensors is maintained parallel to the wall,
stabilizing into a linear relationship gradually.

(a) (b)

FIGURE 9 Strategy for motion and base plate compensation: (a) The � angular time response curves of the moving and base
plates; (b) The � angular time response curves of the moving and base plates. The pose change of the base plate lags behind
that of the moving plate to enhance system stability.
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(a) (b)

FIGURE 10 (a) Variation of stroke length: the stroke lengths of the linear motors maintain within the middle range of their
movement capabilities to adapt wall surface changes; (b) Comparison of the calibrated path and actual path.

5.2.2 Putty plastering with motorized scraper
The actual putty plastering process was realized using impedance control with variable settings of stiffness and damping
coefficients. The objective of the control was to maintain the scraper inclination angle with respect to the wall to be �S = 30◦.
The three sets of stiffness and damping coefficients adopted in the experiments are listed in Table. 1 , which were tuned

through tests under various working conditions to ensure good quality.
Due to the restricted motion range of the parallel mechanism, its ability to actively adapt to an uneven wall surface is greatly

influenced by the current stroke length. When any of the linear motors reaches its limit of stroke length, no further adjustments in
posture can be accomplished by the parallel mechanism. In such instances, the manipulator, which holds the parallel mechanism,
must undertake the necessary adjustments to the end effector posture.
Considering the ability of both the parallel mechanism and the manipulator to modify the scraper’s orientation with respect

to the wall, it is crucial to devise a strategy that effectively harnesses their respective capabilities. The approach employed in
this study is outlined as follows:
(1) The parallel mechanism, due to its excellent responsiveness, can promptly adapt to significant fluctuations in the elevation

of the wall surface. Nonetheless, its capacity to accommodate variations in wall surface elevation is constrained by its limited
range of motion. To ensure continuous readiness of the parallel mechanism for addressing wall surface changes, it is advisable
to maintain the stroke lengths of all linear motors within the middle range of their movement capabilities.
(2) For the manipulator, its capability to adjust the scraper orientation should not be utilized when a drastic change in all

surface elevations is encountered, because it implies a large dynamic load for the manipulator. Its tool-orientation adjustment
capability should be utilized after the drastic change has been compensated for by the parallel mechanism. Its adjustment is
to make the parallel mechanism move back to the neutral stroke position to make full use of its high response in subsequent
operations. Therefore, the pose change of the manipulator lags behind that of the parallel mechanism.
To implement the compensation strategy described above, we have adjusted the PID parameters employed in the motion

control of the manipulator. Specifically, a lower P gain has been configured to intentionally introduce a delay in the manipulator’s
posture tracking compared to the parallel mechanism. This deliberate adjustment ensures that the manipulator UR5 exhibits a
lower response in terms of posture tracking. The figures illustrating typical tracking data, namely Fig. 9 (a) and Fig. 9 (b),
demonstrate the resulting performance. Additionally, it is worth noting that the stroke positions of the linear motors have been
maintained within the middle range, as evidenced by Fig. 10 (a).
In order to mitigate the occurrence of mechanical singularity configurations in the manipulator while executing the putty-

plastering process, it is crucial to optimize the initial position of the end effector and devise appropriate protective measures. To
this end, we employ the Levenberg-Marquardt (LM)method29, wherein the resolvedmotion rate control formulation is enhanced
by the inclusion of the �weighting factor. This approach effectively prevents undesirably high joint velocities, ensuring a smooth
and safe operation.
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FIGURE 11 Measured torque variation and the trajectory of the moving plate

5.2.3 Ending takeoff of the scraper
During the end of a plastering motion, the scraper is retracted from the wall, accompanied by an increase in the angle �S such
as making the blade of the scraper taking off from the wall surface. This deliberate adjustment aims to minimize the adhesive
force between the putty remnants and the scraper. In order to achieve this, it is necessary to design a suitable rotation speed
̇�S and manipulator tip escaping speed Żt. It is hard to eliminate the trailing putty due to the varying consistency of the putty,
which produces different sticking forces. After comparing the results of several experiments, we empirically determined to set
̇�S = 8◦∕s, which can effectively reduce the generation of pulled putty.
For the entire plastering process, Fig. 11 shows the measured torque variation and trajectory of the moving plate during a

complete scraping.

5.3 Plastering strategy in transition area
5.3.1 Strategy between grids
While engaged in the plastering process, it has been observed that when the rectangular scraper blade aligns parallel to the putty
surface, scratches occur along both edges of the scraper. To address this issue, the Puttybot proactively modifies the tilt angle �
of the blade, positioning the bottom edge of the blade closer to the wall than the top edge. Consequently, only the bottom edge of
the blade contributes to the generation of scratches. To facilitate efficient plastering, a fundamental operation has been devised,
involving lateral movement of the scraper from the leftmost to the rightmost point of the target grid.

(a) (b) (c)

FIGURE 12 Effect of putty plastering with tilted blade: (a) First plastering; (b) Second plastering; (c) Third plastering.

Following each plastering operation, a deliberate displacement of the scraper by half of its width in the vertical direction
was implemented. As a result, half of the previously plastered area is effectively covered in the subsequent step. This strategic
approach serves a dual purpose: ensuring comprehensive coverage of the target wall area andmitigating the presence of scratches.
Specifically, the scratches produced by the bottom edge of the blade in the previous step are rectified during the subsequent
plastering process. The impact of this strategy is visually depicted in Fig. 12 .
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5.3.2 Strategy between workstations
When the mobile chassis transitions to the next workstation, the scraper is deliberately rotated to the desired angle and brought
into contact with the putty. Once the measured torque stabilizes, the manipulator commences lateral movement for scraping. It
is noteworthy that the initial contact between the scraper blade and the wall greatly influences the resulting scratch. Through
our research, we have discovered that by increasing the tangential speed of the scraper blade relative to the contact surface,
the severity of the scratch can be significantly mitigated. A comparative analysis between this innovative approach and the
conventional strategy is presented in Fig. 13 (a).
In Fig. 13 (a), the blue and red lines represent two distinct types of approaching trajectories. The corresponding plastering

effects of these two strategies are visually depicted in Fig. 13 . As observed from the figures, when the scraper blade follows a
circular curve (represented by the red curve), the impact of the contact is minimized, resulting in almost imperceptible remain-
ing scratches. We have successfully implemented this strategy for a continuous sequence consisting of three workstations, as
introduced in30.

(a)

(b) (c)

FIGURE 13 Different approach trajectories of scraper blade for the first contact: (a) Bird-eye view; (b) Actual plastering effect
of blue trajectory; (c) Actual plastering effect of red trajectory.

6 AUTOMATIC DETECTION OF PLASTERING QUALITY

Manual plastering relies on the coordination of the eyes, arms, and brain to determine the force and plastering angle. The same
"eye-hand-brain" system was utilized for the Puttybot. The Puttybot was equipped with a Realsense D435i RGB-D camera,
which was used to monitor the status of the process. The function of the "brain" is realized by a deep learning-based method. A
Convolutional Neural Network was used to evaluate the plastering effect. If the effect of any plastering operation is detected as
poor, the network should output a command for one more recovery plastering action, and it should also determine the appropriate
parameter set for the new action.

6.1 Plastering dataset collection
During the putty plastering process, in order to enhance efficiency, Puttybot initially carried out numerous trials using pre-
set parameters. The scraping action was performed by manually selecting from these pre-set parameters, without employing
any automatic detection methods. The results of these tests demonstrated that the diverse range of plastered putty conditions
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encountered in real-world interior finishing tasks could be effectively managed using a limited set of predetermined plastering
parameters. Consequently, the development of an algorithm capable of automatically determining the appropriate parameter
holds the potential to facilitate robotic plastering operations.
The wall putty state detection is divided into two steps.
(1) Judging the quality of plastering results is a binary classification problem; the network decision is either qualified or

unqualified. If the result is qualified, the current processing grid is completed, and Puttybot then proceeds to the next processing
grid.
(2) If the plastering result is recognized as unqualified, Puttybot needs to output the appropriate processing parameters accord-

ing to the putty defect state, which is a multi-classification problem. Puttybot repeats the plastering operation using the newly
determined parameters. This process continues until the processed wall is determined to be qualified.
As the binary classification label, "1" means that the plastered wall satisfies this requirement, and "0" means that the plastered

effect does not.
The multi-classification network outputs three parameters related to the plastering effect: scraper position, scraper stiffness,

and scraper tilt angle, which are listed in Table. 2 .

TABLE 2 Multi-classification network labels

Scraper position Scraper stiffness Scraper tilt angle

0.24 Scraper-Hard PPR-Lower
0.12 Scraper-Standard PPR-Standard
0.0 Scraper-Soft

• Scraper position: For one grid, Puttybot is responsible for processing a rectangular area on the wall. Its height is 0.48m.
According to the strategy mentioned in Subsection 5.3.1, this area is planned to be processed by three lateral plastering
motions that start with the scraper at positions with the height 0.0m, 0.12m, and 0.24m respectively.

• Scraper stiffness: According to Table. 1 , the scraper stiffness was set to one of three levels.

• Scraper tilt angle: Through many experiments, two values of tilt angle were proven capable of meeting this requirement.
PPR-Lower corresponds � = −0.75◦ and PPR-Standard represents � = 0.0◦.

TABLE 3 Pre-determined plastering parameters

Parameter set No. Scraper position Scraper stiffness Scraper tilt angle

1 0.24 Scraper-Hard PPR-Lower
2 0.12 Scraper-Standard PPR-Lower
3 0.0 Scraper-Standard PPR-Lower

The Convolutional Neural Network based method is designed for planning recovery re-plastering operations. Thus, the data
collection starts after the first plastering to the target region has been completed and full coverage with the putty has been
realized. The parameters used to realize the first coverage are listed in Table. 3 . From this moment, any further plastering action
to remove the resultant defects is recorded as the data for training.
Dataset acquisition was performed by controlling Puttybot for plastering, using a Realsense D435i mounted on the lift

platform. To ensure the validity of the dataset, the following principles were applied.
(1) Removal of the target stripes.
(2) No new stripes are created at the upper edge of the scraper.
(3) The presence of multiple defects is to be processed sequentially from top to bottom.



14 AUTHOR ONE ET AL

6.2 Plastering parameter determination network
Through extensive testing, it has been discovered that the coefficients governing the plastering process can be determined based
on visual features observed on the plastered wall surface. Consequently, the utilization of sensor feedback in an automated
plastering system can be formulated as a vision-based classification problem. In this framework, the current state of the target
wall surface, as captured by a camera, serves as the input to the network, while the output of the network corresponds to a
selection from a predetermined set of plastering coefficient combinations.
Deep learning has recently demonstrated promising results, sometimes outperforming human performance in many com-

puter vision tasks31,32, such as classification33,34 and object detection35 and semantic segmentation36,37. Convolutional Neural
Networks (CNNs) can efficiently and automatically separate out discriminative and valuable features directly from raw input
images. In addition to maintaining the end-to-end training scheme, these capabilities of CNNs greatly reduce the expense and
labor needed by conventional machine learning methods to extract handcrafted features manually.
Training CNN models for supervised machine learning tasks requires a large number of annotated images to avoid the over-

fitting effect. This poses a problem when the available annotated training dataset is limited and acquiring labelled images is
labor-intensive, difficult, and time-consuming, as for our automatic wall putty scraping task. Shallow layers of CNNs learn fea-
tures from input images that are general and task independent. By adapting the network architecture to the downstream task and
fine-tuning the network parameters, a CNN trained on a large dataset for one specific vision task can be used in another related
vision task.
The proposed networks are mainly based on a CNN (AlexNet) pre-trained on a sizable dataset (the ImageNet) for an object

classification task. Then the knowledge gained from this task is transferred to solve our downstream tasks.
As shown in Fig. 14 , in addition to the original AlexNet classifier, two similar neural networks are added to the model. The

binary network detects the plastering effect. The multi-classification network detects the plastering parameters: scraper position,
scraper stiffness, and scraper tilt angle. The output layer of each classifier had a linear activation function. After applying the

FIGURE 14 Network structure of the binary network and muti-classification network

average pooling operation, for an input image of size (224 × 224 × 3), the size of the feature vector generated from the feature
extractor part (convolutional layers) was (6 × 6 × 256). This feature vector was then fed into the subsequent classifiers.
The structure of the model’s feature extractor part is as: The first convolutional layer had a kernel filter of size (11 × 11) with

64 channels, stride = 4, and padding = 2. For an input image of size (224 × 224 × 3), the feature map size after this convolution
operation was (55 × 55 × 64). Then, a ReLU nonlinearity and a max pooling operation with a kernel size of (3 × 3) and stride
= 2 are applied; thus, the feature map size becomes (27 × 27 × 64). This feature map was fed to the second layer.
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The second convolutional layer has a kernel size of (5 × 5) with 192 channels and a stride of 1. The feature map size of this
layer is (13×13×192). The next three convolutional layers are similar, but have different numbers of channels. The three layers
have a (3×3) kernel size with stride = 1 and padding = 1; therefore, the width and height of the propagating feature map remain
fixed.
The third convolutional layer has a 384-channel kernel filter; thus, the feature map size is (13×13×384). The fourth and fifth

convolutional layers have a 256-channel kernel filter; therefore, the output feature map size from either layer is (13 × 13 × 256).
Finally, a max pooling operation with a (3 × 3) kernel size and stride = 2 is applied; thus, the size of the final feature map
produced from the model feature extractor is (6 × 6 × 256).
The feature extractor parameters were initialized with the values pre-trained on the ImageNet dataset and then fine-tuned

during the training process. The parameters of the classifiers were randomly initialized and then fine-tuned during the training
process.
The binary classification network is the same as the original AlexNet architecture, except that we modified the final output

layer to have only two neurons with a linear activation function to match our task.

6.3 Network training and testing
The training setup parameters of the classification networks were set as listed in Table. 4 . To further improve the computational
speed, the high-resolution images were resized to 224 × 224 pixels. Because we have a small dataset, our model is prone to
overfitting. We applied horizontal flipping to the training dataset to improve model generalization and mitigate the overfitting
effect.
The training accuracy of the binary classification network was 100%, and the testing accuracy was 94.7%. Only one image

was misclassified.
The original architecture of AlexNet was adapted to fulfill the requirements of our multi-classification network. Specifically,

three additional neural network classifiers of the multi-classification network were incorporated to predict the parameters of
scraper position, tilt angle, and scraper stiffness. Accuracy and error rates were individually computed for each parameter using
the available image samples, encompassing both training and testing sets. Net accuracy was determined by assessing the simul-
taneous correct prediction of all three parameters within the sample set. Notably, the training accuracy for each classifier reached
100%, while the testing accuracies for scraper position, tilt angle, and stiffness classifiers were recorded at 92.8%, 92.8%, and
78.5%, respectively. The overall testing accuracy amounted to 57%. Notably, a positive correlation was observed between the
scraper position and the remaining two parameters, resulting in the model attaining optimal testing accuracy for scraper posi-
tion while achieving the best accuracy for the remaining parameters. Consequently, the model that yielded the highest testing
accuracy for scraper position was saved and subsequently utilized for inference purposes.
For the network deployment, action communication in ROS is applied. An action does not block other tasks during server-side

processing. In contrast, the client side can interrupt or send new target tasks when the server side processes tasks and receives
the corresponding processing information.

7 PUTTYBOT AT THE CONSTRUCTION SITE

We tested the Puttybot on an actual construction site consisting of a room with an area of 10 m × 7 m, three concrete walls, and
one floor-to-ceiling window.
A rectangular area of 3.7 m × 1.2 m on the longest wall of the room (size of approximately 10 m × 3 m) was selected for

testing the automatic plastering robot.

TABLE 4 Training parameters for classification network

Network Dataset size(train+test) Training epochs Batch size Optimizer Learning rate

Binary 536+134 100 5 SGD 0.001
Multi-classification 451+113 300 5 SGD 0.001
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For the purpose of this test, the interior wall putty was mixed with water in a mass ratio of 3:1. To ensure the uniformity of the
putty, a sprayer machine was employed for coating. However, it should be acknowledged that during the spraying process, some
puttymay flow along thewall and eventually settle on the ground, resulting in certainwastage. The target areawas partitioned into
an 18-section grid, comprising three rows and six columns.Within each section, the proposed approach involving status detection
and plastering with visual feedback was implemented. It is important to highlight that to ensure comprehensive coverage of the
designated region, Puttybot necessitates completing six lateral movements of the mobile chassis and three vertical adjustments
of the lift mechanism, as illustrated in Fig. 15 .
The effects observed on the grid following the plastering procedure are depicted in Fig. 16 . In certain sections, the surface

quality satisfies the requirements after a single plastering operation, rendering re-plastering unnecessary (re-plastering times: 0).
Conversely, several grids necessitated multiple re-plastering attempts. Notably, grid No.16 underwent five re-plastering cycles,
and the evolution of its surface quality from the initial to the fifth recovery plastering is presented in Fig. 17 . The corresponding
labels predicted by the multi-classification network are detailed in Table 5 . Despite the application of five plastering attempts,
the defect could not be entirely eliminated, resulting in the same output for the sixth attempt. To prevent entering an infinite
loop, the grid was bypassed, thereby maintaining the selection of the same parameters for the three consecutive processes.
Subsequently, Puttybot proceeded to the subsequent grid. However, due to the overlapping nature of the adjacent regions, the
horizontal streak left unresolved in grid No.16 was effectively addressed in grid No.17.

TABLE 5 Output parameters from the multi-classification in grid No.16

Re-plastering No. Scraper position Scraper stiffness Scraper tilt angle

1 0.12 Scraper-Standard PPR-Standard
2 0.24 Scraper-Standard PPR-Standard
3 0.0 Scraper-Standard PPR-Lower
4 0.12 Scraper-Standard PPR-Lower
5 0.12 Scraper-Standard PPR-Lower
6 0.12 Scraper-Standard PPR-Lower

To gather the necessary data for evaluating the plastering effect, point cloud data of the room are collected. The collected point
cloud is processed using SCENE software. Following autonomous plastering by the Puttybot, the processing area is recalculated
and measures as 3.5830 m × 1.1009 m. The robot navigates through six workstations during the entire process, and the position
of the Puttybot in the world coordinate system after plastering is recorded, as illustrated in Fig. 18 . Furthermore, no discernible
defects are observed in the transition area between workstations, underscoring the robustness of the Puttybot and its ability to
overcome challenges associated with positioning accuracy.
The point cloud representation of the untreated wall is illustrated in Fig. 19 (a). The wall’s concrete base is discernible, with

the presence of white spots denoting adhered putty particles. Subsequently, the wall after the Puttybot’s automated processing
is depicted in Fig. 19 (b). Leveraging the point cloud data from the plastered area, we employed the random sample consensus
(RANSAC) algorithm to fit a plane to the area. Using this fitted plane as the reference, a heat map was generated wherein the
point cloud was color-coded based on its distance from the reference plane. This heat map is presented in Fig. 19 (c). The
maximumpositive deviation and negative deviation from the reference planeweremeasured at 4.9mm and -4.6mm, respectively.
Consequently, the overall flatness of the surface was less than 5mm, exhibiting no noticeable pits, hollow drums, or other defects.

8 CONCLUSION AND OUTLOOK

In this research, we present Puttybot, a robotic system equipped with a macro/micro manipulator designed for putty plastering
tasks. We propose a new paradigm for robotics plastering, validating the effectiveness of its workflow and plastering strategy
through autonomous plastering conducted at multiple workstations. The integrated technology enable the robot to autonomously
recognize the processing quality and plan re-plastering operations. These features are not achieved in previous construction
robots. The comparative analysis of manual plastering, OKIBO, and Puttybot, focusing on construction capacity and efficiency,
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FIGURE 15 Puttybot processing grid No.18

FIGURE 16 Plastering results of each grid (Re-plastering times indicate the number of re-plastering operations conducted)

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 17 Variation of defect in grid No. 16: (a) Defect in grid No. 16 after pre-programmed lateral plastering; (b)-(f)
Re-plastering result in sequence; (g) Grid No.17 before plastering; (h) Grid No.17 after first plastering.
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FIGURE 18 Puttybot’s posture during plastering: the Puttybot moved from right to left with 6 workstations.

is presented in Table. 6 . However, it is important to note that these statistics alone may not accurately depict the actual business
value due to variations in cost and plastering standards. A study38 highlights the daily total production in Turkey. Based on
interviews with workers and online data sources39, three skilled workers require a day to complete an area of about 120 m2,
with each skilled worker costing about 300 RMB per day. OKIBO claims to be three times more efficient than manual work16.
Regarding Puttybot, it should be noted that the operational speed is limited due to safety requirements during experimental trials,
resulting in reduced construction efficiency. In addition with large-sized scraper, the construction speed can be easily improved,
which needs to be optimized. The cost of using Puttybot includes expenses for a corner-processing plasterer, amounting to
about 150 RMB per day. In conclusion, Puttybot offers cost advantages, fewer limitations, and meets the coating requirements
effectively.
To further improve plastering quality, more experiments using the plastering parameters illustrated in this paper are required.

In more complex environments, such as internal and external corners, piping, and socket holes, Puttybot also needs to perceive
the geometric structure. In addition, wall painting can also be realized by changing the end effector. As the research in this study
is further developed, Puttybot will carry out more functions and accomplish more renovation tasks.

TABLE 6 Comparison of plastering capabilities and efficiency of manual, OKIBO, and Puttybot

Builder Area/day Cost/day Limitation Effect

Manual 120 m2 900 RMB Harmless environment Limited stability
OKIBO 360 m2 Unknown Thin putty, flat base, corners Stripes between neighbor zone
Puttybot 60 m2 150 RMB Corners Flatness of 5 mm
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