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Abstract

In this paper, we consider a third order singular differential operator L w + μ w = - w ”’ + q ( x ) w + μ w in space L 2 (

R ) originally defined on the set C 0 [?] ( R ) , where C 0 [?] ( R ) is the set of infinitely differentiable compactly supported

functions, μ[?]0. Regarding the coefficient q ( x ) , we assume that it is a continuous function in R ( - [?] , [?] ) and can be a

growing function at infinity. The operator L allows closure in the space L 2 ( R ) and the closure also be denoted by L. In the

paper, under certain restrictions on q ( x ) , in addition to the above condition, the existence of the resolvent of the operator

L and the existence of the estimate —— - w ”’ —— L 2 ( R ) + —— q ( x ) w —— L 2 ( R ) [?] c ( —— L w —— L 2 ( R

) + —— w —— L 2 ( R ) ) (0.1) have been proved, where c>0 is a constant. Example. Let q ( x ) = e 100 | x | , then the

estimate (0.1) holds. The compactness of the resolvent is proved and two-sided estimates for singular numbers ( s-numbers) are

obtained. Here we note that the estimates of singular numbers ( s-numbers) show the rate of approximation of the resolvent of

the operator L by linear finite-dimensional operators. In the present paper, apparently for the first time, the nuclearity of the

resolvent of the third-order differential operator and completeness of its root vectors are proved in the case of an unbounded

domain with a greatly growing coefficient q ( x ) at infinity.
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Summary

In this paper, we consider a third order singular differential operator

𝐿𝑦 + 𝜇 𝑦 = −𝑦′′′ + 𝑞 (𝑥) 𝑦 + 𝜇 𝑦

in space 𝐿2 (𝑅) originally defined on the set 𝐶∞
0 (𝑅), where 𝐶∞

0 (𝑅) is the set of
infinitely differentiable compactly supported functions, 𝜇 ≥ 0.
Regarding the coefficient 𝑞 (𝑥), we assume that it is a continuous function in
𝑅 (−∞, ∞) and can be a growing function at infinity.
The operator 𝐿 allows closure in the space 𝐿2 (𝑅) and the closure also be denoted
by 𝐿.
In the paper, under certain restrictions on 𝑞 (𝑥), in addition to the above condition,
the existence of the resolvent of the operator 𝐿 and the existence of the estimate

‖

‖

−𝑦′′′‖
‖𝐿2(𝑅)

+ ‖𝑞 (𝑥) 𝑦‖𝐿2(𝑅) ≤ 𝑐
(

‖𝐿𝑦‖𝐿2(𝑅) + ‖𝑦‖𝐿2(𝑅)

)

(0.1)

have been proved, where 𝑐 > 0 is a constant.
Example. Let 𝑞 (𝑥) = 𝑒100 |𝑥|, then the estimate (0.1) holds.
The compactness of the resolvent is proved and two-sided estimates for singular num-
bers (s-numbers) are obtained. Here we note that the estimates of singular numbers
(s-numbers) show the rate of approximation of the resolvent of the operator 𝐿 by lin-
ear finite-dimensional operators. In the present paper, apparently for the first time,
the nuclearity of the resolvent of the third-order differential operator and complete-
ness of its root vectors are proved in the case of an unbounded domain with a greatly
growing coefficient 𝑞 (𝑥) at infinity.

KEYWORDS:
third order differential operator, singular operator, approximation numbers, nuclearity, resolvent, separa-
bility, root vectors.
AMS: 34L20, 47A10, 47B06



2 MURATBEKOVS

1 INTRODUCTION. FORMULATION OF RESULTS. EXAMPLE

Consider the third-order differential operator with an unbounded coefficient

(𝐿 + 𝜇 𝐼) 𝑦 = −𝑦′′′ + 𝑞 (𝑥) 𝑦 + 𝜇𝑦 (1.1)

originally defined on the set 𝐶∞
0 (ℝ) of infinitely differentiable compactly supported functions, 𝑥 ∈ ℝ, 𝜇 ≥ 0.

Let 𝑞 (𝑥) be satisfied to the conditions:
i) 𝑞 (𝑥) ≥ 𝛿 > 0 is a continuous function in ℝ (−∞, ∞),
ii) 𝑐0 = sup

|𝑥−𝑡|≤1

𝑞(𝑥)
𝑞(𝑡)

< ∞.

Here the function 𝑞 (𝑥) can be a greatly growing function at infinity.
It is easy to see that the operator 𝐿 admits a closure in the space 𝐿2 (ℝ), and the closure will also be denoted by 𝐿.
For several decades, the theory of third-order differential equations has been intensively studied due to their importance for

applications.
Note that by applying the Fourier variable separation method, it is possible to reduce some equations of mathematical physics

to one-dimensional differential equations of the third order.
A very comprehensive bibliography for third-order differential equations is contained in [1-5]. In these works, in the space of

continuous functions, the properties of oscillatory and non-oscillating solutions were studied, as well as the boundedness and
asymptotic stability of solutions to third-order differential equations.

In the paper [6], a third-order differential equation with a complex coefficient 𝑄 (𝑥) was studied in the space 𝐿𝑝, 𝑙 (𝑥) (ℝ) (
𝑙 < 𝑝 < ∞, 𝑙 (𝑥) is a weight function), where 𝑄 (𝑥) = 𝑞 (𝑥) + 𝑖 𝑟 (𝑥), 𝑞 (𝑥) and 𝑟 (𝑥) can be growing functions at infinity. The
smoothness of solutions, the compactness of the resolvent, and the approximative properties of solutions have been studied in
[6], when the Levitan-Titchmarsh condition is satisfied (see condition (3) in [6]).

In contrast to [6], in this paper, the Levitan-Titchmarsh type condition is removed and the existence and compactness of the
resolvent of the operator 𝐿 + 𝜇 𝐼 , separability of the operator (maximum smoothness of solutions to the equation 𝐿𝑦 = 𝑓 ∈
𝐿2 (𝑅)), and estimates of singular numbers (s-numbers) in the space 𝐿2 (ℝ) are studied. In addition to the above results, in this
paper, apparently for the first time, the nuclearity and completeness of its root vectors are proved for the resolvent of a third-order
differential operator in the case of an unbounded domain with the greatly growing coefficient 𝑞 (𝑥) at infinity.

Let us formulate the main results.

Theorem 1.1. Let the condition i) be satisfied. Then the operator is continuously invertible in the space 𝐿2 (ℝ) for 𝜇 ≥ 0.

Definition 1.1. [7,8]. We will say that a differential operator 𝐿 is separable if the following estimate
‖

‖

−𝑦′′′‖
‖2 + ‖𝑞 (𝑥) 𝑦‖2 ≤ 𝑐

(

‖𝐿𝑦‖2 + ‖𝑦‖2
)

,

holds for all 𝑢 ∈ 𝐷 (𝐿), where 𝑐 > 0 is a constant, ‖ ⋅ ‖2 is the norm in 𝐿2 (ℝ).

Theorem 1.1. Let the conditions 𝑖) − 𝑖𝑖) be satisfied. Then the operator 𝐿 is separable.

Example. Consider the operator

(𝐿 + 𝜇 𝐼) 𝑦 = −𝑦′′′ (𝑥) + 𝑒100|𝑥| ⋅ 𝑦 (𝑥) + 𝜇 ⋅ 𝑦 (𝑥) , 𝑦 (𝑥) ∈ 𝐷 (𝐿) ,

−∞ < 𝑥 < ∞.
It is easy to check that all conditions of Theorems 1.1 and 1.2 are satisfied. Therefore, the operator 𝐿 + 𝜇 𝐼 is continuously

invertible in 𝐿2 (ℝ) and separable, i.e. the estimate
‖

‖

−𝑦′′′‖
‖2 +

‖

‖

‖

𝑒100|𝑥|𝑦‖‖
‖2

≤ 𝑐
(

‖𝐿𝑦‖2 + ‖𝑦‖2
)

,

holds, where 𝑐 > 0 is a constant.

Theorem 1.2. Let the conditions 𝑖) − 𝑖𝑖) be satisfied. Then the resolvent of the operator 𝐿 is compact if and only if

lim
|𝑥|→∞

𝑞 (𝑥) = ∞.

†This work was supported by grant AP19676466 of the Ministry of Science and High Education of the Republic of Kazakhstan.



MURATBEKOVS 3

Definition 1.2. [9]. Let be 𝐴 a linear completely continuous operator and let |𝐴| =
√

𝐴∗ 𝐴. The eigenvalues of the operator
|𝐴| are called the 𝑠-numbers of the operator 𝐴.

It is known [9] that estimates of singular numbers (𝑠-numbers) show the rate of approximation of the resolvent of the operator
(1.1) by linear finite-dimensional operators.

The nonzero 𝑠-numbers of the operator (𝐿 + 𝜇 𝐼)−1 be numbered according to decreasing magnitude and observing their
multiplicities, so that

𝑠𝑘
(

(𝐿 + 𝜇 𝐼)−1
)

= 𝜆𝑘
(

|

|

|

(𝐿 + 𝜇 𝐼)−1||
|

)

, 𝑘 = 1, 2, 3..., 𝜇 ≥ 0 .

We introduce the counting function 𝑁 (𝜆) =
∑

𝑠𝑘>𝜆
1 of those 𝑠𝑘 greater than 𝜆 > 0.

Theorem 1.4. Let the conditions 𝑖) − 𝑖𝑖) be satisfied. Then the estimate

𝑐−1𝜆−
1
3𝑚𝑒𝑠

(

𝑥 ∈ 𝑅 ∶ 𝑞(𝑥) ≤ 𝜆−1
)

≤ 𝑁 (𝜆) ≤ 𝑐 ⋅ 𝜆−
1
3𝑚𝑒𝑠

(

𝑥 ∈ 𝑅 ∶ 𝑞(𝑥) ≤ 𝜆−1
)

holds, where 𝑐 > 0 is a constant which is independent of 𝑞 (𝑥) and 𝜆.

Definition 1.3. [9] Let 𝐴 be a linear completely continuous operator. The operator 𝐴 will be called nuclear if it belongs 𝛿1, i.e. if
∑

𝑗
𝑠𝑗 (𝐴) < ∞.

Theorem 1.5. Let the conditions i)-ii) be satisfied. Then the resolvent of the operator 𝐿 is nuclear if and only if

𝑞−
2
3 (𝑥) ∈ 𝐿1(𝑅). (1.2)

Definition 1.4. [9] A vector 𝜑 ≠ 0 is called a root vector for the eigenvalue 𝜇0 of a linear operator if there exists a natural
number 𝑛 such that

(

𝐴 − 𝜇0𝐼
)𝑛 𝜑 = 0.

Theorem 1.6. Let the conditions i)-ii) be satisfied. Then the root vectors of the operator𝐿−1 are complete in𝐿2 (ℝ), if 𝑞−
2
3 (𝑥) ∈

𝐿1.

2 THE EXISTENCE OF THE RESOLVENT. PROOF OF THEOREM 1.1.

Lemma 2.1. Let the condition i) be fulfilled and 𝜇 ≥ 0. Then the inequality

‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ≥ (𝛿 + 𝜇) ‖𝑦‖2 , (2.1)

holds for all 𝑦 ∈ 𝐷 (𝐿), where ‖ ⋅ ‖2 is the norm in 𝐿2 (ℝ).

Proof. Since it is an operator with a real coefficient, it suffices to prove the estimate for real-valued functions. To do this, we
write the following functional < (𝐿 + 𝜇 𝐼) 𝑦, 𝑦 >, 𝑦 ∈ 𝐶∞

0 (ℝ), < ⋅, ⋅ > is the scalar product. Since ∫𝑅 −𝑦′′′𝑦 𝑑𝑥 = 0 then from
functional < (𝐿 + 𝜇 𝐼) 𝑦, 𝑦 > we find

‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ≥ (𝛿 + 𝜇) ‖𝑦‖2 .
Due to the continuity of the norm, the last estimate holds for all 𝑦 ∈ 𝐷 (𝐿). Lemma 2.1 is proved.

Further, we present a series of statements that reduce the existence of a resolvent and the separability of an operator 𝐿 with
a growing coefficient at infinity to the case with bounded coefficients.

Let
{

𝜑𝑗
}∞
𝑗=−∞ ∈ 𝐶∞

0 (ℝ) be a set of functions such that 𝜑𝑗 (𝑦) ≥ 0, supp𝜑𝑗 ⊆ Δ𝑗 (𝑗 ∈ 𝑍),
∑∞

𝑗=−∞ 𝜑2
𝑗 (𝑦) = 1, where

Δ𝑗 = (𝑗 − 1, 𝑗 + 1), 𝑗 ∈ 𝑍,
⋃

𝑗 Δ𝑗 = 𝑅 [8, 10].
Let us extend 𝑞 (𝑥) from Δ𝑗 to the whole 𝑅 so that its extension 𝑞𝑗 (𝑥) is a bounded and periodic function of the same period.
Here we note immediately that any point can belong to at most three segments from the system of segments

{

Δ𝑗
}

[10, 11].
Denote by 𝐿𝑗 + 𝜇 𝐼 the closure of the operator

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦 = −𝑦′′′ +
(

𝑞𝑗 (𝑥) + 𝜇
)

𝑦

defined on 𝐶∞
0 (ℝ).
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Lemma 2.2. Let the conditions 𝑖) be fulfilled and 𝜇 ≥ 0. Then the inequality
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

≥ (𝛿 + 𝜇) ‖𝑦‖2 . (2.2)

holds for all 𝑦 ∈ 𝐷 (𝐿).

Lemma 2.2 is proved in exactly the same way as Lemma 2.1.

Lemma 2.3. Let the conditions 𝑖) be fulfilled and 𝜇 ≥ 0. Then the operator
(

𝐿𝑗 + 𝜇 𝐼
)

has a continuous inverse operator
(

𝐿𝑗 + 𝜇 𝐼
)−1defined in all 𝐿2 (ℝ).

Proof. By the estimate (2.2), it suffices to prove that the range of values is dense in 𝐿2 (ℝ). Assume that the range is not dense
in 𝐿2 (ℝ). Then there exists an element 𝑢 ∈ 𝐿2 (ℝ) such that <

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦, 𝑢 >= 0 for all 𝑦 ∈ 𝐷
(

𝐿𝑗
)

. It means that
(

𝐿𝑗 + 𝜇 𝐼
)∗ 𝑢 = 𝑢′′′ + 𝑞 (𝑥) 𝑢 + 𝜇 𝑢 = 0 (2.3)

in the sense of the theory of generalized functions. By virtue of boundedness 𝑞𝑗 (𝑥), we have that 𝑞𝑗 (𝑥) 𝑢 ∈ 𝐿2 (ℝ). This and
(2.3) imply, that 𝑢 ∈ 𝑊 3

2 (ℝ), where 𝑊 3
2 (ℝ) is the Sobolev space. From the general theory of the embedding theorem we have

lim
|𝑦|→∞

𝑢 (𝑦) = 0, lim
|𝑦|→∞

𝑢′ (𝑦) = 0, lim
|𝑦|→∞

𝑢′′ (𝑦) = 0. (2.4)

From here and using the calculations used in the proof of estimate (2.2), we obtain
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)∗ 𝑢‖‖

‖2
≥ (𝛿 + 𝜇) ‖𝑢‖2 .

From the last inequality and (2.3), it follows that 𝑢 (𝑥) = 0. Lemma 2.3 is proved.

Lemma 2.4. Let the condition 𝑖) be fulfilled and 𝜇 ≥ 0. Then the estimate
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 1

𝑞
(

𝑥𝑗
)

+ 𝜇

holds, where 𝑞
(

𝑥𝑗
)

= min 𝑞 (𝑥)
𝑥∈Δ̄𝑗

, ‖ ⋅ ‖2→2 is the norm of the operator acting from 𝐿2 (ℝ) to 𝐿2 (ℝ).

Proof. Consider the following functional

<
(

𝐿𝑗 + 𝜇 𝐼
)

𝑦, 𝑦 >, 𝑦 ∈ 𝐶∞
0 (ℝ) .

Integrating by parts, we have

<
(

𝐿𝑗 + 𝜇 𝐼
)

𝑦, 𝑦 >=

∞

∫
−∞

(

𝑞𝑗 (𝑥) + 𝜇
)

|𝑦|2 𝑑𝑥.

From the last equality, we obtain
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

⋅ ‖𝑦‖2 ≥ min
𝑥∈Δ̄𝑗

(

𝑞𝑗 (𝑥) + 𝜇
)

‖𝑦‖22 .

Hence, taking min
𝑥∈Δ̄𝑗

(

𝑞𝑗 (𝑥) + 𝜇
)

= min
𝑥∈Δ̄𝑗

(𝑞 (𝑥) + 𝜇) into account, we find

‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

≥
(

𝑞
(

𝑥𝑗
)

+ 𝜇
)

‖𝑦‖2 , (2.5)

where 𝑞
(

𝑥𝑗
)

= min
𝑥∈Δ̄

𝑞 (𝑥).
From inequality (2.5), according to the definition of the operator norm, we obtain

‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 1

𝑞
(

𝑥𝑗
)

+ 𝜇
.

Lemma 2.4 is proved.

Lemma 2.5. Let the conditions i)-ii) be fulfilled and 𝜇 ≥ 0. Then the estimate
‖

‖

−𝑦′′′‖
‖2 +

‖

‖

‖

𝑞𝑗 (𝑥) 𝑦
‖

‖

‖2
+ 𝜇 ‖𝑦‖ ≤ 𝑐0

(

‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

)

, (2.6)

holds, where 𝑐0 > 0 is a constant independent of 𝑞𝑗 (𝑥), 𝑅 and 𝜇.
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Proof. Lemma 2.3 implies that there exists a bounded inverse operator
(

𝐿𝑗 + 𝜇 𝐼
)−1 defined in all 𝐿2 (ℝ). Hence we have

𝑦 =
(

𝐿𝑗 + 𝜇 𝐼
)−1 𝑓 .

Using the last equality, we estimate the norm ‖

‖

‖

𝑞𝑗 (𝑥) 𝑦
‖

‖

‖

:
‖

‖

‖

𝑞𝑗 (𝑥) 𝑦
‖

‖

‖2
= ‖

‖

‖

𝑞𝑗 (𝑥)
(

𝐿𝑗 + 𝜇 𝐼
)−1 𝑓‖‖

‖2
≤ max

𝑥∈𝑅
𝑞𝑗 (𝑥)

‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
⋅ ‖𝑓‖2 . (2.7)

Since max
𝑥∈𝑅

𝑞𝑗 (𝑥) = max
𝑥∈Δ̄𝑗

𝑞 (𝑥) then, by virtue of condition ii) and Lemma 2.4, we find from (2.7)

‖

‖

‖

𝑞𝑗 (𝑥) 𝑦
‖

‖

‖2
≤

max
𝑥∈𝑅

𝑞𝑗 (𝑥)

𝑞
(

𝑥𝑗
) ⋅ ‖𝑓‖2 ≤

max
𝑥∈Δ̄𝑗

𝑞 (𝑥)

min
𝑥∈Δ̄𝑗

𝑞 (𝑥)
⋅ ‖𝑓‖2 ≤ sup

|𝑥−𝑡|≤2

𝑞 (𝑥)
𝑞 (𝑡)

⋅ ‖𝑓‖2 ≤ 𝑐0 ‖𝑓‖
2
2 .

Hence
‖

‖

‖

𝑞𝑗 (𝑥) 𝑦
‖

‖

‖2
≤ 𝑐0

‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)−1 𝑦‖‖

‖2
, (2.8)

where
(

𝐿𝑗 + 𝜇 𝐼
)

𝑦 = 𝑓 .
Now, using estimates (2.2) and (2.8), we obtain

‖

‖

−𝑦′′′‖
‖2 =

‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦 −
(

𝑞𝑗 (𝑥) 𝑦 + 𝜇 𝑦
)

‖

‖

‖2
≤ ‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

+

+𝑐0
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

+ 𝜇 ‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

≤ 𝑐1
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦‖‖
‖2

, (2.9)
where 𝑐1 = 2 + 𝑐0.

Estimates (2.7), (2.8), and (2.9) prove Lemma 2.5.

Lemma 2.6. Let the conditions i)-ii) be fulfilled and 𝜇 ≥ 0. Then the estimate
‖

‖

‖

𝐷𝛼 (𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 𝑐

𝜇1− 𝛼
3

,

holds, where𝛼 = 0, 1, 2, 3, 𝑐 is a constant independent of 𝑦 (𝑥).

Proof. According to Lemma 2.5 we have
‖

‖

‖

𝐷𝛼 (𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ sup

𝑦∈𝐷(𝐿𝑗)

‖𝐷𝛼𝑦 (𝑥)‖2
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)

𝑦 ‖‖
‖2

≤ 𝑐 sup
𝑦∈𝐷(𝐿𝑗)

‖𝐷𝛼𝑦 (𝑥)‖2
‖−𝑦′′′‖2 + 𝜇 ‖𝑦 ‖2

.

From this and applying similarity transformations 𝑥 = 𝑡

𝜇
1
3

we obtain that

‖

‖

‖

𝐷𝛼 (𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 𝑐 sup

𝑦∈𝐷(𝐿𝑗)

𝜇
𝛼
3 ‖
‖

𝐷𝛼
𝑡 𝑦‖‖2

𝜇
(

‖

‖

−𝑦′′′𝑡 ‖

‖2 + ‖𝑦 ‖2
) ≤ 𝑐

𝜇1− 𝛼
3

.

Here we have used the following inequality
‖

‖

𝐷𝛼
𝑡 𝑦‖‖ ≤ ‖

‖

𝑦′′′𝑡 ‖

‖2 + ‖𝑦‖2 for 𝛼 = 0, 1, 2, 3.

Lemma 2.6 is proved.

Assume
𝐾𝜇𝑓 =

∑

{𝑗}
𝜑𝑗 (𝑥)

(

𝐿𝑗 + 𝜇 𝐼
)−1 𝜑𝑗𝑓, 𝑓 ∈ 𝐶∞

0 (ℝ) ,

𝐵𝜇𝑓 =
∑

{𝑗}
𝜑′′′
𝑗 (𝑥)

(

𝐿𝑗 + 𝜇 𝐼
)−1 𝜑𝑗𝑓 + 3

(

∑

{𝑗}
𝜑′′
𝑗 (𝑥)𝐷𝑥

(

𝐿𝑗 + 𝜇 𝐼
)−1 𝜑𝑗𝑓 +

+
∑

{𝑗} 𝜑
′
𝑗 (𝑥)𝐷

2
𝑥

(

𝐿𝑗 + 𝜇 𝐼
)−1 𝜑𝑗𝑓

)

, where 𝐷𝑥 = 𝜕
𝜕𝑥

.
It is easy to verify that

(𝐿 + 𝜇 𝐼)𝐾𝜇𝑓 = 𝑓 − 𝐵𝜇𝑓. (2.10)

Lemma 2.7. Let the condition i) be fulfilled. Then there exists a number 𝜇0 > 0 such that ‖‖
‖

𝐵𝜇
‖

‖

‖2→2
< 1 for all 𝜇 ≥ 𝜇0 > 0.
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Proof. Using Lemma 2.6 and repeating the computations and arguments used in the proof of Lemma 9 in [11] and 3.2 in [14],
we obtain the proof of Lemma 2.7.

Lemma 2.8. Let the condition i) be fulfilled. Then the operator 𝐿 + 𝜇 𝐼 is continuously invertible in the space 𝐿2 (ℝ) when
𝜇 ≥ 𝜇0 > 0 and the equality

(𝐿 + 𝜇 𝐼)−1 = 𝐾𝜇
(

𝐼 − 𝐵𝜇
)−1

holds.

Proof. Using the representation (2.10) and Lemmas 2.1 and 2.7 we obtain the proof of Lemma 2.8.

Proof of Theorem 1.1.. Lemma 2.8 implies that Theorem 1.1 holds for all 𝜇 ≥ 𝜇0 > 0.
Now, it remains to prove that Theorem 1.1 is also valid for 𝜇 = 0. To do this, consider the equation

𝐿𝑦 = −𝑦′′′ + 𝑞 (𝑥) 𝑦 = 𝑓 ∈ 𝐿2 (ℝ) . (2.11)

Here we note that the question of the existence of the bounded operator 𝐿−1 the closed operator 𝐿 in space 𝐿2 (ℝ) is equivalent
to the following problem: to find a unique solution 𝑦 (𝑥) of the equation 𝐿𝑦 = 𝑓 ∈ 𝐿2 (ℝ) belonging to the space 𝐿2 (ℝ).

Further, we rewrite equation (2.11) as follows:

−𝑦′′′ + (𝑞 (𝑥) + 𝜇) 𝑦 − 𝜇𝑦 = 𝑓. (2.12)

Let 𝜇 ≥ 𝜇0 > 0, then by Lemma 2.8 there exists (𝐿 + 𝜇 𝐼)−1 and equation (2.12) takes the form

𝜗 − 𝐴𝜇 𝜗 = 𝑓, (2.13)

here
𝜗 = (𝐿 + 𝜇 𝐼) 𝑦, (2.14)

where 𝐴𝜇 = 𝜇 ⋅ (𝐿 + 𝜇 𝐼)−1 .
Taking Lemma 2.1 into account, it is easy to obtain the estimate

‖

‖

‖

𝐴𝜇𝜗
‖

‖

‖2
≤ 𝜇 ⋅ ‖‖

‖

(𝐿 + 𝜇 𝐼)−1‖‖
‖2→2

⋅ ‖𝜗‖2 ≤
𝜇

𝛿 + 𝜇
‖𝜗‖2 .

Hence
‖

‖

‖

𝐴𝜇
‖

‖

‖2→2
< 1.

It follows from the last inequality that the equation (2.13) has a unique solution, i.e.

𝜗 =
(

𝐼 − 𝐴𝜇
)−1 𝑓. (2.15)

Now, taking into account that 𝑦 = (𝐿 + 𝜇 𝐼)−1 𝜗, from (2.14) and (2.15) we find

𝑦 = (𝐿 + 𝜇 𝐼)−1
(

𝐼 − 𝐴𝜇
)−1 𝑓. (2.16)

Hence we obtain that (2.16) is a unique solution of equation (2.11). Therefore, we have proved that Theorem 1.1 also holds
for 𝜇 = 0. Theorem 1.1 is completely proved.

3 OPERATOR SEPARABILITY. COMPACTNESS OF THE RESOLVENT

To prove the separability of the operator (1.1), we first prove the following lemma.

Lemma 3.1. Let the conditions i)-ii) be fulfilled and 𝜇0 > 0 such that ‖‖
‖

𝐵𝜇
‖

‖

‖2→2
< 1 for all 𝜇 ≥ 𝜇0 > 0. Then the following

inequality
‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 ‖‖
‖

2

2→2
≤ 𝑐 ⋅ sup

{𝑗}

‖

‖

‖

𝑞 (𝑥) 𝜑𝑗
(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖

2

2→2
, (3.1)

holds, where 𝑐 > 0 is a constant.

Proof. Let 𝑓 (𝑥) ∈ 𝐿2 (ℝ). Taking the properties of the functions 𝜑𝑗 (𝑗 ∈ 𝑍) into account, we have from Lemma 2.8

‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 𝑓 ‖

‖

‖

2

2
= ‖

‖

‖

𝑞 (𝑥) 𝐾𝜇
(

𝐼 − 𝐵𝜇
)−1 𝑓‖‖

‖

2

2→2
=
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=

∞

∫
−∞

|

|

|

|

|

|

𝑞 (𝑥)
∑

{𝑗}
𝜑𝑗

(

𝐿𝑗 + 𝜇 𝐼
)−1 𝜑𝑗

(

𝐼 − 𝐵𝜇
)−1 𝑓

|

|

|

|

|

|

2

𝑑𝑥.

It is known by construction that only the functions 𝜑𝑗−1, 𝜑𝑗 , 𝜑𝑗+1 are nonzero on the interval Δ𝑗 (𝑗 ∈ 𝑍), therefore

‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 𝑓 ‖

‖

‖

2

2
≤

∞
∑

𝑗=−∞
∫
Δ𝑗

|

|

|

|

|

|

𝑞 (𝑥)
𝑗+1
∑

𝑘=𝑗−1
𝜑𝑘

(

𝐿𝑘 + 𝜇 𝐼
)−1 𝜑𝑘

(

𝐼 − 𝐵𝜇
)−1 𝑓

|

|

|

|

|

|

2

𝑑𝑥 ≤

≤ 9 ⋅
∞
∑

𝑗=−∞

‖

‖

‖

𝑞 (𝑥)𝜑𝑗
(

𝐿𝑗 + 𝜇 𝐼
)−1 𝜑𝑗

(

𝐼 − 𝐵𝜇
)−1 𝑓‖‖

‖

2

𝐿2(Δ𝑗)
≤

≤ 9 ⋅ sup
𝑗∈𝑍

‖

‖

‖

𝑞 (𝑥)𝜑𝑗
(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖

2

𝐿2(Δ𝑗)→𝐿2(Δ𝑗)
⋅

∞

∫
−∞

(

∑

𝑗
𝜑2
𝑗

)

|

|

|

(

𝐼 − 𝐵𝜇
)−1 𝑓 ||

|

2
𝑑𝑥.

Since
∑∞

𝑗=−∞ 𝜑2
𝑗 = 1, then from the last inequality we have

‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 𝑓 ‖

‖

‖

2

2
≤ 9 ⋅ sup

𝑗∈𝑍

‖

‖

‖

𝑞 (𝑥) 𝜑𝑗
(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖

2

𝐿2(Δ𝑗)→𝐿2(Δ𝑗)
⋅

⋅ ‖‖
‖

(

𝐼 − 𝐵𝜇
)−1

‖

‖

‖

2

2→2
⋅ ‖𝑓‖22 . (3.2)

Lemmas 2.7 and 2.8 imply that
‖

‖

‖

(

𝐼 − 𝐵𝜇
)−1

‖

‖

‖2→2
≤ 𝑐1, (3.3)

where 𝑐1 > 0 is a constant.
Using inequality (3.3), from inequality (3.2) we obtain

‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 ‖‖
‖𝐿2(ℝ)→𝐿2(ℝ)

≤ 𝑐 ⋅ sup
𝑗∈𝑍

‖

‖

‖

𝑞 (𝑥)𝜑𝑗
(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖𝐿2(Δ𝑗)→𝐿2(Δ𝑗)
,

where 𝑐 = 9 ⋅ 𝑐1.
Lemma 3.1 is proved.

Lemma 3.2. Let the conditions of Lemma 3.1 be satisfied. Then the estimate
‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 ‖‖
‖2→2

≤ 𝑐2 < ∞, (3.4)

holds, where 𝑐2 > 0 is a constant.

Proof. Using Lemma 2.4, we obtain
‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 ‖‖
‖2→2

≤ 𝑐 ⋅ sup
𝑗∈𝑍

‖

‖

‖

𝑞 (𝑥)𝜑𝑗
(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖𝐿2(Δ𝑗)→𝐿2(Δ𝑗)
≤

≤ 𝑐 ⋅ sup
𝑗∈𝑍

max
𝑥∈Δ𝑗

𝑞 (𝑥)𝜑𝑗 ⋅
‖

‖

‖

(

𝐿𝑗 + 𝜇 𝐼
)−1

‖

‖

‖2→2
≤ 𝑐 ⋅

max
𝑥∈Δ𝑗

𝑞 (𝑥)𝜑𝑗

𝑞
(

𝑥𝑗
) ≤

≤ 𝑐 ⋅ sup
|𝑥−𝑡|≤2

𝑞 (𝑥)
𝑞 (𝑡)

≤ 𝑐 ⋅ 𝑐0 ≤ 𝑐2 < ∞.

from Lemma 3.1, where 𝑐2 = 𝑐 ⋅ 𝑐0.
Lemma 3.2 is proved.

Proof of Theorem 1.2.. It is easy to see that from estimate (2.1) we have

‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ≥ 𝜇 ‖𝑦‖2 . (3.5)

Now, using inequalities (3.4) and (3.5), we obtain
‖

‖

−𝑦′′′‖
‖2 = ‖(𝐿 + 𝜇 𝐼) 𝑦 − (𝑞 (𝑥) 𝑦 + 𝜇 𝑦)‖2 ≤ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 + ‖𝑞 (𝑥) 𝑦‖2 + 𝜇 ‖𝑦‖2 ≤

≤ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 +
‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1 (𝐿 + 𝜇 𝐼) 𝑦‖‖
‖2

+ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ≤

≤ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 +
‖

‖

‖

𝑞 (𝑥) (𝐿 + 𝜇 𝐼)−1‖‖
‖2→2

⋅ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 + ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ≤
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≤
(

2 + 𝑐2
)

‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ≤ 𝑐3 ⋅ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ,
where 𝑐3 = 2 + 𝑐2.

From the last inequality we find
‖

‖

−𝑦′′′‖
‖2 ≤ 𝑐3 ⋅ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 . (3.6)

The estimate (3.4) gives that
‖𝑞 (𝑥) 𝑦‖2 ≤ 𝑐2 ⋅ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 , (3.7)

where 𝑐2 > 0 is a constant from Lemma 3.2.
From inequality (3.6) and (3.7) we have

‖

‖

−𝑦′′′‖
‖2 + ‖𝑞 (𝑥) 𝑦‖2 ≤ 𝑐 ⋅ ‖(𝐿 + 𝜇 𝐼) 𝑦‖2 ,

where 𝑐 = max
{

𝑐1, 𝑐3
}

. Theorem 1.2 is proved for 𝜇 ≥ 𝜇0 > 0.
Now, let us prove separability does not depend on 𝜇. To do this, we prove the following lemma.

Lemma 3.3. The operator 𝐿𝑦 = −𝑦′′′ + 𝑞 (𝑥) 𝑦 is separable if only if 𝐿 + 𝜇 𝐼 is separable for any 𝜇.

Proof. Necessity. Let 𝐿 be separable. Since the operator 𝐿 is separable then from 𝑦 ∈ 𝐷 (𝐿) ∈ 𝐿2 (ℝ) and 𝐿𝑦 ∈ 𝐿2 (ℝ) it
follows 𝑦′′′ ∈ 𝐿2 (ℝ), i.e. the operator 𝐿 + 𝜇 𝐼 is separable.

Sufficiency. Let the operator 𝐿+𝜇 𝐼 be separable. This implies 𝑦 ∈ 𝐷 (𝐿), (𝐿 + 𝜇 𝐼) 𝑦 ∈ 𝐿2 (ℝ) and 𝑦′′′ ∈ 𝐿2 (ℝ). Therefore,
𝑦 ∈ 𝐷 (𝐿), 𝐿𝑦 ∈ 𝐿2 (ℝ) and 𝑦′′′ ∈ 𝐿2 (ℝ), i.e. the operator 𝐿 is separable.

Using Lemma 3.3, we obtain a complete proof of Theorem 1.2.

Lemma 3.4. Let the conditions i)-ii) be fulfilled. Then the inequality

𝑐−1𝑞
1
3 (𝑥) ≤ 𝑞∗ (𝑥) ≤ 𝑐 ⋅ 𝑞

1
3 (𝑥) ,

holds, where 𝑐 > 0 is a constant, the function 𝑞∗ (𝑥) is a special averaging of the function [12], i.e.

𝑞∗ (𝑥) = inf

⎧

⎪

⎨

⎪

⎩

𝑑−1 ∶ 𝑑−5 ≥

𝑥+ 𝑑
2

∫
𝑥− 𝑑

2

𝑞2 (𝑡) 𝑑𝑡

⎫

⎪

⎬

⎪

⎭

.

Lemma 3.4 is proved in exactly the same way as Lemma 12 in [13].

Proof of Theorem 1.3.. Theorem 2.1 implies 𝑅
(

𝐿−1) = 𝐿3
2,𝑞 (ℝ), where 𝑅

(

𝐿−1) is the range of the operator 𝐿−1, 𝐿3
2,𝑞 (ℝ) is

the space obtained by completion 𝐶∞
0 (ℝ) with respect to the norm

‖

‖

‖

𝑦 ∶ 𝐿3
2,𝑞 (ℝ)

‖

‖

‖

=
⎛

⎜

⎜

⎝

∞

∫
−∞

(

|

|

𝑦′′′|
|

2 + 𝑞2 (𝑥) |𝑦|2
)

𝑑𝑥
⎞

⎟

⎟

⎠

1
2

.

To complete the proof, it remains to show that the embedding operator of the space 𝐿3
2,𝑞 (ℝ) into 𝐿2 (ℝ) is compact. The

answer for this question follows from the results of [12]. In this paper, it is proved that any bounded set of space 𝐿3
2,𝑞 (ℝ) is

compact in 𝐿2 (ℝ) if and only if
lim

|𝑥|→∞
𝑞∗ (𝑥) = ∞. (3.8)

Now, the proof of Theorem 1.3 follows from Lemma 3.4. Theorem 1.3 is proved.

4 ESTIMATES FOR SINGULAR NUMBERS. NUCLEARITY OF THE RESOLVENT.
COMPLETENESS OF ROOT VECTORS

To study the singular values of the operator 𝐿−1, we need the following lemmas.
We introduce the following sets

𝑀 =
{

𝑢 ∈ 𝐿2 (ℝ) ∶ ‖𝐿𝑦‖22 + ‖𝑦‖22 ≤ 1
}

,

𝑀̃𝐶 =
{

𝑢 ∈ 𝐿2 (ℝ) ∶ ‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22 ≤ 𝑐

}

;
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𝑀̃𝐶 −1 =
{

𝑢 ∈ 𝐿2 (ℝ) ∶ ‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22 ≤ 𝑐−1

}

,

where ‖ ⋅ ‖2is the norm in 𝐿2 (ℝ) and 𝐴 > 0 is a constant independent of 𝑦 (𝑥).

Lemma 4.1. Let the conditions i)-ii) be fulfilled. Then the inclusions

𝑀̃𝑐−1 ⊆ 𝑀 ⊆ 𝑀̃𝑐

hold.

Proof. Let 𝑦 ∈ 𝑀̃𝑐−1 . Then we have

‖𝐿𝑦 ‖22 + ‖𝑦‖22 ≤ ‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22 + ‖𝑦‖22 ≤ 𝑐 ⋅

(

‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22

)

, (4.1)

where 𝑐 > 0 is a constant independent of 𝑦 (𝑥).
Here we took into account the following estimate:

‖𝑦‖22 ≤
1
𝛿2

‖𝑞 (𝑥) 𝑦‖22 .

Taking into account that 𝑦 ∈ 𝑀̃𝑐−1 , we find from (4.1)

‖𝐿𝑦 ‖22 + ‖𝑦‖22 ≤ 𝑐 ⋅
(

‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22

)

≤ 𝑐 ⋅ 𝑐−1 ≤ 1.

Hence it follows that 𝑀̃𝑐−1 ⊆ 𝑀 .
Now, let’s prove the right inclusion. Let 𝑦 (𝑥) ∈ 𝑀 . It means that 𝑦 (𝑥) ∈ 𝐷 (𝐿). Therefore, by virtue of Theorem 1.2, we find

‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22 ≤ 𝑐

(

‖𝐿𝑦 ‖22 + ‖𝑦‖22
)

,

where 𝐴 is a constant independent of 𝑦 (𝑥).
Since 𝑦 (𝑥) ∈ 𝑀 , then from the last inequality we obtain

‖

‖

−𝑦′′′‖
‖

2
2 + ‖𝑞 (𝑥) 𝑦‖22 ≤ 𝑐 .

We find from the last inequality that 𝑦 (𝑥) ∈ 𝑀̃𝑐 , i.e. 𝑀 ⊆ 𝑀̃𝑐 . Lemma 4.1 is proved.

Definition 4.1. [9] The Kolmogorov 𝑘-width of a set 𝑀 in the space 𝐿2 (ℝ) is called the quantity

𝑑𝑘 = inf
{𝑦𝑘}

sup
𝑦∈𝑀

inf
𝜐∈𝑦𝑘

‖𝑦 − 𝜐‖2 ,

where
{

𝑦𝑘
}

is the set of all subspaces in the space 𝐿2 (ℝ), whose dimensions do not exceed 𝑘.

The following lemmas hold.

Lemma 4.2. Let the conditions i)-ii) be fulfilled. Then the estimate

𝑐−1𝑑𝑘 ≤ 𝑠𝑘+1 ≤ 𝑐 𝑑𝑘, 𝑘 = 1, 2, ...,

holds, where 𝑐 > 0 is a constant, 𝑠𝑘 − −𝑠-numbers (singular numbers) of the operator 𝐿−1, 𝑑𝑘, 𝑑𝑘 is the Kolmogorov widths of
the corresponding sets 𝑀,𝑀̃ .

Lemma 4.3. Let the conditions i)-ii) be fulfilled. Then the estimate

𝑁̃ (𝑐𝜆) ≤ 𝑁 (𝜆) ≤ 𝑁̃
(

𝑐−1𝜆
)

holds, where 𝑁 (𝜆) =
∑

𝑆𝑘+1>𝜆
1 is the counting function of 𝑠𝑘+1 of the operator 𝐿−1 greater 𝜆 > 0, 𝑁̃ (𝜆) =

∑

𝑑𝑘>𝜆
1 is the

counting function of 𝑑𝑘 greater 𝜆 > 0.

Lemma 4.2 and 4.3 is proved in exactly the same way as Lemmas 4.3 and 4.4 in [14].

Proof of Theorem 1.4.. Lemma 4.1 implies that 𝑀 ⊂ 𝐿3
2,𝑞 (ℝ). Now, using Lemma 3.4 and repeating the calculations and

arguments that were studied in the proof of Theorem 1.4 in [14], we obtain the proof of Theorem 1.4 of this paper.

Proof of Theorem 1.5.. Using Lemma 3.4 and Theorem 1.4 from Theorem 8.3 in [12], we obtain the proof of Theorem 1.5.

To prove Theorem 1.6, we first prove the following lemmas.
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Definition 4.2. [15]. A linear operator 𝐴 acting on a Hilbert space 𝐻 is called accretive if

𝑅𝑒 < 𝐴𝑢, 𝑢 >≥ 0 for all 𝑢 ∈ 𝐷 (𝐴) ,

where < ⋅, ⋅ > is the scalar product in H.

Remark. The operator −𝐴 in this case is called dissipative. In some papers, the authors define a dissipative operator by the
condition 𝐼𝑚 < 𝐴𝑢, 𝑢 > ≥ 0.

Lemma 4.4. Let 𝐴−1 exist. Then if 𝐴 is an accretive operator, then 𝐴−1 is also an accretive operator.

Proof. Indeed, 𝑅𝑒 < 𝐴𝑢, 𝑢 > ≥ 0 for all 𝑢 ∈ 𝐷 (𝐴), therefore

𝑅𝑒 < 𝐴−1𝑦, 𝑦 >= 𝑅𝑒 < 𝑢, 𝐴𝑢 >= 𝑅𝑒 < 𝐴𝑢, 𝑢 >= 𝑅𝑒 < 𝐴𝑢, 𝑢 > ≥ 0,

where 𝑢 = 𝐴−1𝑦, 𝑦 ∈ 𝑅 (𝐴), 𝑅 (𝐴) is the range of the operator 𝐴. Lemma 4.4 is proved.

Lemma 4.5. Let the conditions i)-ii) be fulfilled. Then the operator 𝐿−1 is accretive.

Here 𝐿−1 is the inverse operator to the operator 𝐿𝑦 = −𝑦′′′ + 𝑞 (𝑥) 𝑦, 𝑦 ∈ 𝐷 (𝐿).

Proof. Theorem 1.2 implies that any element 𝑦 ∈ 𝐷 (𝐿) has generalized derivatives up to the third order, inclusive, belonging
to the space 𝐿2 (ℝ). Taking into account the above and the properties of the Fourier transform in space 𝐿2 (ℝ), we obtain

< 𝐿𝑦, 𝑦 >=

∞

∫
−∞

(

−𝑦′′′ + 𝑞 (𝑥) 𝑦
)

𝑦̄ 𝑑𝑥 = − 1
2𝜋

∞

∫
−∞

(𝑖𝜉)3 𝑦̂ ̄̂𝑦 𝑑𝜉 +

∞

∫
−∞

𝑞 (𝑥) |𝑦|2 𝑑𝑥,

for any 𝑦 ∈ 𝐷 (𝐿), where 𝑦̂ is the Fourier transform of the function 𝑦 (𝑥).
Hence 𝑅𝑒 < 𝐿𝑦, 𝑦 > ≥ 0. Therefore, according to Definition 4.2, the operator 𝐿 is an accretive operator. By Lemma 4.4,

𝐿−1 is also an accretive operator. Lemma 4.5 is proved.

Proof of Theorem 1.6.. Theorem 1.5 implies that the operator 𝐿−1 is a nuclear operator when 𝑞−
2
3 (𝑥) ∈ 𝐿 . According to

Lemmas 4.4 and 4.5, the operator 𝐿−1 is accretive. Therefore, according to Lidsky’s theorem [9], we obtain that the system of
root vectors of the operator 𝐿−1 is complete in 𝐿2 (ℝ). Theorem 1.6 is proved.
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