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Abstract

Plant pathogens are important for ecosystem functioning and community assembly and respond to a variety of biotic and abiotic
factors, which change along elevation gradients. Thus elevational gradients are a valuable model system for exploring how plant
community, soil properties, and environmental factors influence pathogens. Yet, how these factors influence pathogens in nature
remains poorly understood. We tested patterns and potential mechanisms of plant fungal pathogens along elevational gradients
by combining a field survey in the Tibetan Plateau with a global meta-analysis. We found that increasing elevation was
associated with a decrease in soil fungal pathogen richness but not foliar fungal disease symptoms. Elevation mainly related to
soil fungal pathogen richness through abiotic factors. Whereas no evidence supported association between elevation and foliar
fungal disease. The meta-analysis suggests some generality in the results of the field survey: elevation was associated with a
decrease in soil fungal pathogen richness, but had no consistent relationship with foliar fungal disease or pathogens. Our study
reveals distinct patterns of above- and belowground plant pathogen along elevation gradients and provides new insight into the
potential mechanisms in shaping these patterns.

Title: Above- and belowground plant pathogens along elevational gradients: patterns and
potential mechanisms

Abstract

Plant pathogens are important for ecosystem functioning and community assembly and respond to a variety
of biotic and abiotic factors, which change along elevation gradients. Thus elevational gradients are a valu-
able model system for exploring how plant community, soil properties, and environmental factors influence
pathogens. Yet, how these factors influence pathogens in nature remains poorly understood. We tested
patterns and potential mechanisms of plant fungal pathogens along elevational gradients by combining a
field survey in the Tibetan Plateau with a global meta-analysis. We found that increasing elevation was
associated with a decrease in soil fungal pathogen richness but not foliar fungal disease symptoms. Elevation
mainly related to soil fungal pathogen richness through abiotic factors. Whereas no evidence supported
association between elevation and foliar fungal disease. The meta-analysis suggests some generality in the
results of the field survey: elevation was associated with a decrease in soil fungal pathogen richness, but
had no consistent relationship with foliar fungal disease or pathogens. Our study reveals distinct patterns of
above- and belowground plant pathogen along elevation gradients and provides new insight into the potential
mechanisms in shaping these patterns.

Key-words: Biodiversity-disease Relationship, Community Disease Proneness, Community Pathogen Load,
Foliar Fungal Pathogen, Meta-analysis, Soil Fungal Pathogen

1



P
os

te
d

on
26

Se
p

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

69
57

27
91

.1
06

40
19

7/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

Introduction

Pathogens that cause plant diseases can maintain plant diversity by inducing both negative density de-
pendence and life-history trade-offs (Allan et al., 2010; Cappelli et al., 2020), yet the factors that drive
pathogen abundance and diversity remain poorly understood. Previous studies in agroecosystems suggest
that environmental heterogeneity (shaped by multiple abiotic and biotic factors) can regulate plant pathogens
(Stukenbrock and McDonald, 2008). However, whether variation in such factors drive geographic patterns
of plant pathogens in natural ecosystem remains an open question.

Abiotic factors such as temperature and precipitation can affect plant pathogens both directly and indirectly
through changes in host plant communities and soil properties (Liu et al., 2019). High temperatures often
promote both foliar fungal diseases (e.g. Roy et al., 2004; Liu et al., 2019) and soil pathogens (Delgado-
Baquerizo et al., 2020). Warming can benefit pathogen fitness by increasing pathogen survival, growth and
transmission (Siebold and Tiedemann, 2013), extending the favorable time for pathogen growth (Roy et al.,
2004), or narrowing the generation gap of pathogens (Bebber, 2015). Additionally, humidity can increase
plant disease by promoting pathogens’ spore germination and growth (Romero et al., 2021).

Abiotic factors are also predicted to influence the diversity, phylogenetic structure, and composition of host
plant communities (Zhu et al., 2020), and could thereby indirectly affect plant pathogens (Halliday et al.,
2021). In disease ecology, pathogens commonly increase in prevalence and severity with decreasing host
diversity and corresponding changes in host density (e.g. via changes in host richness and evenness; Keesing
et al., 2010; Halliday and Rohr, 2019). This negative biodiversity-disease relationship is potentially caused by
reduced encounter rates, susceptible host regulation, and non-random host species loss (Keesing et al., 2006;
Halliday, Rohr, et al., 2020). Accumulated empirical evidence from grasslands and temperate and subtropical
forests supports the existence of negative biodiversity-disease relationships in natural communities (e.g.
Mitchell et al., 2002; Rottstock et al., 2014; and Liu, Chen, et al., 2020 for a meta-analysis; but see Halliday
et al 2017, 2020). Furthermore, changes in diversity are often accompanied by compensatory shifts in the
density of component host species in grasslands (Mitchell et al., 2002). The density-dependent transmission
of foliar fungal diseases causes communities with higher host density to suffer more seriously from disease
at the host population level (Burdon and Chilvers, 1982), and soil pathogens may rely on plant biomass
since more biomass will provide more nutrient substance and greater chance for pathogenicity (Liu et al.,
2021). Furthermore, disease proneness (i.e. expected community pathogen load based on constituent host
plant species) can explain why host diversity loss is strongly associated with increased foliar fungal disease in
alpine meadows (Liu et al., 2017). A plant species with high disease proneness (i.e. possess good growth but
weak defensive abilities) can harbor more pathogens, and thus a host community with a higher proportion
of more disease-prone species is expected to have a higher community pathogen load (Liu et al., 2017).

In addition to plant community characteristics, soil properties can also potentially regulate plant pathogens.
Both foliar and soil pathogens are likely to benefit from high soil nutrients in both agro- and natural
ecosystems (Huber and Watson, 1974; Liu et al., 2017). Soil nutrients can promote pathogens by increasing
tissue nitrogen concentration (Veresoglou et al., 2013), which is one of the most important limiting factors
for many pathogens, especially for those that extract nutrients only from living plant tissues (i.e. biotrophic
pathogens; Liu, Lu, et al., 2020).

Despite the well-characterized impacts of single abiotic or biotic factors on plant pathogens, how these
soil-, plant community-, and environment mediated effects combine to generate patterns of above- and
belowground plant pathogens across biogeographic gradients remains poorly understood. For instance, a
previous study found that fungal diseases on Phragmites australis increased with latitude in North America,
indicating that geographical gradients were associated with the distribution of pathogens (Allen et al., 2020).
However, studies along latitude are massive logistical undertakings, and their results are easily affected by
the potential confounding factors of geology and biogeographic history (Halbritter et al., 2018). Compared to
other biogeographical gradients, elevational change generates highly variable ecological conditions (including
soil, plant community, environment) at a relatively small spatial scale (Rowe, 2009), providing an excellent
‘natural laboratory’ to study how biotic and abiotic factors affect plant pathogens (Halliday et al., 2021).
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Here, following this framework, we considered soil-, environment-, and plant community-mediated effects to
explore patterns and potential mechanisms of plant pathogens along elevation gradients. However, quanti-
fying plant pathogen communities is complicated by the fact that potential plant pathogens do not always
cause disease (i.e. the plant disease triangle; Liu and He, 2019). To overcome this challenge, we measured
plant pathogen communities in two ways. We measured foliar fungal disease as a quantitative measurement
of the disease severity (i.e. relative abundance, rather than absolute abundance) of pathogens that are cur-
rently causing disease on plants. Leaves are readily surveyed for disease, allowing for accurate and reliable
surveys of pathogen relative abundance in plant communities. However, the disease observed on a leaf is
only one small part of the total pathogen potential of an ecological community. In contrast with leaves,
soils can serve as a reservoir of plant pathogens capable of causing disease both above-and below ground,
even when those pathogens are not currently causing disease on a plant (Delgado-Baquerizo et al., 2020).
Surveying the richness and relative abundance of soil fungal pathogen communities using sequencing-based
approaches has become a powerful approach to assess the pathogen potential of a community (van Agtmaal
et al., 2017).

We combined these two complementary approaches by measuring foliar fungal disease, soil fungal pathogens,
plant community characteristics (richness, evenness, biomass and proneness), environmental conditions, and
soil properties along an elevational gradient in an alpine meadow in the northeastern Qinghai-Tibetan Plateau
to explore patterns of above- and belowground plant pathogens. We sought to answer the following questions:
(i ) how do abiotic and biotic factors (soil properties, plant community, environment conditions, above-
and belowground plant pathogens) change along elevational gradients?; (ii ) how do soil properties, plant
community and environmental conditions affect above- and belowground plant pathogens?; and (iii ) what is
the relative importance of the plant community-, environment- and soil-mediated effects for the correlation
between elevation and above- and belowground plant pathogens? We additionally performed a systematic
meta-analysis to explore the correlation between elevation and above- and belowground plant pathogens and
to assess the generality of our main conclusions.

Materials and methods

Field survey along an elevational gradient

Study site and plot establishment

We conducted our survey along an elevational gradient ranging from 3200 m to 4000 m a.s.l. on the south
slope of the Qilian Mountains in Menyuan County, located on the northeastern Qinghai-Tibetan Plateau
in China (Fig. S1.1). The region has a continental monsoon climate, with a 6-month growing season from
mid-April to mid-October. The study took place in alpine meadow habitat, dominated by some perennial
herbaceous genera (e.g. Gentiana , Kobresia , Poa andSaussurea ), with the species composition shifting
with elevation. We established thirty 0.5 × 0.5 m plots (6 replicates for each of five elevations) along the
elevational gradient at 3200 m (37°36’39” N, 101°18’16” E), 3400 m (37°39’58” N, 101°20’20” E), 3600 m
(37°41’47” N, 101°21’34” E), 3800 m (37°42’13” N, 101°22’14” E) and 4000 m (37°42’29” N, 101°22’27” E).
We randomly placed the plots with at least a 10 m buffer zone between two adjacent plots at each elevation.

Plant and soil sampling and climate monitoring

In early August 2020, we harvested all the plant aboveground parts at ground level and sorted them to
species at the plot level. We then dried plants at 65 for 48 hours to constant mass and weighed them to
0.01 g; we then summed the dry biomass of each species from each plot to quantify aboveground biomass
(hereafter ‘AGB ’, see Table 1 for abbreviations). We also collected four soil cores (5 cm in diameter and 10
cm in depth) in the four corners of each plot and pooled them to form one sample per plot. We flushed all
fine roots collected from each sample with water and then dried them to measure plant belowground biomass
(BGB ). We measured soil moisture content (W; %) gravimetrically after 5 h of desiccation at 120 and used
a pH analyzer and a conductivity analyzer to measure the soil pH (pH) and soil conductivity (C; ms/s),
respectively. We extracted 5 g of fresh soil with 50 ml 0.2 M KCl for 1 h at 60 rev s-1 using a shaker, then
measured nitrate-nitrogen (NO3

-; mg/kg) and ammonium-nitrogen (NH4
+; mg/kg) using an auto-analyzer
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(AA3, Bran-Luebbe, Germany).

We placed a Temperature-Humidity Recorder Cos-03-0 (Renke Control Technology Co., Ltd., Jinan, Shan-
dong, China) at each elevation, which continuously monitored ambient temperature and humidity every 60
seconds for 72 hours in early August 2020. We then calculated the mean daily temperature (MDT ) and
mean daily humidity (MDH ) for each elevation. Given the relatively short-term temperature and humidity
may not represent the environmental conditions that were present during pathogens development, we only
test the associations between elevation with MDT andMDH (thereby confirming whether the elevational
gradient can serve as a temperature and humidity gradient), but we did not included these measurements in
other analyses.

Bioinformatic analysis

We extracted DNA from the soil samples and implemented PCR amplification. We then constructed our
library and assessed its quality. We operated the Illumina NovaSeq 6000 platform to quantify and sequence
the constructed library for soil fungi. We then used non-clustering direct denoising to generate operational
taxonomic units (OTUs) and identified the fungus at the genus level (Detailed supplementary methods in
Section S1.1 in Supporting information).

Measurement of above- and belowground plant pathogens

For foliar fungal diseases, we recorded foliar fungal disease severity following the methods provided in Liu
et al. (2017). In brief, we visually recorded disease severity (i.e. % leaf area covered by fungal lesion;Vi )
from five leaves randomly selected from five individuals for each plant species in each plot. We recorded all
available leaves for species with less than 25 leaves. We then calibrated our records by comparing diseased
leaves to reference images of known disease severity. We identified the foliar fungal pathogens using an
Olympus CX33 light microscope (Shinjuku, Japan) following identification manuals, including the Fungal
Identification Manual (Wei, 1979), Plant Disease Diagnosis (Lu, 1997), and also previous studies in this area
(Zhang, 2009; Liu et al., 2019; Liu, Lu, et al., 2020). We defined community pathogen load (PL ) following
Mitchell et al. 2002 as:

PL =

∑S
i=1 biVi∑S
i=1 bi

where S was the total number of plant species in a certain plot, and bi was the aboveground biomass of
plant species i . We then defined a ‘disease proneness index’ (hereafter ‘Pi ’) for each species as the average
severity index (Vi ) across 30 plots of plant species i . We then calculated a ‘community proneness index’
(hereafter ‘Proneness ’) for each plot by calculating a plant aboveground biomass-weighted average of the
Pifor each plot (Liu et al., 2017):

Proneness =

∑S
i=1 biPi∑S
i=1 bi

where Proneness was the expected community pathogen load based on constituent host plant species, which
was measured independent of the actual disease in a given plot (Liu et al., 2017). Specifically, each species in
each plot was assigned a value of disease proneness based on averaging its disease severity (Vi ) in this plot and
weighted by its aboveground biomass. Despite a similar mathematical formula for PL andProneness , these
values represent two distinct characters of plant community (the actual amount of disease in a community
and the amount that would be expected based on the identity of species present and their relative abundances
alone). PL and Proneness are not always correlated with one another (e.g. Liu et al., 2019), and are often
used together in disease ecology studies (e.g. Mitchell et al., 2002; Johnson et al., 2013; Liu et al. 2017; Liu
et al., 2019). We log-transformed community pathogen load (PL ) and disease proneness index (Proneness
) to achieve normality of residuals in the following analysis.
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For soil fungal pathogens, we defined fungal taxa as putative plant fungal pathogens when they include
any pathogenic species which were reported to induce any plant disease symptoms (e.g. canker, rot, leaf
spot, blight, rust and mildew) (Liang et al., 2016), as determined by references to published data (Tedersoo
et al., 2014), paper inISI Web of Science (if any paper reported their pathogenicity) and the FUNGuild
algorithm (Nguyen et al., 2015). Indeed, even if some genera with mixed feeding strategies (e.g. parasitic,
mutualistic and saprophytic) were presumed as pathogens based on the above method in this study, they still
represent pathogen potential. For instance, genera belong to Dothideomycetes (e.g. Alternaria ,Epicoccum
, Fusicladium ), Leotiomycetes (e.g. Coma ,Erysiphe , Scytalidium ), Sordariomycetes (e.g.Fusarium ,
Neonectria , Valsa ) and other classes were presumed as plant pathogenic. All plant pathogenic genera
identified in the field study are listed in Table S2.1. We then calculated the accumulated OTU number of
soil fungal pathogens (sfpOTUs ; OTU richness of soil fungal pathogens), and also the relative abundance
of soil fungal pathogens (sfpRA ; copy number of soil fungal pathogens divided by the total number of copy
number of soil fungus) for each sample. We log-transformed soil fungal pathogen relative abundance (sfpRA
) to achieve normality of residuals in the following analysis.

Limitations and caveats in methodology

This study includes three complementary measurements of plant pathogens: the relative abundance of
pathogens causing foliar disease, the relative abundance of soil pathogens (sfpRA ), and the richness of
soil pathogens (sfpOTUs ). We measured damaged on the leaves and fungal pathogen communities in
the soil. Although these two approaches do not provide identical assessments of pathogen richness and
disease outcomes in foliar and soil- compartments, we believe that this approach is justified, as it reflects
the most commonly used approach in these two respective fields of research, and represents comprehensive
characteristics of both above- and belowground fungal plant pathogen communities, and thereby provides
a more comprehensive understanding of how pathogen communities respond to changing environmental
conditions. Furthermore, although the measurements are not identical, they are often positively correlated
with one another, and this correlation often transcends study systems (Rottstock et al., 2014; Liu et al., 2016;
Halliday et al., 2017; Halliday et al., 2020b). Therefore, we feel confident that the distinct measurements in
our study can provide insight into the biogeographic pattern of pathogens across elevation gradients.

In this study, we measured foliar fungal diseases and soil pathogens as representatives of above- and below-
ground plant pathogens respectively to bring together research from two different fields that tend to study
pathogens in different ways, which provides complementary information using complementary measurement
approaches. However, we applied these measurements with caveats that visual assessment for foliar fungal
diseases does not include all pathogens and can result in an incomplete assessment of pathogen diversity,
while sequencing-based assessment for soil fungal pathogens is not directly related to any particular disease
outcome. Overall, these measurements still reflect the most commonly used approach in these two respective
fields of research, and thereby provide a more comprehensive understanding of how pathogen communities
respond to changing environmental conditions.

Root diseases resulted by root-borne pathogens can also affect host mortality, growth and productivity, and
further influence ecological succession and biogeochemistry process, thereby regulating ecosystem functioning
(e.g. Hansen & Goheen, 2000; Healey et al., 2016). Future studies could combine surveys of foliar and root
fungal diseases by both visual measurements and sequencing to more comprehensively explore the responses
of above- and belowground plant pathogens to abiotic and biotic factors and their impacts on ecosystem
functioning.

The results of the field survey might be sensitive to limitations of the empirical approach. For soil fungal
sequencing, fungal ITS1 region may suffer from certain taxonomic biases, like high proportion of mismatches
and biased amplification of certain fungal taxa (e.g. basidiomycetes; Tedersoo & Lindahl, 2016). However,
fungal ITS1 region indeed possess some advantages which outperformance to other regions, for example, it is
easily discriminate fungal taxa from plants and provides wider richness and taxonomic coverage (Mbareche
et al., 2020). Future studies could overcome these challenges by incorporating multiple sequencing regions,
and using more advanced methods (e.g. exact sequence variants (ESVs), which generate a greater resolution
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than OTU-based methods; Mbareche et al., 2020). In fact, quantitative PCR is a good choice to calculate
the abundance of pathogens (Tellenbach et al., 2010), although the small datasets prevent us from further
analyses regarding the absolute abundance of pathogens. In fact, unlike the foliar fungal disease, the relative
abundance of soil pathogen profiles cannot indicate the absolute abundance of pathogens. Hence, we can
only conclude that elevation had no associated with the relative abundance of soil pathogens. Our empirical
results also stem from a single location in a single year, and thus our results might be sensitive to local
environmental conditions that are characteristic of the particular year of sampling. Although our empirical
results largely agree with the results of the meta-analysis, this does not negate the limitations of the empirical
study (i.e., relatively small sample size, single gradient, single year). Future studies conducted over multiple
elevational gradients and multiple years remain the gold standard for empirical field surveys along elevational
gradients. Large-scale and long-term studies of biotic and abiotic drivers of disease across environmental
contexts remain a pressing need if ecologists want identify the underlying effects of temporal dynamics and
spatial heterogeneity in the community ecology of infectious disease.

Statistical analysis

(i) Changes of abiotic and biotic factors along elevational gradients

We conducted principal component analysis (PCA) to summarize soil properties (W, pH, C, NO3
- and NH4

+)
using the “vegan” package (v. 2.5.7; Oksanen et al., 2020) (Fig. S1.2). We then calculated the Spearman
rank-order correlation between Soil PCA1 and each of the soil properties (W, pH, C, NO3

- and NH4
+) (Fig.

S1.2). We also calculated the plant species richness (SR ) and Pielou’s evenness index (Evenness ) using
the “vegan” package for each plot. To test correlations among various variables, we plotted the correlation
matrix for all biotic or abiotic variables (Elevation , SR ,Evenness , Proneness , AGB, BGB, MDT, MDH
andSoil PCA1 ), and we then calculated the Pearson’s correlation between these variables and PL /various
soil pathogen indices (Fig. S1.3a). We also conducted Mantel tests based on “Bray-Curtis” distance between
sfpOTUs and biotic or abiotic variables using the “ggcor” package (v. 0.9.8.1; Huang et al., 2020) (Fig.
S1.3b).

To minimize the influence of the potential spatial autocorrelation on the results, we used the respective
coordinates of each sample plot to generate a spatial matrix. Specifically, given the sample plots were
distributed along a cambered mountain slope which approximated to the spherical surface, we calculated
the spatial matrix based on spherical correlation structure (i.e. “corSpher” class) using the “nlme” package
(v. 3.1-152; Pinheiro et al., 2021). We then introduced the spatial matrix into a series of linear mixed-
effects models with five elevations as a random effect in following analyses, using the “nlme” package. We
set Elevation as independent variables in a series of linear mixed-effects models to test its associations with
various community-level indices (SR , Evenness , Proneness ,AGB and BGB ) and soil properties (SoilPCA1
), respectively. At the plant community level, we set Elevation as the independent variable and PL and soil
pathogen indices (sfpOTUs andsfpRA ) as response variables in a series of linear mixed-effects models to
test the direct correlations between Elevation and above- and belowground plant pathogens.

For the soil fungal pathogen community, we conducted permutational multivariate analysis of variance (PER-
MANOVA) to test the compositional difference of soil fungal pathogens along the elevational gradient. A
significant result of PERMANOVA supports the hypothesis that pathogen communities change along eleva-
tional gradients.

(ii) Factors affecting above- and belowground plant pathogens

We set various community-level indices (SR , Evenness ,Proneness , AGB and BGB ), and soil properties
(Soil PCA1 ) as independent variables in a series of linear mixed-effects models to test their effects on PL
, sfpOTUsand sfpRA , respectively. We using “MuMIn” package (v. 1.47.1; Bartoń, 2022) to conducted full
model selections based on a series of linear mixed-effects models for PL , sfpOTUs andsfpRA , respectively.
We then extracted the effect sizes with 95% confidence intervals from weighted average standardized coef-
ficients from models with ΔAICc < 4 based on model selections, and compared these models with the null
model (i.e. the intercept-only model) based on Akaike’s information criterion corrected for small sample sizes
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(AICc) using the “MuMIn” package. We also calculated the log-likelihood (LL) and AICc based parameters:
change in AICc relative to the top-ranked model (ΔAICc), AICc weight (w AICc) and the percent deviance
explained (De ) (Burnham et al., 2011), to estimate their possibilities of being the best predictor of PL and
various soil pathogen indices. When the ratio ofw AICc of predictor to w AICc of null model more than
1.5, it indicates that the corresponding variable is associated withPL , sfpOTUs and sfpRA (Burnham et al.,
2011).

(iii) Plant community-, environment- and soil-mediated relationships between elevation and above- and be-
lowground plant pathogens

To explore how soil properties, plant community and environment conditions mediated the relationship
between elevation and above- and belowground plant pathogens, we used the “piecewiseSEM” package
(v. 2.1.2; Lefcheck, 2016) to build a structural equation model (SEM) based on a series of linear mixed-
effects models to test the relationship between elevation and PL and sfpOTUs including paths that were
mediated by the plant community and environment (i.e. elevation may first influence plant community
characters, soil properties and environmental conditions, which then indirectly change plant fungal pathogen
communities) (Halliday et al., 2021; Fig. 2a). We did not include MDT in the SEM, given that there
was a strong collinearity between MDT and elevation (Pearson’ r= 0.985). We calculated the standardized
path coefficients (scaled by their mean and standard deviation) and corresponding significance (P values)
for each path of the final models. Statistically significant path(s) (P < 0.1) highlight potentially important
mechanisms generating relationships between elevation and above- and belowground plant pathogens. We
used the Fisher’s C test to test the goodness-of-fit of the SEM. We then used partial residual plots to interpret
the relationships highlighted in the model (Grace, 2006). In brief, we extracted the residuals of each variable
in SEM and then set the residuals of plant pathogen related variables (i.e. PLand sfpOTUs ) as functions of
residuals of explanatory variable (i.e. Elevation , Soil PCA1 , Evenness andProneness ) in a series of linear
models (Grace, 2006). Significant results of residual analysis correspond to significant paths in the SEM.

Meta-analysis

Data collection

Our empirical approach to study the relationship between elevation and plant pathogens might be sensitive
to the relatively small number of replicates across a single environmental gradient in a single year, as
trophic interactions can vary across space and time, and are often context dependent (Roslin et al., 2017;
Liu, Chen, et al., 2020). Therefore, to test the generality of our main results from the field survey, we
conducted a systematic literature search in ISI Web of Science and China National Knowledge Infrastructure
(www.cnki.net). We searched for research on foliar fungal pathogen [(fungal OTU* OR fungi OTU* OR fung*
operational taxonomic unit OR fung* abundance OR fung* richness) AND (elevation* OR altitud*) AND
(folia* OR leaf OR leaves)], foliar fungal diseases [(plant disease* OR pathogen* OR infect* OR epidemic*)
AND (inciden* OR prevalen* OR load* OR severity OR occur* OR abundance) AND (elevation* OR
altitud*) AND (folia* OR leaf OR leaves)] and soil plant pathogens [(fungal OTU* OR fungi OTU* OR
fung* operational taxonomic unit OR fung* abundance OR fung* richness) AND (elevation* OR altitud*)
AND (soil OR belowground OR underground)]. We finally identified 41 papers (providing a total of 62 effect
sizes) that met our criteria (Fig. S1.1; Table S1.1): (i ) focused on the relationship between elevation and
foliar fungal diseases and foliar/soil plant pathogens in nonagricultural ecosystems; and (ii ) reported sample
sizes greater than three. Detailed process for literature screening and basic information of 41 papers were
provided in Fig. S1.4 and Table S1.1.

We collected the OTU table for studies on foliar and soil plant pathogens, identified the putative plant
pathogens according to the aforementioned methods, and calculated ffpOTUs (i.e. foliar fungal pathogen
OTU richness), sfpOTUs and sfpRA for each study. All plant pathogenic genera identified in the meta-
analysis are listed in the Table S2.1. We extracted the sample sizes and Pearson’s correlation coefficients
(r ) from the main text, tables, figures (using WebPlotDigitizer v. 4.4; Rohatgi, 2020), or raw data. We
also recorded background information on location and the elevation range of sampling (as highest sampling
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elevation minus lowest sampling elevation) from original papers, then we extracted the mean annual temper-
ature and mean annual precipitation of the lowest elevation location for each study based on the WorldClim
database (Fick and Hijmans, 2017).

Effect sizes

We calculated effect sizes as the Fisher’s z -transformation of Pearson’s correlation coefficients (r ) (Rosenberg
et al., 2013):

Z =

(
1 + r

1 − r

)
The corresponding variance for each Z was estimated as:

V ar =
1

n− 3

where n is the sample size. Positive values of Z indicate that increasing elevation is associated with increases
in foliar fungal disease or foliar/soil pathogens, while negative values indicate decreases.

Statistical analysis

We used the metafor package (v. 3.0.2; Viechtbauer, 2010) to calculate the mean effect size of elevation
on ffpOTUs , foliar fungal diseases, sfpOTUs, and sfpRA , with ‘study’ nested in ‘paper’ as random effects
(Nakagawa et al., 2017). The effect size (Z ) was considered to be significant when the 95% confidence interval
of the mean did not include zero (Lajeunesse, 2013). We tested the overall effect of elevation on ffpOTUs
, foliar fungal diseases, sfpOTUs , and sfpRA , and respective effect in forest and grassland ecosystem for
foliar fungal disease (due to insufficient study in grassland ecosystems for other response variables). We then
introduced mean annual temperature, mean annual precipitation, latitude and elevation to test the context
dependence of effect size (Z ). The amount of heterogeneity explained by each variable was estimated by
the Q m statistic and its corresponding P value (Viechtbauer, 2010). For assessing the potential publication
bias, we conducted Kendall’s rank test for funnel plot asymmetry (Borenstein et al., 2009), and also ran a
meta-regression between effect size (Z ) and studies’ publication years/journal impact factors. All statistical
analyses were conducted using R v. 4.1.1 (R Development Core Team, 2021).

Results

Field survey along an elevational gradient

(i) Changes of abiotic and biotic factors along elevational gradients

For soil properties, the first principal component (Soil PCA1 ) explained 41.63% of the total variance and
Soil PCA1 was positively correlated with pH, C, and NO3

- and negatively correlated with W and NH4
+

(Fig. S1.2).

We found 73 plant species in total along the elevational gradient in the alpine meadow. Elevation had a strong
correlation with MDT rather than MDH , showed a highly collinearity between them (Fig. S1.3). Due to this
collinearity, we feel confident interpreting elevation as a proxy for temperature. Besides, increasingElevation
was associated with a significant decrease in AGB(P = 0.006, MarginalR2 = 0.733), SR (P = 0.028, Marginal
R2 = 0.482) and Soil PCA1 (P = 0.038, Marginal R2 = 0.610) (Fig. S1.5).

At the plant population-level, fungal leaf spot was the most commonly identified symptom, compared with
others (e.g. rusts, blight, smuts and downy mildew; Table S1.3). Multiple species belonging to several genera
(i.e. Alternaria , Ascochyta , Peronospora ,Puccinia , Trichometasphaeria , Urosystis andUstiligo ) were
identified as pathogens associated with the observed foliar fungal diseases (Table S1.2). Host species varied
inVi from 0 to 27.78 (Deschampsia caespitosa ) (Table S1.2). With respect to soil pathogens, we identified
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putative plant fungal pathogens belonging to 106 genera. Soil plant fungal pathogens occupied an average
of about 7.72% relative abundance, compared to all soil fungi across all plots.

For foliar fungal diseases and soil pathogens, increasingElevation was associated with a significant reduction
in sfpOTUs (P = 0.020, Marginal R2 = 0.433), but not PL(P = 0.403, Marginal R2 = 0.034) orsfpRA (P =
0.973, Marginal R2< 0.001) (Fig. S1.6). PERMANOVA results indicated that the composition of soil fungal
pathogens varied with elevation (F 4,25 = 2.744, P < 0.001) (Table S1.3).

(ii) Factors affecting above- and belowground plant pathogens

Among different plant community-level indices, environmental factors and soil properties, linear mixed-effects
models result showed that onlyProneness (P < 0.001, MarginalR2 = 0.348) had a significant positive effect
on PL , while no variable had a significant effect onsfpOTUs and sfpRA (Fig. S1.7, S1.8, S1.9). Among
various univariable and multivariable linear mixed-effects models, only univariable of Pronenss (P < 0.001)
andEveness (P = 0.043) had significant effects on PL , and the combination of these factors (Proneness +
Eveness ) provided the best fit (AICc = 82.510,w AICc = 0.269, R2 = 0.438) compared to the null model
(AICc = 93.719,w AICc = 0.001), accounting for c. 44% of the deviance explained in PL (Fig. 1a; Table
S1.4).sfpOTUs were directly associated with Elevation (P= 0.005), and strongly influenced by Soil PCA1
(P = 0.021) (Fig. 1b). The combination of Elevation and Soil PCA1 provided the best fit (AICc = 76.842,w
AICc = 0.294, R2 = 0.534) forsfpOTUs among various multivariable models (Table S1.5).sfpRA had no
statistically significant association with any ecological variable tested, and was therefore not included in the
SEM (Table S1.6)

(iii) Plant community-, environment- and soil-mediated relationships between elevation and above- and be-
lowground plant pathogens

The final SEM (Fisher’s C = 11.855, P = 0.158, d.f. = 8) revealed that increasing Elevation was associated
with a significant decrease in Soil PCA1 (standardized path coefficient β = -0.768, P = 0.038) (Fig. 2b;
Table S1.7). WhileElevation showed strong negative direct correlation withsfpOTUs (β = -1.109, P = 0.015)
but not PL (β = -0.159, P = 0.563). Furthermore, Evenness (β = -0.296,P = 0.082) and Proneness (β =
0.665, P < 0.001), rather than Soil PCA1 (β = -0.180, P = 0.482), were associated with variation in PL .
In contrast, significant reduction in sfpOTUs was associated with increasing Soil PCA1 (β = -0.540, P =
0.026), but not Evenness (β = 0.063, P = 0.672) or Proneness (β = 0.097, P = 0.529) (Fig. 2b; Table S1.7).
The final SEM accounted for 45.772% of variation in PL and 55.855% of variation in sfpOTUs . In addition,
the residual plots also showed that changes in bothProneness and Evenness were associated with variation
inPL , while increasing Soil PCA1 was associated with a significant decrease in sfpOTUs (Fig. S1.10). This
indicates the important role of plant community in explaining variation in PL , and highlights the indirect
connection between elevation and belowground plant pathogens via abiotic factors.

Meta-analysis

Kendall’s rank test for funnel plot asymmetry indicated that no publication bias existed for all the tests
(P > 0.05) (Table S1.8; Fig. S1.11), and there was no significant correlation between effect size (Z ) and
studies’ publication years/journal impact factors (P > 0.05) (Fig. S1.12).

Overall, elevation was not associated with foliar fungal pathogen OTU richness (Z ± 95% CI = -0.157 ±
0.263, P = 0.242), foliar fungal diseases (Z ± 95% CI = -0.047 ± 0.242, P = 0.703) or sfpRA (Z ± 95% CI =-
0.101 ± 0.183, P = 0.281), whereas increasing elevation was significantly associated with sfpOTUs (Z ± 95%
CI = -0.257 ± 0.172, P = 0.003) (Fig. 3; Fig. S1.13; Table S1.9). Elevation was not significantly associated
with foliar fungal disease in forest (Z ± 95% CI = -0.127 ± 0.440, P = 0.571) or grassland (Z ± 95% CI =
0.023 ± 0.153, P = 0.772) ecosystems (Fig. 3; Fig. S1.13; Table S1.9). There was no significant correlation
between the climatic variables (mean annual temperature, mean annual precipitation) and the effect size (Z
) on ffpOTUs , foliar fungal diseases,sfpOTUs or sfpRA (Fig. S1.14; Table S1.10). Nevertheless, increasing
absolute latitude was associated with decreasing effect size (Z ) on ffpOTUs (Q m = 4.231,P = 0.040)
but not foliar fungal disease (Q m = 0.364, P = 0.547), sfpOTUs(Q m = 1.264, P = 0.261) or sfpRA(Q
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m = 1.647, P = 0.199) (Fig. S1.14; Table S1.10). Furthermore, studies conducted over larger elevational
ranges tended to observe stronger negative relationships between elevation and sfpOTUs(Q m = 4.572, P =
0.033) and sfpRA(Q m = 4.469, P = 0.033), though the elevational range of sampling did not moderate this
relationship forffpOTUs (Q m = 0.150, P = 0.698) or foliar fungal disease (Q m = 0.415, P = 0.520) (Fig.
S1.14; Table S1.10).

Discussion

Changes of abiotic and biotic factors along elevational gradients

In our field survey, abiotic and biotic factors (soil properties, plant community characters and environment
conditions) greatly varied along elevational gradients, consistent with past studies (e.g. Lomolino, 2001), and
those abiotic and biotic factors, in turn, explained relationships between elevation and above- belowground
plant pathogens. By integrating this field survey with a systematic meta-analysis, we showed a general,
negative association between elevation and soil pathogen richness, but did not find support for a general
association with foliar fungal pathogen richness, foliar fungal diseases or soil pathogen relative abundance.
Our meta-analysis further suggests that the elevation range of sampling may potentially shape which rela-
tionships are observed between elevation and soil fungal pathogens. Larger elevation gradients mean that
studies are comparing among different habitat types with different sets of species, whereas smaller elevation
gradients are usually making comparisons across environmental conditions within a single habitat type. The-
se results provided important evidence that elevational patterns of plant pathogens are consistent despite
great variation in plant and pathogen species pools.

In our field survey, we did not find any evidence supporting a direct association between elevation and
foliar fungal diseases at either the host population or community levels. These results are inconsistent with
a previous study in the Swiss Alps along a 1101 m elevational gradient, which found that elevation not
only associated with disease directly, but also indirectly regulated plant diseases by shifting the relationship
between host plant composition and disease (Halliday et al., 2021). The differences between these two studies
might be due to variation in climate (higher temperature and precipitation in the Swiss Alps), vegetation type
(our site was a typical alpine meadow, while the Swiss Alps had more montane habitat), and/or elevation
range of sampling (1101 m for Swiss Alps vs. 800 m here). Elevation is also associated with a series of changes
in plant communities, soil properties and other environmental factors (Lomolino, 2001). These factors may
have both positive (e.g. warming; Siebold and Tiedemann, 2013; Liu et al., 2019) and negative (e.g., dilution
effect; Mitchell et al., 2002; Rottstock et al., 2014; Halliday et al., 2020) effects on foliar fungal diseases. These
effects could also offset each other, and environmental gradients can further modify how host community
structure affects disease (Halliday et al., 2021), resulting in imperceptible associations between elevation
with foliar fungal diseases. Hence, the relationship between elevation and foliar fungal diseases was difficult
to explain using temperature, precipitation, latitude and elevation range of sampling in our meta-analysis.

Factors affecting above- and belowground plant pathogens

Our results provide empirical support that both Evenness andProneness can shape community pathogen
loads, highlighting the importance of including host community indices into disease ecology models (Liu et
al., 2017; Halliday et al., 2019). Pronenessincreased with elevation, indicating that plant communities at
higher elevations contained greater proportions of competent species (i.e. species with good growth but weak
defensive abilities, thus harboring more pathogens; Liu et al., 2017), though this point was not fully supported
by the study in the Swiss Alps (Halliday et al., 2021). We attribute the variation in the plant species level
proneness index partly to the growth-defense trade-off, which suggests that the enhancement of defense
systems comes at the cost of reduced growth, based on the assumption that plants share limited resources
(Coley et al., 1985; Cappelli et al., 2020). The community proneness index was the best predictor of pathogen
loads along the elevational gradient in the alpine meadow (explaining ˜ 34.0% of variation), suggesting
that plant communities dominated by host species with higher proneness (i.e. weak defense systems) might
experience more serious disease. Thus, our study calls for the inclusion of host community composition into
models that predict infectious disease (Halliday, Rohr, et al., 2020).
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Our study provided empirical evidence for a negative biodiversity-disease relationship, which ecologists have
long debated (Rottstock et al., 2014; Halliday et al., 2019; Halliday and Rohr, 2019; Liu, Chen, et al.,
2020). Pielou’s evenness index was an effective predictor of pathogen load, even along such a sharp elevation
gradient, consistent with the theoretical prediction that host community evenness should be a better predictor
of disease than species richness (Chen and Zhou, 2015). The evenness index incorporates the distribution of
relative abundances among host species, which can better describe the mechanism of encounter reduction
between host biodiversity and plant diseases (Mitchell et al., 2002; Liu et al., 2016). Therefore, a higher
community evenness index translates into a lower probability of focal individuals being infected through
encounter reduction (Keesing et al., 2006).

Plant community-, environment- and soil-mediated relationships between elevation and above-
and belowground plant pathogens

Together, our results provide broad evidence that above- and belowground pathogens had distinct geogra-
phical vertical pattern which were shaped by different mechanisms. For foliar fungal pathogens, we found
empirical evidence that plant community characteristics (i.e. community proneness index and evenness),
rather than soil properties, were the main drivers of community pathogen load in our field survey. However,
results did not support any direct or indirect relationship between elevation and foliar fungal disease.

These results highlight the importance of host identity to determine community-level diseases. In the field
survey, shifts in plant community proneness to diseases ultimately led to difference in community pathogen
load, a finding that is consistent with other studies from both plant diseases (Mitchell et al., 2002; Liu et
al., 2017) and alsoRibeiroia ondatrae caused amphibian diseases (Johnson et al., 2013). However, although
only a small part of the 73 plant species’ distributions overlaps with each other and generates considerable
variance in the composition of host communities for pathogens along the elevation gradient, the degree of
communities prone to disease did not synchronously change. Therefore, plant community mediated effect
was not found in our study.

In general, our results indicated that abiotic factors mediated the association between elevation and soil
fungal pathogen richness, while elevation showed no significant direct or indirect association with foliar fun-
gal diseases and soil fungal pathogen relative abundance. Indeed, different measurements for pathogens (i.e.
OTU richness versus relative abundance) may explain the inconsistent responses of pathogens to abiotic and
biotic factors. For instance, positive plant richness- pathogen diversity relationship and negative diversity-
disease relationship can be observed in natural plant communities, given that increasing plant species di-
versity provides more diverse hosts while simultaneously inducing dilution effects (Rottstock et al., 2014).
However, there is insufficient evidence to determine the relative strength of which pathogen richness responds
to the abiotic and biotic environment. In addition, the different patterns of above- and belowground plant
pathogens along elevational gradients can be partly explained by their differences in life history characte-
ristics. Rusts (e.g. Phragmidium , Puccinia and Uromyces ) are the dominant foliar fungal pathogens in
our study site (Liu et al., 2019); these fungi belong to a group of obligate biotrophic pathogens that can
only extract nutrients from living plant cells (Duplessis et al., 2021) and have relatively narrow host ranges
(one or just a few phylogenetically close plant species; Zhang, 2009). In contrast, soil plant pathogens are
commonly necrotrophic with a relatively broad host range (Delgado-Baquerizo et al., 2020). Therefore, we
expect that negative biodiversity-disease relationships might occur more commonly for foliar pathogens; foli-
ar diseases are strongly dependent on their hosts, so they can be easily captured by host composition rather
than environmental factors (e.g. temperature). For soil biota, we found empirical evidence that increasing
elevation was associated with reductions in soil fungal pathogen richness via changes in soil properties (Soil
PCA1 ). Our meta-analysis providing further evidence of a general negative association between soil fungal
pathogen richness and elevation among studies. However, elevation had no significant association with soil
fungal pathogen relative abundance. Unlike the severity of foliar fungal disease or fungal pathogen relative
abundance, soil fungal pathogen richness depends on the relative rate of fungal colonization and extinction of
fungal taxa. On the one hand, temperature may promote soil fungal pathogen richness through the following
three mechanisms: First, temperature is a key limiting factor for plant biomass and richness (Chu et al.,
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2019). Broad evidence from plants suggests that the species richness of lower trophic levels can determine the
diversity of higher trophic levels, including fungal pathogens (Kamiya et al., 2014; Rottstock et al., 2014; Liu
et al., 2016). Moreover, increased plant biomass provides greater host availability and more diverse habitats
for pathogens. These plant-mediated paths can shape a potential negative relationship between elevation and
soil fungal pathogen richness. Second, temperature can promote coevolution between hosts and pathogens,
given the stronger inter-trophic interactions in warm areas (Roslin et al., 2017; Liu, Chen, et al., 2020); this
is thought to be a main factor shaping pathogen richness. Third, temperature can determine the distribution
of soil pathogens via environment filtering (Tedersoo et al., 2014); the fitness of pathogens is largely affected
by temperature and humidity through impacts on survival, growth, dispersal and reproduction, both at local
and global scales (Tedersoo et al., 2014; Liu et al., 2019; Delgado-Baquerizo et al., 2020).

On the other hand, soil properties may be a regulator of plant pathogens. Firstly, soil nutrients may benefit
pathogens in both agro- and natural ecosystems by increasing tissue nitrogen concentration (Huber and
Watson, 1974; Veresoglou et al., 2013; Liu et al., 2017). Secondly, soil properties can alter the competition
dynamics and shape plant community composition (e.g. inducing the light asymmetry under nitrogen addi-
tion; Xiao et al., 2021), which possibly indirectly influence soil plant pathogens by preferring species with
better growth ability (Cappelli et al., 2020). The soil fungal pathogen relative abundance showed no signifi-
cant variation along the elevation gradient, despite considerable changes in temperature and soil properties.
We attribute this to the small proportion of soil fungal pathogens relative to total soil fungi (i.e. percentage
of soil fungal pathogens copy number; on average of 7.72% in our study), which may potentially limit the
ability of soil pathogens to respond to biotic and abiotic variables.

Conclusion

Our multi-method approach provides evidence that community pathogen load is more commonly associated
with host community composition (evenness and proneness) than with linear changes along the elevational
gradient. In contrast, we did find that increasing elevation was associated with soil fungal pathogen richness
(but not relative abundance), via the effects of temperature and soil properties. These results highlight
elevational patterns of above- and belowground plant pathogens may be regulated by distinct mechanisms,
and are consistent with a growing body of studies of foliar diseases (Mitchell et al., 2002; Rottstock et al., 2014;
Cappelli et al., 2020; Halliday et al., 2021) and soil pathogens (Tedersoo et al., 2014; Delgado-Baquerizo et
al., 2020). More importantly, there is increasing evidence that environmental gradients can modify how host
community structure affects disease (Halliday, Heckman, et al., 2020; Halliday et al., 2021). These interaction
effects may help explain the variation among different studies, highlighting that only looking at environmental
factors or community structure would miss key information relevant to diseases. Nevertheless, for the first
time, to the best of our knowledge, we distinguish the different mechanisms driving different groups of plant
pathogens in an alpine meadow. Because of rapid changes in both plant communities and climate change
in the Anthropocene, our study implies that incorporating different information to build models predicting
above- and belowground plant pathogens is of great importance for understanding ecosystem health.
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Table 1. All abbreviations and their corresponding annotations in the main text.

Category Abbreviation Annotation

Soil properties Soil PCA1 The first principal component of soil properties PCA
Plant community characters AGB Plant aboveground biomass

BGB Plant belowground biomass
SR Plant community species richness
Evenness Plant community Pielou’s evenness index
Proneness Plant community proneness index

Environmental conditions MDT Mean daily temperature
MDH Mean daily humidity

Plant pathogen indices PL Plant community pathogen load
sfpOTUs Soil fungal pathogen OTU richness
sfpRA Soil fungal pathogen relative abundance

Figure legends
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Figure 1. Effects of Elevation , soil properties (Soil PCA1 ), aboveground biomass (AGB ), Belowground
biomass (BGB ), Pielou’s evenness index (Evenness ), community proneness index (Proneness ) and species
richness (SR ) on (a) community pathogen load (PL ), (b) soil fungal pathogen OTU richness (sfpOTUs
) and (c) soil fungal pathogen relative abundance (sfpRA ). Effect sizes with 95% confidence intervals are
weighted average standardized coefficients from models with ΔAICc < 4 based on model selections (Table
S4, S5, S6). Blue lines indicate significant negative effects, grey lines indicate non-significant effects, and red
lines indicate significant positive effects.

Figure 2. The piecewise structural equation model. (a) The hypothesized piecewise structural equation
model. Hypothesized plant community-mediated and soil-mediated association between elevation and com-
munity pathogen load and soil fungal pathogen OTU richness. Specifically, paths a-c represent the association
between elevation and host plant community and soil properties, paths d, e represent the direct association
between elevation and community pathogen load and soil fungal pathogen OTU richness, while paths f-h and
paths i-k represent the community-mediated and soil-mediated effects on community pathogen load and soil
fungal pathogen OTU richness, respectively. (b) The final piecewise structural equation model. Numbers
on arrows are standardized path coefficients (scaled by their mean and standard deviation), and asterisks
indicate statistical significance (***P < 0.001; * 0.01 < P < 0.05; + 0.05 < P < 0.1). Red arrows represent
significant positive relationships while blue arrows represent significant negative relationships at the P <
0.1 level; gray arrows with dashed lines represent insufficient statistical evidence for path coefficients (P >
0.1). Arrow thickness is proportional to the strength of the path. Deindicates the deviance explained by
predictive variables.

Figure 3. Overall result of the meta-analysis testing the associations between elevation and foliar fungal
pathogen OTU richness, foliar fungal diseases, soil fungal pathogen OTU richness and soil fungal pathogen
relative abundance. Shown are the mean values of the effect sizes (Z ) and the corresponding 95% confidence
intervals (95% CI).

Figure 1.

Figure 2.
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Figure 3.
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