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Abstract

This study presents a framework for detecting and mitigating fake and potentially attacking user communities within 5G social

networks. This framework utilizes geo-location information, community trust within the network, and AI community detection

algorithms to identify users that can cause harm. The framework incorporates an artificial control model to select appropriate

community detection algorithms and employs a trust-based strategy to identify and filter out potential attackers. It adapts its

approach by utilizing user and attack requirement data through the artificial conscience control model while considering the

dynamics of community trust within the network. What sets this framework apart from other fake user detection mechanisms

is its capacity to consider attributes challenging for malicious users to mimic. These attributes include the trust established

within the community over time, the geographical location, and the framework’s adaptability to different attack scenarios. To

validate its efficacy, we apply the framework to synthetic social network data, demonstrating its ability to distinguish potential

malicious users from trustworthy ones.
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Abstract

This study presents a framework for detecting and mitigating fake and potentially
attacking user communities within 5G social networks. This framework utilizes
geo-location information, community trust within the network, and AI community
detection algorithms to identify users that can cause harm. The framework incorpo-
rates an artificial control model to select appropriate community detection algorithms
and employs a trust-based strategy to identify and filter out potential attackers. It
adapts its approach by utilizing user and attack requirement data through the artifi-
cial conscience control model while considering the dynamics of community trust
within the network.
What sets this framework apart from other fake user detection mechanisms is its
capacity to consider attributes challenging for malicious users to mimic. These
attributes include the trust established within the community over time, the geo-
graphical location, and the framework’s adaptability to different attack scenarios.
To validate its efficacy, we apply the framework to synthetic social network data,
demonstrating its ability to distinguish potential malicious users from trustworthy
ones.

1 INTRODUCTION

In an era marked by the convergence of two significant technological domains, 5G networks and Artificial Intelligence (AI) sys-
tems, our research explores security issues and the innovative methods AI can apply to detect and mitigate attacks within the 5G
landscape. The imminent deployment of 5G networks holds the potential to connect countless Internet of Things (IoT) devices,
ranging from robots to autonomous vehicles. However, as this intricate ecosystem takes form, it enhances the vulnerability
landscape, making it imperative to establish robust security measures.
At the forefront of wireless communication, 5G networks introduce complexities arising from various applications and intri-

cate infrastructure components. While they offer enhancements in speed, connectivity, and reduced latency, their value lies in
their capacity to provide security and resilience1. The threat exposure landscape for 5G is expected to be much larger than 4G
due to more 5G devices and more types of devices that rely on 5G connectivity. Local attacks targeting real-time applications
such as self-driving cars, robots, and similar ones are expected to rise. The critical component of 5G infrastructure/technologies
is Multi-access Edge Computing (MEC), which will allow the implementation of complex algorithms, including AI, to increase
security.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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Concurrently, AI systems have become essential to contemporary life and are extensively employed to identify attackers in 5G
social networks. Nonetheless, concerns persist about the safety and dependability of AI systems. This is where the necessity for
effective control mechanisms becomes evident, and ethical guidelines increasingly emphasize the significance of human agency
in governing AI to enhance its adaptability, safety, and reliability.
Our research embarks on a journey to explore how AI can be harnessed to detect and respond to attacks within the 5G

environment. We introduce a novel framework, the "Artificial Conscience and Trust-Based Framework for Fake User Detection
in 5G Networks," which leverages AI’s artificial conscience model capabilities to adapt dynamically to threats within the 5G
network. By integrating AI-driven methods with trust-based techniques and graphical properties, our framework addresses fake
user attacks, fortifying security within 5G networks and applications.
Our research navigates through this pioneering framework’s theoretical underpinnings, methodological intricacies, and prac-

tical applications. By infusing AI control into 5G security, we aim to underscore the significance of controlling AI in this
context. By mitigating risks posed by potential attackers, our research seeks to foster heightened security and trust within this
rapidly evolving technological landscape. This interdisciplinary approach addresses howAI can be used for fake users and attack
detection in 5G. It underscores why control mechanisms are indispensable in safeguarding this critical intersection of technology.
The structure of this paper is as follows: In Section 2, we provide background information and review prior work in the realms

of artificial conscience, trust, and fake user detection. Section 3 outlines our novel framework, the "Artificial conscience and
trust-based framework to detect fake users." Section 4 offers a practical demonstration of our framework using a synthetic social
network dataset. Finally, in Section 5, we present our concluding remarks.

2 BACKGROUND AND RELATEDWORK

This section provides an overview of the historical context and prior research on fake user detection, trust mechanisms, and
artificial conscience.

2.1 AI Control and Artificial Conscience
In the age of pervasive AI integration, the necessity for artificial conscience, or machine conscience, becomes increasingly
apparent. This control mechanism plays an essential role in guiding AI behavior ethically, ensuring the reliability and safety
of critical decision-making processes, fostering trust and acceptance among users, adapting to dynamic and intricate environ-
ments, adhering to evolving regulations, promoting harmonious collaboration between humans and AI, and mitigating biases
and discrimination2. Artificial conscience is a vital safeguard, aligning AI systems with societal values and ethical norms while
enhancing their effectiveness and acceptance in an ever-evolving technological landscape.
Researchers have proposed diverse objectives achievable through artificial conscience, including autonomy, resilience, self-

motivation, and information integration3. Realizing these objectives necessitates the development of consciousmachines capable
of emulating specific facets of the human conscious experience. A comprehensive comprehension of consciousness is pivotal
in this pursuit. Cognitive neuroscientists like Baars introduced the Global Workspace Theory (GWT) as an analogy to explain
consciousness4, and the concept of the Conscious Turing Machine (CTM) or Conscious AI rooted in theoretical computer
science5. These theories explore various aspects of consciousness, such as competition among processors and its relation to
emotions, contributing to ongoing efforts to integrate elements of human conscience into AI systems6,7. All this work collectively
on comprehending the human conscience and exploring the potential incorporation of certain facets into artificial intelligence.
The artificial conscience can be a vigilant guardian against deceptive and malicious activities. This heightened ethical sen-

sitivity enables AI algorithms to discern subtle patterns and behaviors indicative of fake user profiles or fraudulent activities.
Furthermore, artificial conscience can facilitate adaptive responses, allowing AI to dynamically adjust its detection strategies in
response to evolving tactics employed by malicious actors, thereby increasing the security and integrity of 5G networks against
the proliferation of fake users and associated threats.
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2.2 Role of Trust
Trust, a fundamental aspect of human relationships, is characterized by the confidence one entity has in the expected behavior of
another8. In our daily social interactions, trust evolves based on the history of interactions and feedback exchanged among indi-
viduals or entities9. Greater trust tends to develop between entities with a history of positive interactions, while those with fewer
positive and more negative interactions tend to have lower trust. Nonetheless, in the current data-abundant world, establishing
trust similar to real life becomes complex. Therefore, a trust framework is necessary to quantify cognitive trust, transforming it
into quantifiable metrics that facilitate informed decision-making for entities. Within the realm of fake user detection, this trust
framework plays a pivotal role in assessing the trustworthiness of social network users through their interactions with peers10.
This trust data supplements other characteristics in the identification of potential malicious users.
Numerous studies have explored trust modeling and its application in diverse scenarios. For instance, a trust framework

proposed by11, grounded in measurement theory, finds applicability across various domains, including crime detection12,
social networks13,14, the food-energy sector15,16,17,18,19,20, healthcare21,22, edge computing23, quantum computing24, and beyond.
Recent work21,25,26,27 has highlighted trust’s utility as an acceptance criterion for artificial intelligence algorithms. The
widespread use of trust in these applications underscores its potential to identify malicious users within the social network,
thereby incorporating community knowledge into the detection process.

2.3 Geo-Location and Trust-Based Fake User Detection
A significant challenge facing contemporary social networks revolves around identifying fraudulent users. These deceptive
individuals establish counterfeit profiles intending to disseminate false information and engage in nefarious activities28. Their
objective involves creating a genuine and inconspicuous online presence, allowing them to avoid suspicion and gain the trust
of fellow users. Detecting these deceptive individuals is crucial for safeguarding the integrity of social networks and preventing
potential harm. Themotivation driving these deceptive users is rooted in the significant incentives associated with their malicious
activities. They endeavor to mimic authentic users by concealing their true identities, expanding their social connections, and
engaging with other users. For example, they may utilize authentic user images and profile details to avoid detection29.
Extensive research has been conducted in fake user detection, with two prevalent approaches being analyzing graph properties

and utilizing machine learning algorithms. One graph-based approach involves examining various social graph characteris-
tics30. Some researchers have proposed machine learning techniques, such as classification and clustering, which rely on profile
attributes for fake user identification31. While these methods offer valuable insights for detection, they often overlook the adapt-
ability and determination of fraudulent account creators. Incorporating community trust information becomes invaluable to
capture the adaptive nature of fake users. This trust data can be computed using a trust framework, pivotal in summarizing
users’ relationships within social networks. There is a need for methods that consider community knowledge, geo-location of
the users, and graphical properties. Therefore, we have proposed a geo-location and trust-based mechanism to capture the geo-
graphical location and community knowledge to detect fake users. This framework considers the geographical location of users
and their trust values calculated using community knowledge for the detection. The geo-location information complements vari-
ous malicious user detection techniques. With the introduction of 5G networks, which are widely being adapted, we have precise
geo-location information32 that can be used in fake user detection techniques. 5G networks include many advances in wireless
networking33,34,35,36,37,38. Furthermore, 5G systems provide ubiquitous geo-location information with 1-meter accuracy utiliz-
ing a multitude of satellite and ground support systems32. Because of this, today’s communication is moving more towards
location-aware communication, and this information can be utilized to improve fake user detection techniques.

3 ARTIFICIAL CONSCIENCE AND TRUST-BASED FRAMEWORK TO DETECT FAKE
USERS

This section introduces a security system founded on artificial conscience and trust principles to enhance the efficacy of fake user
detection. Within this framework, the artificial conscience control module and trustworthiness, computed through community-
based knowledge, are integral to the detection process. To facilitate evaluation, we introduce a metric for categorizing social
network user communities as fake or genuine. Section 3.1 outlines the trust framework, which computes user trust based on
interactions. Section 3.2 explores various community detection algorithms, while Section 3.3 delves into the artificial conscience
control module. Lastly, Section 3.4 explains the evaluation metrics employed for community classification.
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3.1 Trust Framework
Within social networks, the trust framework plays a pivotal role by providing a means to consolidate trust information gleaned
from users’ historical interactions. As an illustration, Twitter’s retweets, likes, and comments are used to gauge trustworthiness,
whereas Facebook indicators like likes, comments, and shares are used for trust assessment 39. The trust framework11 is used
to quantify user trust. The two-component approach is used to calculate trust, comprising Impression and Confidence.
Impression (m): Impression, also termed trustworthiness, represents the extent of trust that one entity places in another. It

comprehensively summarizes all direct and indirect interactions among entities within social networks. In this context, impres-
sion is computed as the mean of measurements obtained from interactions among entities, following the formula in Equation 1.

m =
∑i=N

i=1 mi

N
(1)

Confidence (c): Confidence quantifies an entity’s level of certainty concerning its perceptions of another entity’s trustwor-
thiness. It measures an entity’s confidence in its judgments of others’ trustworthiness. This component is instrumental in
accounting for errors during impression calculations and is closely linked to the variability of these measurements. In cases
where measurement variance is low, an entity exhibits high confidence in its impressions of others, as depicted in Equation 2.

c = 1 − 2 ∗ e where e =

√

∑i=N
i=1 (mi − m)2

N ∗ (N − 1)
(2)

Trust encompasses impression and confidence, serving as a metric to quantify user trust within social networks. When direct
connections between users are limited, trust inference is carried out using aggregation and transitivity operators11.
Trust Aggregation: When multiple pathways exist between two entities, trust aggregation efficiently consolidates trust. For

instance, if there are two paths (A-B-D and A-C-D) to reach entity D starting from A, the aggregated trust is calculated as a
weighted combination of trust measurements from both paths, as delineated in Equations 3 and 4.

mA∶B
D ⊕mA∶C

D =
A1 ∗ mA∶B

D + w2 ∗ mA∶C
D

∑

wi
(3)

eA∶BD ⊕ eA∶CD =
√

1
(
∑

wi)
2
(w2

1 ∗ (eA∶BD )2 +w2
2 ∗ (eA∶CD )2)) (4)

Trust Transitivity: Trust transitivity comes into play when direct connections between two entities are absent and is employed
to compute indirect trust. For instance, if there is no direct path from entity A to C but a path exists from A to B and another
from B to C, transitive trust utilizes the trust values between A-B and B-C to determine the trust from A to C, as outlined in
Equations 5 and 6.

mA
B ⊗mB

C = mmin = min(mA
B , m

B
C ) (5)

eAB ⊗ eBC = min(ei where mi = mmin) (6)
This unique trust framework serves as a valuable tool for assessing user trust within online social networks, aiding in decision-
making processes, and reinforcing the reliability and trustworthiness of interactions.

3.2 Community Detection in 5G social network
Real-world social networks inherently exhibit a graph-like structure, which can be formally represented as a graph G(V, E)
where nodes (V) correspond to entities or users within the social network, while edges (E) symbolize the relationships between
these entities. These social network graphs often encompass a multitude of nodes, necessitating the development of efficient
methods for information retrieval. An optimistic approach to analyzing these networks involves partitioning the network into
communities characterized by densely interconnected nodes within each community and sparser connections with nodes in
other communities. Much work has been done to detect such communities effectively and rapidly. These community detection
algorithms are broadly categorized into two types: Agglomerative methods, where edges are incrementally added to the graph
from strongest to weakest, and Divisive methods, where edges are removed one by one based on edge weights.
Agglomerative Community Detection Algorithms:
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Clauset-Newman-Moore Algorithm: This algorithm operates by incrementally merging nodes into communities to optimize
modularity, a measure of community quality40. It starts with each node as an individual community and iteratively combines
them to form larger communities, effectively building the hierarchy of communities within a network. Evaluating the modularity
score at each step identifies communities that contribute positively to modularity, resulting in meaningful network partitioning.
The algorithm exhibits a computational complexity of O(ldlogn), where l represents the number of edges, n denotes the number
of nodes, and d signifies the depth of the dendrogram.
Label Propagation Algorithm: The Label Propagation Algorithm begins with each node assigned a unique label41. In each

iteration, nodes update their labels based on the majority label among their neighboring nodes. This process continues until
stable labeling is achieved, with nodes predominantly sharing labels with their neighbors. The resulting labels correspond to
communities within the network. The computational complexity of this algorithm is O(ldlogn).
Community Detection Using Modularity Optimization (Louvain Algorithm): The Louvain Algorithm is an unsupervised

agglomerative approach that iteratively optimizes modularity42. It begins by assigning each node to its community and then
merges communities to maximize the modularity score. The modularity optimization and community aggregation phases work
in tandem to identify communities that contribute positively to modularity. It is well-suited for large networks due to its lower
computational complexity of O(nlogn).
Divisive Community Detection Algorithms:
Girvan-Newman Algorithm: The Girvan-Newman Algorithm is a divisive approach that starts with the entire network as a

single community43. It iteratively removes edges with the highest betweenness centrality, effectively breaking bridges between
communities. The process continues until the network is fragmented into distinct communities. It is particularly effective at
detecting communities that are well-connected internally but have limited connections with other communities. The computa-
tional complexity of this algorithm scales as O(l2n), rendering it impractical for large social networks. This algorithm becomes
ineffective when the number of nodes surpasses a few thousand.
Communities detected using the above algorithms are evaluated using modularity, coverage, and performance measures to

assess the quality of communities detected by various algorithms.

• Modularity: Modularity gauges the quality of partitioning nodes into communities within a network. It quantifies the
discrepancy between the count of edges within communities and the anticipated number of edges in a random network
possessing the same degree distribution. Higher modularity values indicate a more favorable community structure.

• Coverage: Coverage appraises the proportion of edges contained within communities relative to the total number of edges
in the network. A greater coverage implies a more successful assignment of edges to communities.

• Performance (P): Performance evaluates communities’ quality by considering intra-community edges and non-edges. It
measures the ratio of the sum of edges within communities and non-edges between communities to the total potential
edges. Elevated performance values signify a well-defined community structure.

3.3 Artificial Conscience Control Module
TheArtificial Conscience ControlModule is vital for controlling AI systems in alignment with user-defined requirements. Users’
distinct expectations and demands shape the operation of AI systems, injecting meaning into otherwise algorithmic processes44.
This framework assumes a decision-making task for the AI system, involving deploying multiple machine-learning algorithms
and a range of metrics to evaluate potential solutions. These metrics, referred to as "agents," negotiate with one another based on
user-assigned weights and trust derived from their peers to compute an "Artificial Feeling" (AF) as a weighted average among
agents. Figure 1 explains our artificial conscience control model.
The process unfolds through the following stages:

• User Specification: Users articulate their expectations and demands concerning AI system performance. They allocate
weights to evaluation metrics, imparting significance and context to the decision-making process.

• Agent Initialization: Each evaluation metric, acting as an "agent," is initialized to achieve the most suitable solution based
on its unique criteria. These criteria may relate to machine learning algorithms, metrics, or parameters.

• Algorithm Selection: Agents can have diverse priorities, including selecting machine learning algorithms that best suit
specific attack detection requirements. Different agents may emphasize the importance of distinct algorithms within the
overall solution.
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FIGURE 1 Artificial Conscience Control Module to Control AI.

• Negotiation Rounds: Agents engage in a series of negotiation rounds (typically n rounds), the exact number being
contingent on the application or user needs.

• Artificial Feeling (AF) Computation: The negotiation process culminates in the computation of an "Artificial Feeling"
(AF), which represents a consensus or amalgamation of solutions from all agents. This composite solution balances all
participating agents’ preferences, trust levels, and algorithm selection choices.

• Final Decision: The AI system embraces the AF as the ultimate decision or solution. This outcome reflects a collective
agreement accommodating diverse user requirements, including selecting machine learning algorithms tailored to specific
attack detection demands.

In summary, the Artificial Conscience Control Module facilitates the alignment of AI systems with user expectations, con-
sidering the choice of machine learning algorithms and other parameters crucial for effective attack detection. This process
ensures meaningful human involvement in AI-driven decision-making, promoting transparency and adaptability in complex
environments.

3.4 Community Evaluation Metrics
Various assessment criteria are available to detect fake communities within the social network. The analytical process is vital
in distinguishing legitimate user communities from counterfeit users. In devising these metrics, we operate under the premise
that counterfeit users are prone to having few or no connections with genuine users. It is improbable for a genuine user to
establish connections with unfamiliar individuals. Counterfeit users, however, endeavor to simulate authentic user behavior by
amassing connections, often with fellow counterfeit users. Building on these assumptions, we have formulated evaluationmetrics
characterized by three key attributes: Density, Time to Create Community, and Trust.

• Density: This attribute is pivotal in identifying communities or clusters of counterfeit users. Counterfeit user communities
tend to exhibit a higher concentration of connections than communities of genuine users, primarily because genuine users
are less likely to connect with counterfeit profiles. Counterfeit users often foster numerous connections among themselves.
The density of a community is represented as a ratio, quantifying the number of edges within the community relative
to the maximum possible edges it could contain, as defined by Eq. 7. Here, ’E’ signifies the number of edges, and ’V’
represents the number of nodes or users within the community.

d =
2 ∗ |E|

|V |(|V | − 1)
(7)

Notably, counterfeit user communities tend to exhibit markedly higher density values than those comprising genuine
users, reflecting their inherent interconnectedness, whereas genuine user communities are typically more dispersed. The



AUTHOR ONE ET AL 7

density attribute is leveraged with other attributes, such as trust and time, to create communities to detect counterfeit user
communities.

• Time to Create Community: Counterfeit users establish connections more rapidly than their genuine counterparts. Their
motivation to rapidly amass connections leads to the formation of high-density communities in a relatively short time
frame. Both density and the time taken to create a community are pivotal factors in distinguishing communities of genuine
users from those of counterfeit users.

• Trust: Trust is crucial in identifying counterfeit user communities, enabling informed decision-making grounded in com-
munity insights. Trust serves as a summary of user relationships, encompassing both intra-community and external
connections.

It can be applied to counterfeit user detection in two ways: Average Trust and Trust Over Time. Average Trust consolidates
trust values from all users within the community. This is particularly pertinent because counterfeit user communities
endeavor to maintain elevated trust values to evade detection when disseminating malicious content. They achieve this by
engaging in more positive interactions among themselves. Trust Over Time, however, captures the temporal fluctuation
of trust. Genuine users tend to experience more pronounced trust fluctuations due to their many positive and negative
interactions. Conversely, counterfeit users tend to exhibit a consistent increase in trust over time.

These attributes, collectively incorporated within the framework of evaluation metrics, equip us with a comprehensive
approach to detecting counterfeit user communities.

4 IMPLEMENTATION

In this section, we provide an overview of the dataset utilized in our experiment, the implementation process, and the outcomes
obtained by applying our framework.

4.1 Dataset description
In our study, we employed a diverse dataset that is the foundation for evaluating our framework’s effectiveness in detecting fake
users within social networks. This dataset comprises real and fake user networks that mimic specific real-world characteristics.
For the real user network, we utilized the Karate club friends network dataset and the Facebook ego network dataset, integrat-
ing genuine friendship relationships and Facebook social network attributes. Trust indicators represented by impression and
confidence values and edge creation timestamps were randomly assigned to mirror authentic user behavior. In contrast, to sim-
ulate the deceptive behavior of fake users, we employed the Erdos-Renyi model to generate social network graphs, emphasizing
a higher probability of edge creation to capture the densely interconnected nature of fake user communities. Like real users,
fake user nodes were endowed with impression and confidence values, with edge creation timestamps randomly assigned. This
comprehensive dataset allows us to rigorously assess our approach to detecting fake users in a realistic social network context.
For our experiment, we have considered only the users within a 100-mile radius. This is done by calculating the distance using
latitude and longitude coordinates.

4.2 Experimentation and Results
We have employed four distinct community detection algorithms, Clauset-Newman-Moore, Label Propagation, Girvan-
Newman, and Louvain, to identify communities within social networks. Specifically, we restricted our analysis to real social
network graph data, including the karate networks and Facebook ego networks. The objective was to conduct a comparative
assessment of these diverse community detection algorithms.
To evaluate the quality of the communities identified by these algorithms, we utilized three key quality metrics: Modular-

ity, coverage, and performance. Figures 2 and 3 concisely summarize the metric values obtained for each community detection
algorithm applied to both datasets. It is important to note that different algorithms may exhibit varying degrees of perfor-
mance across these metrics, and we leveraged an artificial conscience model to make informed selections based on the specific
characteristics of each network and attack scenario.
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FIGURE 2 Modularity, Coverage, and Performance value for all the community detec-
tion algorithms on the Facebook Dataset.

FIGURE 3 Modularity, Coverage, and Performance value for all the community detec-
tion algorithms on the Friend Dataset.

As evident from the visual representations, the label propagation algorithm achieves the highest coverage in the Face-
book dataset, whereas the Girvan-Newman algorithm demonstrates superior coverage in the Friends dataset. This observation
underscores the importance of context and specific requirements in algorithm selection.
The artificial conscience model is crucial in tailoring the algorithm selection process to meet specific requirements. When a

user emphasizes a single metric, we opt for the algorithm that performs best in that regard. However, in cases where the user
assigns greater importance to more than one metric, the algorithm selection is adapted accordingly to align with those priorities.
This highlights why the artificial conscience model must tailor the algorithm selection based on the network properties and
user requirements. For our experimentation, we utilized the Louvain algorithm, as it outperformed other algorithms across all
metrics and for both datasets. Following identifying communities within the dataset, these communities are assessed using the
evaluation metrics described in section 3.4.
Once communities have been identified, they are categorized as either genuine or fraudulent user communities, depending on

criteria such as community density, community trust value, and the time taken for their formation. Within our dataset, we have
identified 11 communities, and Figure 3 illustrates the trust and density values associated with these communities.
Based on the trust and density value, we have observed the following patterns across the communities:
In Figure 4, we can observe the following patterns:

• Communities with low trust and low-density values (Community 4 and 5) indicate users who primarily observe others’
interactions, engaging minimally with others. They exert little to no influence on other users.
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FIGURE 4 Trust and Density values for all the communities detected.

• Communities displaying low trust and high density (Communities 7, 8, and 9) suggest that users within them have received
fewer positive interactions from other tightly connected users, making them less trustworthy and easily detectable.

• Communities characterized by high trust, low density, and a high number of interactions (Communities 1, 2, 3, and 6)
consist of well-trusted users who engage in numerous positive interactions within the community.

• Communities exhibiting high trust and high-density values (Community 10 and 11) are potentially the communities of
fake users seeking to boost their trust levels to intentionally spread malicious information artificially. Users in these
communities tend to have exceptionally high trust connections within a small, dense community while having significantly
fewer connections with the outside world, raising concerns about their potential for causing harm.

To conduct a more detailed examination of these communities, we have chosen four communities, each representing one of the
social networks (Community 11, 9, 8, and 4). For each of these selected communities, we’ve undertaken two key analyses: We
first determine the time it takes for each community to form based on the timestamp of edge creation. Second, we analyze the
trust dynamics over time. In Figure 5, we present a six-month trust variation graph for these communities, offering valuable
insights:

• Communities with potential fake users inclined to cause harm tend to maintain consistently high trust values with minimal
fluctuations over time.

• Genuine user communities, whether established over a year ago or formed within six months, generally exhibit an average
trust value with significant variations over time. This variation results from their diverse interactions with various users
within the network.

• Communities characterized by low trust values andminimal variations typically consist of less trustworthy users or passive
observers who exert minimal influence on the overall network dynamics.

5 CONCLUSION

This paper introduces a trust-based framework empowered by an artificial conscience control model for identifying fraudulent
users within social networks. This innovative framework combines elements such as graphical network attributes, community
detection algorithms, geo-location information, and community trust knowledge to categorize social network users effec-
tively. It distinguishes itself from other detection techniques by its capacity to dynamically adjust according to user and attack
requirements while leveraging users’ inherent trustworthiness. This quality is challenging to counterfeit.
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FIGURE 5 Trust variation across communities over time.
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