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Abstract

This paper is concerned with parameter estimate and adaptive control problems of deterministic autoregressive moving average

(DARMA) systems on the basis of quantized data of system output signals which are generated by a kind of uniform quantizer.

By designing system input signals, the extended least-squares (ELS) algorithm with uniform output observations is proved to

yield bounded estimation errors under some mild assumptions. Moreover, the adaptive tracking controller under inaccuracy

observations are also designed. To analyse the properties of tracking error, I use the expanded form of ELS and research the

properties of quantization noise. In addition, I give the expression of tracking error and show how it depends on the size of

quantization step when the quantization step satisfies some conditions. A numerical example is supplied to demonstrate the

theoretical results.
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Abstract
This paper is concerned with parameter estimate and adaptive control problems of deterministic autoregres-
sive moving average (DARMA) systems on the basis of quantized data of system output signals which are
generated by a kind of uniform quantizer. By designing system input signals, the extended least-squares
(ELS) algorithm with uniform output observations is proved to yield bounded estimation errors under some
mild assumptions. Moreover, the adaptive tracking controller under inaccuracy observations are also designed.
To analyse the properties of tracking error, I use the expanded form of ELS and research the properties of
quantization noise. In addition, I give the expression of tracking error and show how it depends on the size
of quantization step when the quantization step satisfies some conditions. A numerical example is supplied
to demonstrate the theoretical results.
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1 INTRODUCTION

It is of importance to study parameter estimation algorithm and design adaptive controller with quantized data in the fields of
adaptive control systems and signal processing. These issues have been extensively researched over the past two decades due to
the wide use in practice. For example,1 proposed a quantized method and studied the parameter estimate problem in genetic
associate model.2 used a quantized model to represent the relation between the feature vector and the authenticity of the radar
target and gave the recognition criteria based on quantized parameter estimation.3 did some research on credit scoring with the
help of quantized identification method. The appearance of applications brings new requirements for parameter estimate and
adaptive controller design in theory, which are the focus this paper.

Generally speaking, set-valued data, especially binary data, and uniform data are two hotspots in this research field. And
numerous papers (see e.g.4-29) on parameter estimate and system control based on these two kinds of quantized data have been
made. Specifically,4 used Bayesian framework and Markov Chain Monte Carlo methods to estimate the parameters of linear
systems with set-valued output data. And the parameters were be estimated by the proposed sampling techniques.7 proposed a
variational approximation of the likelihood function and got the consistent estimates when the output data are integers (a special
type of set-valued data).8 gave two recursive algorithms and got strongly consistent estimator via a binary sensor.13 presented a
new algorithm for multi-input and multi-output (MIMO) finite impulse response (FIR) systems with set-valued output data and
showed the comparisons with other estimation algorithms. What’s more, a new approach to parameter estimate based on binary
output data by using original weighted least-squares criteria was proposed in14. The authors also illustrated a simple choice for
the weights and the asymptotical properties of the criterion.15 considered the identification problem of autoregressive moving
average (ARMA) systems with binary output data, and the estimates were proved to be convergent to the true values. Based on
set-valued output data,19 proposed a recursive estimator of stochastic approximation type and obtained two accelerated recursive
estimators using the Newton-based and averaging techniques.24,25 studied the adaptive control problem for linear systems with
set-valued output data and showed the adaptive tracking control algorithm is asymptotically optimal. As for parameter estimate
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2 JING

with uniform output data,22,23,28 considered deterministic autoregressive moving average (DARMA) systems and27 focused on
stochastic autoregressive exogenous input (ARX) systems.

More often than not, the parameter estimate methods with set-valued output data and uniform quantized output data are pretty
different. This is mainly reflected in the need to analyse quantization noise. In the case of using set-valued data, due to the
number of quantized output data is limited, the difference between the real value of system output signal and its observation
(set-valued data) may be unbounded, especially the discrete-time unstable linear systems. And this makes it meaningless to
study the specific form of quantization noise. Furthermore, using the distribution function of stochastic system noise to design
parameter estimate algorithm is one common method under this situation. In the case of using uniform data, because of the
difference in quantization approach between set-valued data and uniform data, the quantization noise can be bounded when
using uniform quantized output data in discrete-time linear systems. It always appears in the proceeding of expanding estimation
algorithm and will affect the accuracy of parameter estimate. So, the properties of quantization noise are always considered
in this case. It has been shown in22,23,28 that the main difficulty in parameter estimate using uniform quantized output data of
DARMA systems is analysing the effect of quantization noise. Different from frequently-used assumptions on stochastic system
noises, the quantization noise can not be assumed to ba a martingale difference sequence with respect to a nondecreasing family
of σ-algebras. Consequently, some useful statistical properties are not applicable.

The purpose of this note is to research parameter estimate problem with uniform output quantized data by using ELS algorithm
and to design the adaptive controller based on the estimation algorithm. As mentioned earlier, the introduce of quantization
noise brings difficulties to parameter estimation. And it is mainly reflected in two aspects. First, the form of matrix composed by
regressor vectors becomes more complex which makes the establishment of excitation condition even more difficult. Second, the
recursion of estimate algorithm becomes more complicated and the sound structure of ELS was affected. Actually, I design input
signals and explore the properties of quantization step so as to deal with these two issues.

The rest of this paper is organized as follows. Section 2 describes the system model and the form of uniform quantizer. Section
3 shows the estimate algorithm of quantized DARMA systems and the properties of parameter estimation error. Section 4 gives
the adaptive controller and analyzes the properties of tracking error. Section 5 uses a numerical example to demonstrate the main
theoretical results. Section 6 presents concluding remarks.

Notation: In this paper, R denotes real number field. For a given vector or matrix x, x> denotes the transpose of x; ||x||
denotes the Euclidean norm for vector case and the corresponding induced norm for matrix case. λmin (C) denotes the minimum
eigenvalue of matrix C.

2 MODEL AND QUANTIZER

Consider the DARMA system, described by

A(z)yn+1 = B(z)un, n ≥ 0, (1)

where yn and un are the output signal and input signal. For simplicity, we suppose yn = un = 0, ∀n < 0.

A(z) = 1 + a1z + a2z2 + · · · + apzp,

B(z) = b1 + b2z + · · · + bqzq–1,

where ai and bj are unknown parameters to be estimated, z is the shift-back operator and the orders p, q are assumed known.
One of the aim of this paper is to estimate the following parameter vector by using system inputs and quantized outputs.

θ =
[
–a1, · · · , –ap, b1, · · · , bq

]>
.

For the convenience of proof, the model (1) can be rewritten as follows:

yn+1 = θ>ϕn, (2)

where

ϕn =
[
yn, · · · , yn–p+1, un, · · · , un–q+1

]>
.
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For a constant ε > 0, the quantizer used here is of the following uniform form:

sn = ε
⌊

yn

ε
+

1
2

⌋
. (3)

We can call ε the quantization step and sn is the quantized output.
From (3) we know that

sn+1 = θ>ψn + εn+1, (4)

where

ψn =
[
sn, · · · , sn–p+1, un, · · · , un–q+1

]>
.

From (2), (4) we know that ∣∣εn+1
∣∣ =
∣∣sn+1 – θ>ψn

∣∣
=
∣∣sn+1 – yn+1 + θ> (ϕn – ψn)

∣∣
≤
∣∣sn+1 – yn+1

∣∣ +
∣∣θ> (ϕn – ψn)

∣∣
≤ε

2
+
ε

2
(∣∣a1

∣∣ +
∣∣a2
∣∣ + · · · +

∣∣ap0

∣∣)
=
ε

2
(∣∣a1

∣∣ +
∣∣a2
∣∣ + · · · +

∣∣ap0

∣∣ + 1
)

. (5)

We call εn the quantization noise.

3 PARAMETER ESTIMATE

3.1 Assumptions

We begin the discussion with assumptions about model (1).

Assumption 1. A(z) and B(z) are coprime, ap 6= 0.

Assumption 2. un = vn, {vn} is a sequence of independent and identically distributed (i.i.d.) variables and vn satisfies uniform
distribution in [–δ, δ], δ > 0.

Then, we need some definitions used in the lemmas. For any x ∈ Rp+q, ||x|| = 1, define

x :=
[
x1, x2, · · · , xp+q

]>
,

Hx(z) := x1B(z)z + · · · + xpB(z)zp + xp+1A(z) + · · · + xp+qzq–1A(z) =
p+q–1∑

i=0

gi(x)zi,

Lx(z) :=
p∑

i=1

xizi–1

and

g(x) :=
[
g0(x), g1(x), · · · , gp+q–1(x)

]>
.
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Then, by Assumption 1 and Lemma 1 of30 we know that

min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 > 0.

Next, we can get the theoretical results of parameter estimate section.

Lemma 1. Suppose Assumption 2 is satisfied. Then, as n→∞, there is a constant c > 0 such that

λmin

(
n∑

i=0

UiU>i

)
≥ c (n + 1) , a.s., (6)

where Ui =
[
ui, ui–1, · · · , ui–p–q+1

]>
.

Proof. For a sufficient large positive integer N and n > N, from Assumption 2, we know there is a positive constant c such that

λmin

(
n∑

i=0

UiU>i

)
=inf||x||=1x>

(
n∑

i=0

UiU>i

)
x

=
n∑

i=0

(
x1vi + x2vi–1 · · · + xp+qvi–p–q+1

)2

=
n∑

i=0

(
x2

1v2
i + x2

2v2
i–1 · · · + x2

p+qv2
i–p–q+1

)
+ o (n + 1)

≥c (n + 1) , a.s.

This completes the proof.

Remark 1. Lemma 1 means that system input signals {un} satisfies the persistent excitation condition in the form of matrix. And
this is a common condition of parameter estimate problem in many researches and papers.

Lemma 2. Suppose Assumptions 1 and 2 are satisfied, then there is a suitable ε such that
∣∣(Hx(z)ui) (Lx(z)εi)

∣∣ ≤
1
3 min||x||=1

∣∣∣∣g(x)
∣∣∣∣2 c, for any x ∈ Rp+q, ||x|| = 1.

Proof. From Assumption 1, we know that min||x||=1
∣∣∣∣g(x)

∣∣∣∣2 > 0. Since ||x|| = 1, the coefficients of Hx(z) and Lx(z) are bounded.
From (5) and Assumption 2 we know that

∣∣εi
∣∣ and |ui| are bounded. So, there exists a ε such that∣∣(Hx(z)ui) (Lx(z)εi)

∣∣ ≤ 1
3
min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 c.

And this completes the proof.

Lemma 3. Suppose Assumptions 1 and 2 are satisfied for a suitable ε, then

λmin

(
n∑

i=0

ψiψ
>
i

)
≥ c1 (n + 1) , a.s., n→∞, (7)

where c1 > 0 is a constant.

Proof. Let

φn = A(z)ψn. (8)

Then we have

φn =
[
(zB(z)un + εn) , · · · ,

(
zpB(z)un + εn–p+1

)
, A(z)un, · · · , zq–1A(z)un

]>
. (9)
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From (8), for any x ∈ Rp+q, ||x|| = 1, we get

x>
(

n∑
i=0

φiφ
>
i

)
x =

n∑
i=0

(
x>φi

)2

=
n∑

i=0

 p∑
j=0

ajx>ψi–j

2

≤
p∑

j=0

a2
j

n∑
i=0

p∑
j=0

(
x>ψi–j

)2

≤(p + 1)
p∑

j=0

a2
j

(
x>

n∑
i=0

ψiψ
>
i x

)
, (10)

where a0 = 1.
From (10), we have

λmin

(
n∑

i=0

ψiψ
>
i

)
≥ 1

(p + 1)
∑p

j=0 a2
j
λmin

(
n∑

i=0

φiφ
>
i

)
. (11)

Therefore, from (6), (9) and Lemma 2 it follows that

x>
n∑

i=0

φiφ
>
i x =

n∑
i=0

(Hx(z)ui + Lx(z)εi)2

=g>(x)
n∑

i=0

UiU>i g(x) + 2
n∑

i=0

(Hx(z)ui) (Lx(z)εi) +
n∑

i=0

(Lx(z)εi)2

≥min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 λmin

(
n∑

i=0

UiU>i

)
+ 2

n∑
i=0

(Hx(z)ui) (Lx(z)εi)

≥min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 λmin

(
n∑

i=0

UiU>i

)
–

2
3
min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 c (n + 1)

=
1
3
min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 c (n + 1) ,

which implies

λmin

(
n∑

i=0

φiφ
>
i

)
≥1

3
min
||x||=1

∣∣∣∣g(x)
∣∣∣∣2 c (n + 1) . (12)

From (11) and (12), let c1 = min||x||=1||g(x)||2c
3(p+1)

∑p
j=0 a2

j
. This completes the proof.

3.2 Parameter estimate algorithm

For θ, we use the following estimation algorithm:

θn+1 =

(
n∑

i=0

ψiψ
>
i

)–1 n∑
i=0

ψisi+1 = Pn+1

n∑
i=0

ψisi+1, (13)

where

Pn+1 =

(
P–1

0 +
n∑

i=0

ψiψ
>
i

)–1

=
(
P–1

n + ψnψ
>
n

)–1
= Pn – dnPnψnψ

>
n Pn, (14)
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dn =
(
1 + ψ>n Pnψn

)–1
. (15)

From (13)-(15) it follows that

θn+1 =
(
Pn – dnPnψnψ

>
n Pn

)( n–1∑
i=0

ψisi+1 + ψnsn+1

)
=θn – dnPnψnψ

>
n θn + Pnψnsn+1 – dnPnψnψ

>
n Pnψnsn+1

=θn – dnPnψnψ
>
n θn + Pnψn

(
1 – dnψ

>
n Pnψn

)
sn+1

=θn – dnPnψnψ
>
n θn + dnPnψnsn+1

=θn + dnPnψn
(
sn+1 – ψ>n θn

)
. (16)

So, we have obtained the recursive algorithm for the LS estimation.
We set P0 = I, and take θ0 arbitrarily. Denote by λmin(n) the smallest eigenvalue of P–1

n+1.
And the property of algorithm is researched in the following theorem.

Theorem 1. For (4), suppose Assumptions 1-2 hold for a suitable ε which satisfies 0 < ε < 1
2(1+

∑p
i=1|ai|) . Then, we have

∣∣∣∣∣∣θ̃n+1

∣∣∣∣∣∣ ≤c2

(√
1

n + 1
+ ε

)
, a.s., n→∞, (17)

where

θ̃n = θ – θn (18)

is the parameter estimation error, and c2 is a positive constant independent of n and ε.

Proof. Noticing P–1
n+1 ≥ λmin(n)I, we see that ∣∣∣∣∣∣θ̃n+1

∣∣∣∣∣∣2 ≤ 1
λmin(n)

θ̃>n+1P–1
n+1θ̃n+1. (19)

Firstly, we need to prove there exist constants c3, c4 independent of n and ε such that

θ̃>n+1P–1
n+1θ̃n+1 ≤ c3 + c4ε (n + 1) . (20)

From (15)-(16) it can be seen that

sn+1 – ψ>n θn+1 =sn+1 – ψ>n
(
θn + dnPnψn

(
sn+1 – ψ>n θn

))
=
(
1 – dnψ

>
n Pnψn

) (
sn+1 – ψ>n θn

)
=dn

(
sn+1 – ψ>n θn

)
. (21)

Hence, by (4), (18) and (21), we can rewrite (16) as

θ̃n+1 =θ̃n – Pnψn
(
sn+1 – ψ>n θn

)
=θ̃n – Pnψn

(
sn+1 – ψ>n θn+1

)
=θ̃n – Pnψn

(
θ̃>n+1ψn + εn+1

)
. (22)
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We expand θ̃>k+1P–1
k+1θ̃k+1 by using (14) and (22)

θ̃>k+1P–1
k+1θ̃k+1 =θ̃>k+1

(
P–1

k + ψkψ
>
k

)
θ̃k+1

=
[
θ̃k – Pkψk

(
θ̃>k+1ψk + εk+1

)]>
P–1

k

[
θ̃k – Pkψk

(
θ̃>k+1ψk + εk+1

)]
+
(
θ̃>k+1ψk

)2

=
(
θ̃>k+1ψk

)2
– 2
(
θ̃>k+1ψk + εk+1

)
θ̃>k ψk + ψ>k Pkψk

(
θ̃>k+1ψk + εk+1

)2
+ θ̃>k P–1

k θ̃k

=θ̃>k P–1
k θ̃k – 2

(
θ̃>k+1ψk + εk+1

) [
θ̃k+1 + Pkψk

(
θ̃>k+1ψk + εk+1

)]>
ψk

+ ψ>k Pkψk

(
θ̃>k+1ψk + εk+1

)2
+
(
θ̃>k+1ψk

)2

=θ̃>k P–1
k θ̃k +

(
θ̃>k+1ψk

)2
– ψ>k Pkψk

(
θ̃>k+1ψk + εk+1

)2
– 2
(
θ̃>k+1ψk + εk+1

)(
θ̃>k+1ψk

)
≤θ̃>k P–1

k θ̃k –
(
θ̃>k+1ψk

)2
– 2εk+1θ̃

>
k+1ψk. (23)

Summing up both sides of (23) from 0 to n and letting c3 = θ̃>0 P–1
0 θ̃0, we get

θ̃>n+1P–1
n+1θ̃n+1 ≤θ̃>0 P–1

0 θ̃0 –
n∑

i=0

(
θ̃>i+1ψi

)2
– 2

n∑
i=0

εi+1θ̃
>
i+1ψi

=c3 –
n∑

i=0

(
θ̃>i+1ψi

)2
– 2

n∑
i=0

εi+1θ̃
>
i+1ψi,

or equivalently,

θ̃>n+1P–1
n+1θ̃n+1 +

n∑
i=0

(
θ̃>i+1ψi

)2
≤ c3 +

∣∣∣∣∣2
n∑

i=0

εi+1θ̃
>
i+1ψi

∣∣∣∣∣ . (24)

From (5) and 0 < ε < 1
2(1+

∑p
i=1|ai|) , we have∣∣∣∣∣2

n∑
i=0

εi+1θ̃
>
i+1ψi

∣∣∣∣∣ ≤2
n∑

i=0

|εi+1|
∣∣∣θ̃>i+1ψi

∣∣∣
≤ε

(
1 +

p∑
i=1

|ai|

)
n∑

i=0

∣∣∣θ̃>i+1ψi

∣∣∣
≤ε

(
1 +

p∑
i=1

|ai|

)
n∑

i=0

(∣∣∣θ̃>i+1ψi

∣∣∣2 + 1
)

=ε

(
1 +

p∑
i=1

|ai|

)
n∑

i=0

∣∣∣θ̃>i+1ψi

∣∣∣2
+

(
1 +

p∑
i=1

|ai|

)
ε (n + 1)

<
1
2

n∑
i=0

∣∣∣θ̃>i+1ψi

∣∣∣2 +

(
1 +

p∑
i=1

|ai|

)
ε (n + 1) . (25)

From (24), (25) we know that there is a positive constant c4 independent of n and ε such that

θ̃>n+1P–1
n+1θ̃n+1 +

n∑
i=0

(
θ̃>i+1ψi

)2
≤c3 +

1
2

n∑
i=0

∣∣∣θ̃>i+1ψi

∣∣∣2 +

(
1 +

p∑
i=1

|ai|

)
ε (n + 1)

≤c3 +
1
2

n∑
i=0

∣∣∣θ̃>i+1ψi

∣∣∣2 + c4ε (n + 1) .
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Thus, we have

θ̃>n+1P–1
n+1θ̃n+1 ≤θ̃>n+1P–1

n+1θ̃n+1 +
1
2

n∑
i=0

(
θ̃>i+1ψi

)2

≤c3 + c4ε (n + 1) . (26)

So, (20) is proved.
Noticing λmin(n) ≥ λmin

(∑n
i=0 ψiψ

>
i

)
, from (7), (19) and (20), it can be seen that as n→∞,∣∣∣∣∣∣θ̃n+1

∣∣∣∣∣∣2 ≤ 1
λmin(n)

θ̃>n+1P–1
n+1θ̃n+1

≤c3 + c4ε (n + 1)
c1 (n + 1)

=c5
1

n + 1
+ c6ε

≤c7

(
1

n + 1
+ ε
)

, a.s.,

where c5 = c3
c1

, c6 = c4
c1

, c7 = max {c5, c6}. So,

∣∣∣∣∣∣θ̃n+1

∣∣∣∣∣∣ ≤√c7

(√
1

n + 1
+ ε

)
, a.s., n→∞.

And let c2 =
√

c7. So, (17) is proved. This completes the proof.

Remark 2. Theorem 1 indicates that the parameter estimation error depends on the quantization step. While 0 < ε < 1
2(1+

∑p
i=1|ai|) ,

the smaller the quantization step, the smaller the value of parameter estimation error.

4 ADAPTIVE CONTROL

Let {y∗n } be a sequence of bounded deterministic reference signal. The tracking error is of the form 1
n+1

∑n
i=0

(
si+1 – y∗i+1

)2
. Then

we have the following theorem.

Theorem 2. For (4), suppose un could be chosen to satisfy

θ>n ψn = y∗n+1. (27)

And suppose

sup
n
ψ>n Pnψn = c9 <∞. (28)

Then, for a suitable ε which satisfies 0 < ε < 1
2(1+

∑p
i=1|ai|) ,

lim sup
n→∞

1
n + 1

n∑
i=0

(
si+1 – y∗i+1

)2 ≤
(
8c4 + 16c4c2

9

)
ε +
(
2c8 + 8c8c2

9

)
ε2. (29)

Proof. From (26), we have

1
2

n∑
i=0

(
θ̃>i+1ψi

)2
≤ c3 + c4ε (n + 1) .
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So,

n∑
i=0

(
θ̃>i+1ψi

)2
≤ 2c3 + 2c4ε (n + 1) . (30)

Let c8 = (|a1|+|a2|+···+
∣∣ap0

∣∣+1)2

4 . Then, from (5), it can be seen that

ε2
n+1 ≤

ε2

4
(∣∣a1

∣∣ +
∣∣a2
∣∣ + · · · +

∣∣ap0

∣∣ + 1
)2

= c8ε
2. (31)

From (22), we know that

θ̃>i ψi = θ̃>i+1ψi + ψ>i Piψi

(
θ̃>i+1ψi + εi+1

)
. (32)

So, from (28), (30)-(32), we get

n∑
i=0

(
θ̃>i ψi

)2
≤2

n∑
i=0

(
θ̃>i+1ψi

)2
+ 2

n∑
i=0

(
ψ>i Piψi

)2
(
θ̃>i+1ψi + εi+1

)2

≤2
n∑

i=0

(
θ̃>i+1ψi

)2
+ 4

n∑
i=0

(
ψ>i Piψi

)2
((

θ̃>i+1ψi

)2
+ ε2

i+1

)
≤4c3 + 8c3c2

9 +
(
4c4 + 8c4c2

9

)
ε (n + 1) + 4c8c2

9ε
2 (n + 1) . (33)

So, from (4), (27), (31), (33), we have

n∑
i=0

(
si+1 – y∗i+1

)2
=

n∑
i=0

(
θ>ψi + εi+1 – θ>i ψi

)2

=
n∑

i=0

(
θ̃>i ψi + εi+1

)2

≤2
n∑

i=0

(
θ̃>i ψi

)2
+ 2

n∑
i=0

ε2
i+1

≤8c3 + 16c3c2
9 +
((

8c4 + 16c4c2
9

)
ε +
(
2c8 + 8c8c2

9

)
ε2) (n + 1) .

Then, we get

lim sup
n→∞

1
n + 1

n∑
i=0

(
si+1 – y∗i+1

)2

≤ lim sup
n→∞

8c3 + 16c3c2
9

n + 1
+
(
8c4 + 16c4c2

9

)
ε +
(
2c8 + 8c8c2

9

)
ε2

=
(
8c4 + 16c4c2

9

)
ε +
(
2c8 + 8c8c2

9

)
ε2.

So, (29) is proved. This completes the proof.

Remark 3. From Theorem 2 we know that the parameter estimation error depends on the quantization step. And the expended
structure of ELS is the key to design adaptive controller.

5 SIMULATION EXAMPLE

In this section, I illustrate the theoretical results with a simulation example.
Consider the following system: yn = ayn–1 + bun–1, where θ = [a, b]T = [0.5, 1]T is the parameter to be estimated, θ0 = [0, 0]T .

By conditions of Theorems 1 and 2, ε should satisfy 0 < ε < 1
2(1+

∑p
i=1|ai|) = 1

3 .



10 JING

0 100 200 300 400 500 600 700 800 900 1000

n

0

0.2

0.4

0.6

0.8

1

1.2

T
h
e
 e

s
ti
m

a
ti
o
n
 o

f 
a
 a

n
d
 b

a

b

the estimation of a

the estimation of b

F I G U R E 1 The trajectories of the estimation of a and b.

Parameter Estimate: Let yn be quantized by (3) under ε = 0.1. {ui} satisfies uniform distribution in [–3, 3] (δ = 3), which
satisfies Assumption 2. We estimate θ by (13). The simulation results are given in Figure 1 and Figure 2. From them, we can see
that the estimate converges to the true value.

Adaptive Control: Let yn be quantized by (3) under ε = 0.1 and ε = 0.3, respectively. {ui} is defined from (27) where y∗n = 10.
The simulation results are given in Figure 3 and Figure 4. From them, we can see that the smaller the quantization step, the
smaller the tracking error.

6 CONCLUSION

This paper researches the parameter estimate and adaptive control problem of DARMA systems by using uniform quantized data.
The ELS algorithm is introduced to estimate unknown system parameters. Under some conditions, I prove that the parameter
estimation error is tend to zero when the size of the quantization step satisfies some hypotheses. I also design the adaptive
controller to track the deterministic signal {y∗n }. Besides, I show that the tracking error is affected by quantization step. However,
in this paper, I only consider the cases without system noises. For the systems with stochastic noise case, the analysis may be
more complex.
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