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Abstract

We consider an alternative approach to investigate three-dimensional exterior mixed boundary value problems (BVP) for the

steady state oscillation equations of the elasticity theory for isotropic bodies. The unbounded domain occupied by an elastic

body, - [?] R 3 , has a compact boundary surface S = [?] - , which is divided into two disjoint parts, the Dirichlet part S D

and the Neumann part S N , where the displacement vector (the Dirichlet type condition) and the stress vector (the Neumann

type condition) are prescribed respectively. Our new approach is based on the classical potential method and has several

essential advantages compared with the existing approaches. We look for a solution to the mixed boundary value problem

in the form of a linear combination of the single layer and double layer potentials with densities supported on the Dirichlet

and Neumann parts of the boundary respectively. This approach reduces the mixed BVP under consideration to a system of

boundary integral equations, which contain neither extensions of the Dirichlet or Neumann data nor the Steklov-Poincaré type

operator involving the inverse of a special boundary integral operator, which is not available explicitly for arbitrary boundary

surface. Moreover, the right-hand sides of the resulting boundary integral equations system are vector-functions coinciding with

the given Dirichlet and Neumann data of the problem in question. We show that the corresponding matrix integral operator

is bounded and coercive in the appropriate L 2 -based Bessel potential spaces. Consequently, the operator is invertible, which

implies unconditional unique solvability of the mixed BVP in the class of vector-functions belonging to the Sobolev space [ W

2 , loc 1 ( - ) ] 3 and satisfying the Sommerfeld-Kupradze radiation conditions at infinity. We also show that the obtained

matrix boundary integral operator is invertible in the L p -based Besov spaces and prove that under appropriate boundary data

a solution to the mixed BVP possesses C α -Hölder continuity property in the closed domain - - with α = 1 2 - ε , where ε>0

is an arbitrarily small number.
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Abstract

We consider an alternative approach to investigate three-dimensional exterior mixed bound-

ary value problems (BVP) for the steady state oscillation equations of the elasticity theory for

isotropic bodies. The unbounded domain occupied by an elastic body, Ω− ⊂ R3, has a compact

boundary surface S = ∂Ω−, which is divided into two disjoint parts, the Dirichlet part SD and

the Neumann part SN , where the displacement vector (the Dirichlet type condition) and the

stress vector (the Neumann type condition) are prescribed respectively.

Our new approach is based on the classical potential method and has several essential ad-

vantages compared with the existing approaches. We look for a solution to the mixed boundary

value problem in the form of a linear combination of the single layer and double layer potentials

with densities supported on the Dirichlet and Neumann parts of the boundary respectively.

This approach reduces the mixed BVP under consideration to a system of boundary integral

equations, which contain neither extensions of the Dirichlet or Neumann data nor the Steklov-

Poincaré type operator involving the inverse of a special boundary integral operator, which is

not available explicitly for arbitrary boundary surface. Moreover, the right-hand sides of the

resulting boundary integral equations system are vector-functions coinciding with the given

Dirichlet and Neumann data of the problem in question. We show that the corresponding
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matrix integral operator is bounded and coercive in the appropriate L2-based Bessel potential

spaces. Consequently, the operator is invertible, which implies unconditional unique solvability

of the mixed BVP in the class of vector-functions belonging to the Sobolev space [W 1
2,loc(Ω

−)]3

and satisfying the Sommerfeld-Kupradze radiation conditions at infinity. We also show that

the obtained matrix boundary integral operator is invertible in the Lp-based Besov spaces and

prove that under appropriate boundary data a solution to the mixed BVP possesses Cα-Hölder

continuity property in the closed domain Ω− with α = 1
2 − ε, where ε > 0 is an arbitrarily

small number.

2010 Mathematics Subject Classification: 31B10, 35A20, 35B65, 35C15, 35J05, 35J25,

35J57, 45F15, 47G40, 74H45.

Key words and phrases: Steady state elastic oscillations, potential method, mixed boundary

value problem, integral equations, regularity of solutions.

1 Introduction

We present a new approach for studying a three-dimensional mixed boundary value problem

(BVP) for the steady state oscillation equations of the elasticity theory. The unbounded domain

occupied by an isotropic elastic body, Ω− ⊂ R3, has a compact connected boundary surface

S = ∂Ω−, which is divided into two disjoint parts, the Dirichlet part SD and the Neumann

part SN , where the displacement vector (the Dirichlet type condition) and the stress vector (the

Neumann type condition) are prescribed respectively.

Investigations related to the Dirichlet and Neumann BVPs for the Helmholtz equation and

for the system of steady state elastic oscillations have a long history and detailed bibliographical

information can be found in the monographs [9], [10], [20].

In the references [32]-[33], the direct boundary integral equations method is applied to analyse

mixed BVPs for the scalar and vector Helmholtz equations in the L2-based Sobolev and Bessel

potential spaces and with the help of the Wiener-Hopf method the asymptotic behaviour of so-

lutions is established at the collision curve, where the different boundary conditions collide. It

should be mentioned that in the case of the direct boundary integral equations method, which is

based on the use of the general integral representation formula of a solution vector-function via

its Cauchy data, the so-called third Green formula, the right-hand sides of the resulting system

2
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of integral equations contain potential type integrals with densities being extensions to the whole

boundary of the corresponding Dirichlet and Neumann data of the mixed problem that are orig-

inally given on disjoint adjacent proper parts of the boundary. Therefore, the solutions of the

system of integral equations essentially depend on the extension operator.

There is another approach for investigation of mixed BVPs, which is based on the standard

potential method and which requires extension of the Dirichlet or Neumann data to the whole

boundary. This approach uses a representation of solutions by either the single layer potential

or by a special combination of the single and double layer potentials with densities of complex

form containing the inverses of special boundary integral operators, which are not available ex-

plicitly for arbitrary surfaces, in general (see, e.g., [8], [26] and the references therein). In this

case, the resulting boundary integral equations contain the so-called Steklov-Poincaré type op-

erators, which in turn, involve the above mentioned inverses of the boundary integral operators.

The right-hand side vector-functions of the boundary integral equations again contain potential

type integral terms with the densities being extensions of the Dirichlet and Neumann data. Evi-

dently, when extensions of the Dirichlet or Neumann boundary data are used, then the resulting

pseudodifferential equations and the corresponding solutions essentially depend on the extension

operators. The similar approach is used in [4] for investigating of the mixed impedance problem

for the steady state elastic oscillation equations. In spite of the disadvantages described above,

this approach turned out to be very useful to derive theoretical qualitative properties related to

continuity and asymptotic behaviour of solutions to the mixed BVPs near the collision curve,

where the Dirichlet and Neumann boundary conditions collide.

In contrast to the above described direct and indirect boundary integral equations methods,

our alternative approach has several essential advantages from the practical point of view. We

prove that a solution to the mixed boundary value problem can be represented in the form of

a linear combination of the single layer and double layer potentials with sought for densities

supported on the Dirichlet and Neumann parts of the boundary respectively. Therefore, on the one

hand, our new approach does not require extension of the given Dirichlet or Neumann boundary

data to the whole boundary and, on the other hand, the representation of a solution and the

corresponding boundary integral equations contain neither the inverse of some boundary integral

operators nor the Steklov-Poincaré type operators. Moreover, the right-hand side vector-functions

of our boundary integral equations are vector-function coinciding with the original Dirichlet and

3
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Neumann boundary data of the mixed BVP under consideration. These facts will play an essential

role in creation of efficient and cheap algorithms for numerical solutions of the mixed BVPs.

It should be mentioned that similar approaches for interior and exterior mixed BVPs are used

in [28], [29] and [30] for the Laplace equation, the Helmholtz equation, and the Lamé system. In the

case of the steady state elastic oscillation equations, the arguments used in the above references are

not directly applicable and we need appropriate modifications to justify our alternative approach.

The paper is organized as follows. In Section 2, we introduce appropriate function spaces, for-

mulate the exterior mixed boundary value problem for the steady state elastic oscillation equations

and prove the corresponding uniqueness theorem. In Section 3, we describe mapping properties

of the layer potentials and the boundary integral operators generated by them in the Bessel po-

tential and Besov spaces. In Section 4, we show that the matrix integral operator obtained by

the alternative approach is bounded and coercive in the appropriate L2-based Bessel potential

spaces. Consequently, the operator is invertible, which implies unconditional unique solvability

of the mixed BVP in the class of vector-functions belonging to the Sobolev space [W 1
2,loc(Ω

−)]3

and satisfying the Sommerfeld-Kupradze radiation conditions at infinity. Section 5 is devoted

to the extension of the alternative potential method for the exterior mixed BVP to the space

of vector-functions belonging to the Lp-based Besov spaces
[
Bs

p,2,loc(Ω
−)

]3
with 1

2 ⩽ s < 1
2 + 1

p ,

p > 4, and satisfying the Sommerfeld-Kupradze radiation conditions at infinity. Here we derive

the almost best regularity results for solutions to the mixed BVPs. In particular, we prove that the

obtained matrix operator is invertible in the Lp-based Besov spaces and show that under appro-

priate boundary data a solution to the mixed BVP possesses Cα-Hölder continuity property in the

closed domain Ω− with α = 1
2 − ε, where ε > 0 is an arbitrarily small number. Finally, in Section

6, we justify our new approach for the mixed BVP in the space of vector-functions belonging to

the Bessel potential space
[
H1

p,loc(Ω
−)

]3
with 4

3 < p < 4, and satisfying the Sommerfeld-Kupradze

radiation conditions.

For the readers convenience, in Appendices 1, 2, and 3, we collect some auxiliary material

needed for our analysis in the main text.

2 Formulation of the mixed BVP and uniqueness theorem
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Let Ω+ ⊂ R3 be a three-dimensional bounded domain with smooth connected boundary ∂Ω+ =

S, and let Ω− = R3\Ω+ be a connected unbounded complement. Further, let the boundary ∂Ω+ =

∂Ω− = S be divided into two connected disjoint parts, SD and SN , SD ∪ SN = S, SD ∩ SN = ∅.

For simplicity, throughout the paper we assume that S ∈ C∞ and ℓ = ∂SD = ∂SN ∈ C∞ if not

otherwise stated. In particular, some of the results obtained in the article are valid when the S,

SD, and SN are Lipschitz surfaces, and these cases will always be singled out separately.

By Lp, Lp,loc, W
r
p , W

r
p,loc, H

s
p , H

s
p,loc, B

s
p,q, and Bs

p,q,loc (with r ≥ 0, s ∈ R, 1 < p < ∞,

1 ≤ q ≤ ∞) we denote the well-known Lebesgue, Sobolev-Slobodetskii, Bessel potential, and

Besov spaces of complex-valued functions of real variables, respectively (see, e.g., [5], [21], [34],

[35]). The following relations Hr
2 = W r

2 = Br
2,2 , H

s
2 = Bs

2,2 , W
t
p = Bt

p,p , and H
k
p = W k

p , hold for

any r ≥ 0, for any s ∈ R, for any positive and non-integer t, and for any non-negative integer k.

Further, let us introduce the spaces:

H̃s
p(S1) := {f : f ∈ Hs

p(S), supp f ⊂ S1},

B̃s
p,q(S1) := {f : f ∈ Bs

p,q(S), supp f ⊂ S1},

Hs
p(S1) := {rS1

f : f ∈ Hs
p(S)},

Bs
p,q(S1) := {rS1

f : f ∈ Bs
p,q(S) },

where S1 ∈ {SD, SN}, rS1
is the restriction operator onto S1. The norms in these spaces are

determined by the standard natural way:

∥u∥
H̃s

p(S1)
= ∥u∥Hs

p(S)
, ∥u∥

B̃s
p,q(S1)

= ∥u∥Bs
p,q(S)

,

∥u∥Hs
p(S1) = inf ∥v∥Hs

p(S)
, v ∈ Hs

p(S), rS1
v = u,

∥u∥Bs
p,q(S1) = inf ∥v∥Bs

p,q(S)
, v ∈ Bs

p,q(S), rS1
v = u.

Remark 2.1 Let a function f be defined on an open proper submanifold S1 of a closed manifold S

without boundary. Let f ∈ Bs
p,q(S1) and f̃ be the extension of f by zero to S \S1. If the extension

preserves the space, that is, if f̃ ∈ B̃s
p,q(S1), then we write f ∈ B̃s

p,q(S1) instead of f ∈ rS1
B̃s

p,q(S1),

when it does not lead to misunderstanding.

Note that B̃s
p,q(S1) and B−s

p′,q′(S1) with 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1 are dual spaces. Similarly,

H̃s
p(S1) and H

−s
p′ (S1) are dual spaces as well (for details see [23], [24], [34], [35]).

5
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Therefore, for functions f ∈ B−s
p′,q′(S1) and g ∈ B̃s

p,q(S1) (resp., f ∈ H−s
p′ (S1) and g ∈ H̃s

p(S1))

the duality relation
〈
f, g

〉
S1

is well defined and it generalizes the classical L2-inner product,〈
f, g

〉
S1

=
〈
g, f

〉
S1

=

∫
S1

f(x) g(x) dS1 for f, g ∈ L2(S1),

where the overbar denotes complex conjugation.

Now we formulate the exterior mixed boundary value problem for the steady state elastic

oscillation equation [20]: Find a vector-function u = (u1, u2, u3)
⊤ ∈

[
H1

2,loc(Ω
−)

]3
satisfying

(i) the partial differential equation of steady state elastic oscillations

A(∂, ω)u(x) := µ∆u(x) + (λ+ µ)graddivu(x) + ϱω2 u(x) = 0 in Ω−; (2.1)

(ii) the mixed boundary conditions

rSD
{u}− = f on SD, (2.2)

rSN
{T (∂, n)u}− = F on SN (2.3)

with

f = (f1, f2, f3)
⊤ ∈

[
H

1
2
2 (SD)

]3
, F = (F1, F2, F3)

⊤ ∈
[
H

− 1
2

2 (SN )
]3
; (2.4)

(iii) the Sommerfeld-Kupradze radiation conditions at infinity, that is, u is representable as a

sum of two metaharmonic vectors (see [20]), the so called longitudinal u(1) = u(p) and transverse

parts u(2) = u(s),

u = u(1) + u(2) with ∆u(1) + k21 u
(1) = 0, ∆u(2) + k22 u

(2) = 0 ,

k1 ≡ kp = ω

√
ϱ

λ+ 2µ
, k2 ≡ ks = ω

√
ϱ

µ
,

µ > 0, 3λ+ 2µ > 0,

and for sufficiently large r = |x|

∂u(1)(x)

∂r
− i k1 u

(1)(x) = o (r−1) ,
∂u(2)(x)

∂r
− i k2 u

(2)(x) = o (r−1) ; (2.5)

here u = (u1, u2, u3)
⊤ is a complex-valued displacement vector, λ and µ are the Lamé constants, ϱ

is the density of the elastic material, and ω ∈ R is the frequency parameter, A(∂, ω) is the matrix

differential operator

A(∂, ω) := A(∂) + ϱω2 I3, A(∂) := [µ δkj ∆+ (λ+ µ)∂k ∂j ]3×3 , I3 = [ δkj ]3×3 ,

6
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while T (∂, n) and T (∂, n)u denote the stress operator and the stress vector respectively,

T (∂, n) := [Tkj(∂, n)]3×3, Tkj(∂, n) = λnk ∂j + µnj ∂k + µ δkj ∂n,

[T (∂, n)u]k = σkj nj , σkj = [λ δkj divu+ 2µ ekj(u)]nj , ekj(u) = 2−1 (∂kuj + ∂juk),

where ∆ is the Laplace operator, I3 = [δkj ] is the unit matrix, δkj is the Kronecker delta, ∂k =

∂xk
= ∂/∂xk denotes partial differentiation with respect to the variable xk, n is the unit outward

normal vector to S and ∂n = ∂/∂n denotes the normal derivative, ekj = ekj(u) and σkj = σkj(u)

denote the strain and stress tensors, respectively.

Here and in what follows the summation over repeated indices is meant from 1 to 3, unless

stated otherwise, and the symbol U⊤ denotes the transpose of U . The symbols { · }+ and { · }−

denote the interior and exterior one-sided limits on S = ∂Ω± from Ω± respectively.

Note that the radiation conditions (2.5) automatically yield the following decay conditions at

infinity (for details see [20], [36])

u(l)(x) = O(r−1) , ∂ju
(l)(x)− i kl

xj
r
u(l)(x) = O(r−2) , l = 1, 2, j = 1, 2, 3.

Recall that for sufficiently regular vector-functions u, v ∈ [C2(Ω+)]3 and C1, α–smooth domains

we have the following Green formula [20]∫
S

{Tu}+ · {v}+ dS =

∫
Ω+

A(∂, ω)u · v dx+

∫
Ω+

[E(u, v)− ϱω2 u · v ]dx, (2.6)

where the central dot denotes the scalar product in C3 and

E(u, v) =
3λ+ 2µ

3
divu divv +

µ

2

∑
k ̸=j

(∂juk + ∂kuj) (∂jvk + ∂kvj) +

+
µ

3

∑
k,j

(∂kuk − ∂juj) (∂kvk − ∂jvj).

It is evident that E(u, u) ≥ 0, with the equality holding only for a rigid displacement vectors,

that is, for vectors of the form χ(x) = [a × x] + b, where a and b are constant three-dimensional

complex-valued vectors and the symbol × denotes the cross product (see, e.g., [20]).

By the standard limiting procedure, the above Green formula can be generalized to Lipschitz

domains and to vector-functions from the Sobolev-Slobodetskii, Bessel potential and Besov spaces.

In particular, we can extend Green’s formula (2.6) to vector-functions u ∈ [W 1
p (Ω

+)]3 with A(∂)u ∈

7
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[Lp(Ω
+)]3 and v ∈ [W 1

p′(Ω
+)]3 with 1/p+ 1/p′ = 1, 1 < p <∞ (see, e.g., [2])

⟨{Tu}+ , {v}+⟩S =

∫
Ω+

A(∂, ω)u · v dx+

∫
Ω+

[E(u, v)− ϱω2 u · v ]dx, (2.7)

where the symbol ⟨· , ·⟩S denotes duality brackets between the adjoint spaces [B
− 1

p
p,p (S)]3 and

[B
1
p

p′,p′(S)]
3. Due to the embedding {v}+ ∈ [B

1
p

p′,p′(S)]
3, this relation defines the generalized bound-

ary trace functional {Tu}+ ∈ [B
− 1

p
p,p (S)]3 associated with the stress vector.

For a vector u ∈ [W 1
p,loc(Ω

−)]3 with A(∂)u ∈ [Lp,loc(Ω
−)]3 the generalized boundary trace

functional {Tu}− ∈ [B
− 1

p
p,p (S)]3 of the stress vector is determined quite similarly by formula

⟨{Tu}− , {v}−⟩S = −
∫
Ω−

A(∂, ω)u · v dx−
∫
Ω−

[E(u, v)− ϱω2 u · v ]dx (2.8)

with arbitrary v ∈ [W 1
p′,comp(Ω

−)]3.

Equation (2.1) we understand in the weak sense. However, due to the strong ellipticity of

the matrix differential operator A(∂, ω), every solution of equation (2.1) is actually C∞−regular

in Ω±, in view of the interior regularity property, and consequently equation (2.1) is satisfied

pointwise (see, e.g., [14]).

The Dirichlet type boundary condition (2.2) is understood in the standard trace sense, while

for a weak solution u to equation (2.1) the Neumann type condition (2.3) is understood in the

functional sense defined with the help of Green’s generalized formula (2.8).

The space of solutions of equation (2.1) satisfying the Sommerfeld-Kupradze radiation condi-

tions (2.5) we denote by SK(Ω−). We have the following uniqueness theorem.

Theorem 2.2 The mixed boundary value problem (2.1)-(2.3) possesses at most one solution in

the space
[
H1

2,loc(Ω
−)

]3 ∩ SK(Ω−).

Proof. The proof is much the same as that of Theorem 2.4 in [4]. ■

3 Properties of layer potentials and boundary operators

To make the paper self-contained, here we describe basic mapping properties of the layer

potentials associated with the steady state elastic oscillation operator A(∂, ω).

8
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Denote by Γ(x, ω) and Γ(x) the matrices of fundamental solutions of the differential operators

A(∂, ω) and A(∂, 0) = A(∂),

A(∂, ω)Γ(x, ω) = I3 δ(x), A(∂)Γ(x) = I3 δ(x),

where δ(x) is Dirac’s delta functional. The matrices Γ(x, ω) and Γ(x), Kupradze’s matrix and

Kelvin’s matrix, are constructed explicitly in terms of elementary functions (see [20, Ch. 2, §1],

[22, Ch. VIII, §130])

Γ(x, ω) = [Γkj(x, ω)]3×3, Γkj(x, ω) =
2∑

l=1

(δkjαl + βl ∂k ∂j)
eikl |x|

|x|
,

αl = − δ2l
4π µ

, βl =
(−1)l+1

4π ϱω2
, i =

√
−1,

Γ(x) = [Γkj(x)]3×3, Γkj(x) =
δkj λ

′

|x|
+
µ′ xk xj
|x|3

,

λ′ = − λ+ 3µ

8π µ (λ+ 2µ)
, µ′ = − λ+ µ

8π µ (λ+ 2µ)
.

The real-valued fundamental matrix of statics Γ(x) is the principal singular homogeneous part of

the complex-valued fundamental matrix of oscillations Γ(x, ω) and the following relations hold:

Γ(x, ω) = Γ(−x, ω) = [Γ(x, ω)]⊤, Γ(x) = Γ(−x) = [Γ(x)]⊤,

|Γkj(x, ω)| ≤ c1(λ, µ) |x|−1,

|Γkj(x, ω)− Γkj(x)| ≤ |ω| c2(λ, µ),

|∂lΓkj(x, ω)− ∂lΓkj(x)| ≤ |ω|2 c3(λ, µ),

|∂m∂lΓkj(x, ω)− ∂m∂lΓkj(x)| ≤ c4(λ, µ, ω) |x|−1,

|∂m∂l∂qΓkj(x, ω)− ∂m∂l∂qΓkj(x)| ≤ c5(λ, µ, ω) |x|−2, k, j, l,m, q = 1, 2, 3,

(3.1)

where c1(λ, µ), c2(λ, µ), c3(λ, µ), c4(λ, µ, ω) and c5(λ, µ, ω) are positive numbers depending upon

the material constants λ and µ, and upon the frequency parameter ω.

Note that the functions ∂m∂l∂q
[
Γkj(x− y, ω)− Γkj(x− y)

]
with x, y ∈ S are singular kernels

satisfying the Tricomi condition and, consequently, the corresponding integral operators on S are

Calderon-Zygmund type singular integral operators, that is, pseudodifferential operators of zero

order [15].

The entries of the matrices Γ(x, ω) and Γ(x) are analytic functions of real variables x =

9
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(x1, x2, x3) in R3 \ {0} and the columns of the matrix Γ(x, ω) satisfy the Sommerfeld-Kupradze

radiation conditions at infinity.

For a solution u ∈
[
W 1

p (Ω
+)

]3
to the equation A(∂, ω)u = 0 in Ω+ we have the following

integral representation formula (see [4], [20, Ch. 3, §2.1], [23])

Wω({u}+)(x)− Vω({Tu}+)(x) =

 u(x) in Ω+,

0 in Ω−,

where Vω and Wω are the single and double layer potentials,

Vω(g)(x) :=

∫
S

Γ(x− y, ω) g(y) dSy, x ∈ R3 \ S , (3.2)

Wω(h)(x) :=

∫
S

[T (∂y, n(y))Γ(x− y, ω)]⊤ h(y) dSy, x ∈ R3 \ S , (3.3)

with densities g = (g1, g2, g3)
⊤ and h = (h1, h2, h3)

⊤.

Similar representation formula holds for a solution u ∈
[
W 1

p,loc(Ω
−)

]3∩SK(Ω−) of the equation

A(∂, ω)u = 0 in Ω− (see [4], [20, Ch. 3, §2.4], [27])

−Wω({u}−)(x) + Vω({Tu}−)(x) =

 0 in Ω+,

u(x) in Ω−.

Further, we introduce the boundary integral operators generated by the single and double

layer potentials:

(Hω g)(x) :=

∫
S

Γ(x− y, ω) g(y) dSy , x ∈ S,

(K∗
ω g)(x) :=

∫
S

[
T (∂x, n(x))Γ(x− y, ω)

]
g(y) dSy, x ∈ S,

(Kω h)(x) :=

∫
S

[
T (∂y, n(y)) Γ(x− y, ω)

]⊤
h(y) dSy, x ∈ S,

(Lωh)(x) :=
{
T (∂x, n(x))Wω(h)(x)

}±
, x ∈ S.

The boundary operators Hω and Lω are pseudodifferential operators of order −1 and 1, respec-

tively, while the operators Kω and K∗
ω are mutually adjoint singular integral operators, i.e., pseu-

dodifferential operators of order 0 (for details see [1], [2], [15], [18], [19], [20]). Actually, the

operator Lω is a singular integro-differential operator (compare, [16], [17], [20]).

10
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The potentials constructed by the fundamental matrix Γ(x−y) and the corresponding bound-

ary operators, we denote by the same symbols as above but equipped with the subscript 0, that

is, V0(g) W0(h), H0g, K∗
0g, K0h, L0h.

The above introduced single and double layer potentials and the boundary integral operators

have the following mapping properties. Proofs can be found in the references [2], [7], [8], [11], [15],

[18], [19], [23], [25].

Theorem 3.1 Let S be C∞−smooth and 1 < p <∞, 1 ≤ q ≤ ∞, and s ∈ R. The operators

Vω :
[
Bs

p,p(S)
]3 → [

H
s+1+ 1

p
p (Ω+)

]3 ( [
Bs

p,p(S)
]3 → [

H
s+1+ 1

p

p,loc (Ω−)
]3 ∩ SK(Ω−)

)
,

Vω :
[
Bs

p,q(S)
]3 → [

B
s+1+ 1

p
p,q (Ω+)

]3 ( [
Bs

p,q(S)
]3 → [

B
s+1+ 1

p

p,q,loc (Ω−)
]3 ∩ SK(Ω−)

)
,

Wω :
[
Bs

p,p(S)
]3 → [

H
s+ 1

p
p (Ω+)

]3 ( [
Bs

p,p(S)
]3 → [

H
s+ 1

p

p,loc(Ω
−)

]3 ∩ SK(Ω−)
)
,

Wω :
[
Bs

p,q(S)
]3 → [

B
s+ 1

p
p,q (Ω+)

]3 ( [
Bs

p,q(S)
]3 → [

B
s+ 1

p

p,q,loc(Ω
−)

]3 ∩ SK(Ω−)
)
,

are continuous.

If S is a Lipschitz surface, then the operators

Vω :
[
H

− 1
2

2 (S)
]3 → [

H1
2 (Ω

+)
]3 ( [

H
− 1

2
2 (S)

]3 → [
H1

2,loc(Ω
−)

]3 ∩ SK(Ω−)
)
,

Wω :
[
H

1
2
2 (S)

]3 → [
H1

2 (Ω
+)

]3 ( [
H

1
2
2 (S)

]3 → [
H1

2,loc(Ω
−)

]3 ∩ SK(Ω−)
)
,

are continuous.

Theorem 3.2 Let S be C∞−smooth, 1 < p <∞, 1 ≤ q ≤ ∞, and

g ∈
[
B

− 1
p

p,q (S)
]3
, h ∈

[
B

1− 1
p

p,q (S)
]3
.

Then {
Vω(g)

}+
=

{
Vω(g)

}−
= Hω g on S,{

T (∂, n)Vω(g)
}±

=
[
∓ 1

2I3 +K∗
ω

]
g on S,{

Wω(h)
}±

=
[
± 1

2I3 +Kω

]
h on S,{

T (∂, n)Wω(h)
}+

=
{
T (∂, n)Wω(h)

}−
=: Lωh on S.

The same relations hold true for a Lipschitz boundary S and for p = q = 2.

Theorem 3.3 (i) Let S be C∞−smooth and 1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R. The operators

Hω :
[
Hs

p(S)
]3 → [

Hs+1
p (S)

]3 ([
Bs

p,q(S)
]3 → [

Bs+1
p,q (S)

]3)
,

±1
2I3 +Kω, ±1

2I3 +K∗
ω :

[
Hs

p(S)
]3 → [

Hs
p(S)

]3 ([
Bs

p,q(S)
]3 → [

Bs
p,q(S)

]3)
,

Lω :
[
Hs+1

p (S)
]3 → [

Hs
p(S)

]3 ([
Bs+1

p,q (S)
]3 → [

Bs
p,q(S)

]3)
,

11
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are continuous Fredholm operators with zero index for all ω ∈ R.

(ii) If S is Lipschitz, then the operators

Hω :
[
H

− 1
2

2 (S)
]3 → [

H
1
2
2 (S)

]3
,

±1
2I3 +K∗

ω :
[
H

− 1
2

2 (S)
]3 → [

H
− 1

2
2 (S)

]3
,

±1
2I3 +Kω :

[
H

1
2
2 (S)

]3 → [
H

1
2
2 (S)

]3
,

Lω :
[
H

1
2
2 (S)

]3 → [
H

− 1
2

2 (S)
]3
,

are continuous Fredholm operators with zero index for all ω ∈ R.

(iii) The following operator equalities hold in appropriate function spaces:

Kω Hω = Hω K∗
ω, Lω Kω = K∗

ω Lω,

Lω Hω = −1
4I3 +

[
K∗

ω

]2
, Hω Lω = −1

4I3 +
[
Kω

]2
.

Remark 3.4 The operators −H0 and L0 are strongly elliptic self-adjoint pseudodifferential op-

erators of order −1 and +1, respectively, having positive definite principal homogeneous symbol

matrices (for details see [8, Chapters 4 and 6], [11], [12], [15], [16], [17], [19], [26]).

The entries of the kernel matrices of the integral operators H0, K∗
0, K0, and L0 are real-valued

matrix functions. In particular, this implies that K0 and K∗
0 are mutually adjoint integral operators.

Therefore, for complex-valued vector-functions φ1, φ2 ∈
[
H

− 1
2

2 (S)
]3

and ψ1, ψ2 ∈
[
H

1
2
2 (S)

]3
the

following relations hold〈
H0φ1, φ2

〉
S
=

〈
φ1, H0φ2

〉
S
,

〈
L0ψ1, ψ2

〉
S
=

〈
ψ1, L0ψ2

〉
S
,〈

K∗
0φ1, ψ1

〉
S
=

〈
φ1, K0ψ1

〉
S
,

〈
K0ψ1, φ1

〉
S
=

〈
ψ1, K∗

0φ1

〉
S
.

(3.4)

Moreover, there are positive constants δ1 and δ2 such that the following inequalities hold

〈
−H0φ, φ

〉
S
⩾ δ1 ∥φ∥2

H
− 1

2
2 (S)

for all φ ∈
[
H

− 1
2

2 (S)
]3
, (3.5)

〈
L0ψ, ψ

〉
S1

⩾ δ2 ∥ψ∥2
H̃

1
2
2 (S1)

for all ψ ∈
[
H̃

1
2
2 (S1)

]3
, (3.6)

where S1 ∈ {SD, SN}.

The above relations remain valid if S, SD, and SN are Lipschitz surfaces.

Theorem 8.1 stated in Appendix 2 and inequalities (3.5)-(3.6) lead to the following assertion for

the boundary operators H0 and L0.

12
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Theorem 3.5 Let S1 ∈ {SD, SN}, s ∈ R, 1 < p <∞, 1 ≤ q ≤ ∞, and −1
2 < s− 1

p <
1
2 .

Then the pseudodifferential operators

rS1
H0 :

[
H̃s−1

p (S1)
]3 → [

Hs
p(S1)

]3
, rS1

H0 :
[
B̃s−1

p,q (S1)
]3 → [

Bs
p,q(S1)

]3
,

rS1
L0 :

[
H̃s

p(S1)
]3 → [

Hs−1
p (S1)

]3
, rS1

L0 :
[
B̃s

p,q(S1)
]3 → [

Bs−1
p,q (S1)

]3
,

are invertible.

4 Existence results

We look for a solution to the above formulated mixed boundary value problem (2.1)-(2.3) in

the form of the linear combination of single and double layer potentials

u(x) = −Vω(φ)(x) +Wω(ψ)(x) + i c ω Vω(ψ)(x), x ∈ Ω−, (4.1)

with unknown densities

φ ∈
[
H̃

− 1
2

2 (SD)
]3
, ψ ∈

[
H̃

1
2
2 (SN )

]3
. (4.2)

Here c is a real number different from zero and ω ∈ R is a frequency parameter.

Evidently, u ∈
[
C∞(Ω−)

]3 ∩ [
H1

2,loc(Ω
−)

]3 ∩ SK(Ω−) due to Theorem 3.1 and equation (2.1) is

automatically satisfied in the classical sense in Ω−.

In view of the jump relations of the layer potentials and inclusions (4.2), the mixed boundary

conditions (2.2) and (2.3) lead to the following integral equations with respect to the unknown

vector-functions φ and ψ:

−Hωφ+Kωψ + i c ωHωψ = f on SD,

−K∗
ωφ+ Lωψ + i c ω

(
1
2 I3 +K∗

ω

)
ψ = F on SN .

(4.3)

Let us introduce the notation:

Aω :=

 rSD
(−Hω) rSD

(Kω + i c ωHω)

rSN
(−K∗

ω) rSN

(
Lω + i c ω

(
1
2 I3 +K∗

ω

))

6×6

, (4.4)

X :=

 φ

ψ


6×1

, G :=

 f

F


6×1

,

13
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where rSD
and rSN

are the restriction operators onto SD and SN respectively.

The simultaneous equations (4.3) can be rewritten then in vector-matrix form

AωX = G. (4.5)

Further, let

H̃2 :=
[
H̃

− 1
2

2 (SD)
]3 × [

H̃
1
2
2 (SN )

]3
, H2 :=

[
H

1
2
2 (SD)

]3 × [
H

− 1
2

2 (SN )
]3
.

Obviously, H̃2 and H2 are mutually adjoint spaces and they are equipped with the norms:

∥X∥2H̃2
:= ∥φ∥2[

H̃
− 1

2
2 (SD)

]3 + ∥ψ∥2[
H̃

1
2
2 (SN )

]3 for X =
(
φ, ψ

)⊤ ∈ H̃2,

∥G∥2H2
:= ∥f∥2[

H
1
2
2 (SD)

]3 + ∥F∥2[
H

− 1
2

2 (SN )
]3 for G =

(
f, F

)⊤ ∈ H2.

In what follows, we show that equation (4.5) is solvable in the space H̃2 for arbitrary right-hand

side vector-function G ∈ H2. By Theorem 3.3, the operator Aω has the mapping property

Aω : H̃2 → H2 . (4.6)

Let us prove that (4.6) is an isomorphism. Denote by A0 the operator defined by (4.4) for ω = 0,

A0 :=

 rSD
(−H0) rSD

(K0)

rSN
(−K∗

0) rSN

(
L0

)

6×6

. (4.7)

Due to relations (3.1), Hω − H0 is a pseudodifferential operators of order −3, Kω − K0 and

K∗
ω−K∗

0 are pseudodifferential operators of order −2, while Lω−L0 is a pseudodifferential operator

of order −1. Therefore we have the following mapping properties for arbitrary ω ∈ R, s ∈ R,

1 < p <∞, and 1 ⩽ q ⩽ ∞:

Hω −H0 :
[
H

− 1
2

2 (S)
]3 → [

H
5
2
2 (S)

]3 ([
Bs

p,q(S)
]3 → [

Bs+3
p,q (S)

]3)
, (4.8)

Kω −K0 :
[
H

1
2
2 (S)

]3 → [
H

5
2
2 (S)

]3 ([
Bs

p,q(S)
]3 → [

Bs+2
p,q (S)

]3)
, (4.9)

K∗
ω −K∗

0 :
[
H

− 1
2

2 (S)
]3 → [

H
3
2
2 (S)

]3 ([
Bs

p,q(S)
]3 → [

Bs+2
p,q (S)

]3)
, (4.10)

Lω − L0 :
[
H

1
2
2 (S)

]3 → [
H

3
2
2 (S)

]3 ([
Bs

p,q(S)
]3 → [

Bs+1
p,q (S)

]3)
. (4.11)

Consequently, the operator

Aω −A0 =

 −rSD
(Hω −H0) rSD

(Kω −K0 + i c ωHω)

−rSN
(K∗

ω −K∗
0) rSN

(
Lω − L0 + i c ω

(
1
2 I3 +K∗

ω

))

6×6

(4.12)

14
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possesses the mapping property

Aω −A0 : H̃2 →
[
H

3
2
2 (SD)

]3 × [
H

1
2
2 (SN )

]3 ⊂ H2.

By the Rellich-Kondrashov compact embedding theorems (see [2], [3]), we infer that the inclusion[
H

3
2
2 (SD)

]3 ×
[
H

1
2
2 (SN )

]3 ⊂ H2 is compact, which implies that the operator Aω in (4.6) is a

compact perturbation of the operator A0 : H̃2 → H2.

Now we show that the matrix integral operator A0 generates a bounded and coercive sesquilin-

ear form. Indeed, let X ′ =
(
φ′, ψ′)⊤ and X ′′ =

(
φ′′, ψ′′)⊤ be arbitrary elements of the space H̃2.

Then A0X
′ ∈ H2 and the following duality relation is well-defined

〈
A0X

′, X ′′〉
(H2, H̃2)

:=
〈
−H0φ

′, φ′′〉
SD

+
〈
K0ψ

′, φ′′〉
SD

−
〈
K∗

0φ
′, ψ′′〉

SN
+
〈
L0ψ

′, ψ′′〉
SN
.

Here the symbol
〈
· , ·

〉
(H2, H̃2)

denotes the duality between the mutually adjoint spaces H2 and H̃2.

With the help of Theorem 3.3, Remark 3.4, inequalities (3.5), (3.6), and relations (3.4), it can

be easily shown that the operator

A0 : H̃2 → H2 (4.13)

generates a bounded and strongly coercive bilinear form. Indeed, for arbitrary X ′ =
(
φ′, ψ′)⊤ ∈

H̃2 and X ′′ =
(
φ′′, ψ′′)⊤ ∈ H̃2 the following relations hold:∣∣∣〈A0X

′, X ′′〉
(H2, H̃2)

∣∣∣ ⩽ C1

(
∥φ′′∥[

H̃
− 1

2
2 (SD)

]3 ∥φ′∥[
H̃

− 1
2

2 (SD)
]3 +

+ ∥φ′′∥[
H̃

− 1
2

2 (SD)
]3 ∥ψ′∥[

H̃
1
2
2 (SN )

]3+
+ ∥φ′∥[

H̃− 1
2 (SD)

]3 ∥ψ′′∥[
H̃

1
2
2 (SN )

]3+
+ ∥ψ′∥[

H̃
1
2 (SN )

]3 ∥ψ′′∥[
H̃

1
2
2 (SN )

]3) ⩽

⩽ C2 ∥X ′∥H̃2
∥X ′′∥H̃2

,

Re
[〈
A0X

′, X ′〉
(H2, H̃2)

]
=Re

[〈
−H0φ

′, φ′〉
SD

+
〈
L0ψ

′, ψ′〉
SN

+

+
〈
K0ψ

′, φ′〉
SD

−
〈
K∗

0φ
′, ψ′〉

SN

]
=

=Re
[〈

−H0φ
′, φ′〉

SD
+
〈
L0ψ

′, ψ′〉
SN

]
⩾

⩾ δ3∥X ′∥2H̃2
,
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where C1, C2, and δ3 = min{δ1, δ2} > 0 are positive constants (see (3.5)-(3.6)). Here we employed

the equalities

〈
K0ψ

′, φ′〉
SD

=
〈
K0ψ

′, φ′〉
S
=

〈
ψ′, K∗

0φ
′〉
S
=

〈
ψ′, K∗

0φ
′〉
SN

=
〈
K∗

0φ
′, ψ′

〉
SN
,

which follow from relations (3.4) and embeddings φ′ ∈
[
H̃

− 1
2

2 (SD)
]3

and ψ′ ∈
[
H̃

1
2
2 (SN )

]3
.

By the well-known Lax-Milgram theorem operator (4.13) is invertible and consequently oper-

ator (4.6) is Fredholm with zero index for arbitrary ω ∈ R (see, e.g., [23, Ch. 2]).

Now, we show that the null space of operator (4.6) is trivial, which implies invertibility of the

operator for arbitrary frequency parameter ω ∈ R. We proceed as follows. Let a pair (φ,ψ) ∈ H̃2

be a solution to the homogeneous system (4.3) with f = 0 and F = 0. Then the function u

represented by formula (4.1) solves the homogeneous exterior mixed BVP (2.1)-(2.3). Due to the

uniqueness Theorem 2.2, u vanishes in Ω−,

u(x) = −Vω(φ)(x) +Wω(ψ)(x) + i c ω Vω(ψ)(x) = 0, x ∈ Ω−. (4.14)

Let us extend the vector-function u(x) in Ω+ by the same representation formula (4.1). Using the

jump relations for the layer potentials we find

{u}+ − {u}− = ψ, {Tu}+ − {Tu}− = φ− i c ω ψ on S, (4.15)

whence by (4.14) we deduce

{u}+ = ψ on S,

{Tu}+ = φ− i c ω ψ on S.
(4.16)

Since φ ∈
[
H̃

− 1
2

2 (SD)
]3

and ψ ∈
[
H̃

1
2
2 (SN )

]3
, from (4.16) we conclude that the vector-function u

solves the mixed interior BVP for the steady state oscillation equation in Ω+ with the Dirichlet

type condition on SD and the Winkler type condition on SN ,

A(∂, ω)u(x) = 0 in Ω+,

{u}+ = 0 on SD,

{Tu}+ + i c ω {u}+ = 0 on SN .

(4.17)

By Theorem 7.1 in Appendix 1, u(x) = 0 in Ω+. Therefore

−Vω(φ)(x) +Wω(ψ)(x) + i c ω Vω(ψ)(x) = 0, x ∈ Ω− ∪ Ω+,
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which, along with (4.14) and (4.15), implies φ = 0 and ψ = 0 on S, that is, the null space of the

Fredholm operator (4.6) is trivial and consequently it is invertible.

Thus, we have proved the following assertions.

Theorem 4.1 (i) Operator (4.6) is invertible for arbitrary frequency parameter ω ∈ R.

(ii) The system of integral equations (4.3) is uniquely solvable for arbitrary right-hand side vector-

functions satisfying inclusions (2.4) and the solution pair (φ,ψ) meets conditions (4.2).

From this theorem directly follows the existence theorem for the mixed BVP under consideration.

Theorem 4.2 Let f and F be arbitrary vector-functions satisfying inclusions (2.4). Then the

exterior mixed BVP (2.1)-(2.3) is uniquely solvable in the space
[
H1

2,loc(Ω
−)

]3 ∩ SK(Ω−) and the

solution can be represented as a linear combination of single and double layer potentials by formula

(4.1), where the densities φ ∈
[
H̃

− 1
2

2 (SD)
]3

and ψ ∈
[
H̃

1
2
2 (SN )

]3
are unique solutions to the system

of integral equations (4.3).

Remark 4.3 Theorem 4.1 and Theorem 4.2 remain valid if the surfaces S, SD, and SN are

Lipschitz. The point is that, for Lipschitz case, the operator (4.13) is invertible again. In spite of

the fact that the high order smoothing relations (4.8)-(4.11) are not true for Lipschitz surfaces, in

general, it can be easily shown that the operator (4.6) is again a compact perturbation of (4.13).

5 Regularity results

Using the arguments employed in [30] with appropriate modifications, we can prove the follow-

ing regularity results for solutions to the mixed BVP of steady state elastic oscillation equations.

Theorem 5.1 Let the data of the mixed boundary value problem (2.1)-(2.3) satisfy the conditions

f ∈
[
Bs

p,2(SD)
]3
, F ∈

[
Bs−1

p,2 (SN )
]3

with
1

2
⩽ s <

1

2
+

1

p
and p > 4. (5.1)

(i) The system of integral equations (4.3) is uniquely solvable and the solution pair (φ,ψ) meets

the inclusions

φ ∈
[
B̃s−1

p,2 (SD)
]3 ⊂ [

B̃
− 1

2
2,2 (SD)

]3
=

[
H̃

− 1
2

2 (SD)
]3
,

ψ ∈
[
B̃s

p,2(SN )
]3 ⊂ [

B̃
1
2
2,2(SN )

]3
=

[
H̃

1
2
2 (SN )

]3
.

(5.2)
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Moreover,

ψ ∈
[
C t(S)

]3
with t = s− 2

p
∈
[1
2
− 2

p
,
1

2
− 1

p

)
. (5.3)

(ii) The unique solution u to the mixed boundary value problem (2.1)-(2.3) belongs to the class[
H1

2,loc(Ω
−)

]3 ∩ [
B

s+ 1
p

p,2,loc(Ω
−)

]3 ∩ SK(Ω−) and it can be represented as the linear combination of

the single and double layer potentials (4.1) with densities φ and ψ being solutions to the system

of integral equations (4.3) belonging to the spaces (5.2).

Moreover, the solution u possesses the following Hölder continuity property

u ∈
[
C t(Ω− )

]3
with t = s− 2

p
∈
[1
2
− 2

p
,
1

2
− 1

p

)
. (5.4)

Proof. Let conditions (5.1) be satisfied. In view of the embedding properties of the Besov spaces

we have (see Appendix 3)

f ∈
[
Bs

p,2(SD)
]3 ⊂ [

B
1
2
2,2(SD)

]3
=

[
H

1
2
2 (SD)

]3
,

F ∈
[
Bs−1

p,2 (SN )
]3 ⊂ [

B
− 1

2
2,2 (SN )

]3
=

[
H

− 1
2

2 (SN )
]3
,

for s ⩾
1

2
, s ⩾

2

p
− 1

2
, p > 1.

Therefore, by Theorem 4.1 system (4.3) is uniquely solvable and

φ ∈
[
B̃

− 1
2

2,2 (SD)
]3

=
[
H̃

− 1
2

2 (SD)
]3
, ψ ∈

[
B̃

1
2
2,2(SN )

]3
=

[
H̃

1
2
2 (SN )

]3
. (5.5)

Rewrite system (4.3) in the form

− rSD
H0φ+ rSD

K0ψ = f + f (1) on SD, (5.6)

−rSN
K∗

0φ+ rSN
L0ψ = F + F (1) on SN , (5.7)

where

f (1) = −rSD

[(
H0 −Hω

)
φ+

(
Kω −K0

)
ψ + i c ωHωψ

]
,

F (1) = rSN

[(
L0 − Lω

)
ψ +

(
K∗

ω −K∗
0

)
φ− i c ω

(1
2
ψ +K∗

ωψ
)]
.

Taking into account inclusions (5.5) and the mapping properties of the operators Hω, K∗
ω,

Kω −K0, K∗
ω −K∗

0, H0−Hω, and L0−Lω, for the vector-functions f
(1) and F (1) we conclude (see

Theorem 3.3 and (4.8)-(4.11)):

f (1) ∈
[
H

3
2
2 (SD)

]3
=

[
B

3
2
2,2(SD)

]3
, (5.8)

F (1) ∈
[
H

1
2
2 (SN )

]3
=

[
B

1
2
2,2(SN )

]3
. (5.9)
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In turn, (5.8) and (5.9) imply the following inclusions (see Appendix 3)

f (1) ∈
[
H

3
2
2 (SD)

]3
=

[
B

3
2
2,2(SD)

]3 ⊂ [
Bl

p,2(SD)
]3
, (5.10)

F (1) ∈
[
H

1
2
2 (SN )

]3
=

[
B

1
2
2,2(SN )

]3 ⊂ [
Bl−1

p,2 (SN )
]3
, (5.11)

for l ⩽
2

p
+

1

2
, l ⩽

3

2
, p > 1.

Since Bl
p,2(SD) ⊂ Bs

p,2(SD) and B
l−1
p,2 (SN ) ⊂ Bs−1

p,2 (SN ) for s ⩽ l and p > 1, in view of (5.10)

and (5.11) for the right-hand side functions in (5.6) and (5.7) we deduce

f + f (1) ∈
[
Bs

p,2(SD)
]3
, F + F (1) ∈

[
Bs−1

p,2 (SN )
]3
,

if the following simultaneous inequalities are satisfied:

s ⩽ l , p > 1,

l ⩽
2

p
+

1

2
, l ⩽

3

2
,

s ⩾
2

p
− 1

2
, s ⩾

1

2
.

Rewrite equations (5.6) and (5.7) in matrix form

A0X = Φ, (5.12)

where A0 is given by (4.7), X =
(
φ,ψ

)⊤
, and

Φ :=
(
f + f (1), F + F (1)

)⊤ ∈
[
Bs

p,2(SD)
]3 × [

Bs−1
p,2 (SN )

]3
. (5.13)

In the reference [30, Theorem 5], it is proved that equation (5.12) is uniquely solvable for arbitrary

right-hand side vector-function Φ satisfying condition (5.13) if the parameters s and p satisfy the

inequalities

a(p) ⩽ s <
1

2
+

1

p

with

a(p) =


2

p
− 1

2
for 1 < p ⩽ 2,

1

2
for p ⩾ 2,

and for the solution pair X =
(
φ,ψ

)⊤
the following inclusions hold

φ ∈
[
B̃s−1

p,2 (SD)
]3
, ψ ∈

[
B̃s

p,2(SN )
]3
. (5.14)
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Thus, the vector-functions φ and ψ satisfy inclusions (5.5) and (5.14) which proves the first

part of the item (i) of the theorem.

Further, with the help of Theorem 3.1 along with the representation (4.1) and inclusions (5.5)

and (5.14), for the solution u to the mixed BVP we get the following inclusion

u = −Vω(φ) +Wω(ψ) + i c ω Vω(ψ) ∈
[
H1

2,loc(Ω
−)

]3 ∩ [
B

s+ 1
p

p,2,loc(Ω
−)

]3 ∩ SK(Ω−) (5.15)

with a(p) ⩽ s < 1
2 + 1

p , p > 1.

Recall that for arbitrary domain Ω ⊂ R3 with smooth two-dimensional boundary ∂Ω, the following

embedding relations hold (see Appendix 3)

Hs
p(Ω) ⊂ Ct(Ω), Bs

p,q(Ω) ⊂ Ct(Ω), Hr
p(∂Ω) ⊂ Cτ (∂Ω), Br

p,q(∂Ω) ⊂ Cτ (∂Ω),

1 < p <∞, 1 ⩽ q ⩽ ∞, t ⩾ 0, s > t+
3

p
, τ ⩾ 0, r > τ +

2

p
, (5.16)

since dimΩ = 3 and dim ∂Ω = 2. If t (resp. τ) is not an integer, then in (5.16) one can take

s = t + 3
p (resp. r = τ + 2

p). Note that here Ct(Ω) and Cτ (∂Ω) with t > 0 and τ > 0 denote

the Zygmund spaces, which for non-integers t and τ coincide with the Hölder spaces Ct(Ω) and

Cτ (∂Ω), respectively.

Now, if p > 4 and 1
2 ⩽ s < 1

2 + 1
p , from (5.14) and (5.15) we deduce the following smoothness

properties

ψ ∈
[
B̃s

p,2(SN )
]3 ⊂ [

C t(S)
]3
,

u = −Vω(φ) +Wω(ψ) + i c ω Vω(ψ) ∈
[
B

s+ 1
p

p,2 (Ω)
]3 ⊂ [

C t(Ω)
]3

with

t = s− 2

p
∈
[1
2
− 2

p
,
1

2
− 1

p

)
.

This completes the proof.

■

With the help of Theorem 5.1 we can prove the following proposition.

Theorem 5.2 Let the boundary data of the mixed BVP (2.1)-(2.3) satisfy the relations

f ∈
[
B

1
2
∞, 2(SD)

]3
, F ∈

[
B

− 1
2

∞, 2(SN )
]3
. (5.17)
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Then the density function ψ and the solution u to the mixed BVP have the following Hölder

continuity properties

ψ ∈
⋂
t< 1

2

[
C t(S)

]3
, u ∈

⋂
t< 1

2

[
C t(Ω)

]3
.

Proof. First of all, we recall the well known embedding relations for the Besov spaces (see, e.g.,

[35, Sections 2.3.5, 3.3.1], [5, Theorem 6.2.4], [34, Section 4.6])

B
1
2
∞,2(SD) ⊂ B

1
2
p,2(SD), B

− 1
2

∞,2(SN ) ⊂ B
− 1

2
p,2 (SN ) for all p > 1. (5.18)

Therefore, the items (i) and (ii) of Theorem 5.1 hold for all p > 4 in view of (5.17) and (5.18).

Now, using the inclusions (5.3) and (5.4) we deduce

ψ ∈
⋂
p>4

[
C

1
2
− 2

p (S)
]3
, u ∈

⋂
p>4

[
C

1
2
− 2

p ( Ω)
]3
,

which completes the proof. ■

6 Solvability and alternative representation of solutions

in
[
H1
p,loc(Ω

−)
]3 ∩ SK(Ω−)

Now we discuss the question: For which values of the parameter p can be applied the above

described alternative approach to the exterior mixed BVP in the spaces
[
H1

p,loc(Ω
−)

]3 ∩SK(Ω−).

The answer to this question is given by the following assertion.

Theorem 6.1 Let the boundary data of the exterior mixed BVP (2.1)-(2.3) meet the conditions:

f ∈
[
B

1− 1
p

p,p (SD)
]3
, F ∈

[
B

− 1
p

p,p (SN )
]3

with
4

3
< p < 4. (6.1)

Then exterior mixed BVP (2.1)-(2.3) possesses a unique solution u ∈
[
H1

p,loc(Ω
−)

]3 ∩ SK(Ω−),

which can be represented by the linear combination of the single and double layer potentials (4.1),

where φ ∈
[
B̃

− 1
p

p,p (SD)
]3

and ψ ∈
[
B̃

1− 1
p

p,p (SN )
]3

are unique solutions to the system of integral

equations (4.3).

Proof. First we show that the operator

Aω :
[
B̃

− 1
p

p,p (SD)
]3 × [

B̃
1− 1

p
p,p (SN )

]3 → [
B

1− 1
p

p,p (SD)
]3 × [

B
− 1

p
p,p (SN )

]3
,

4

3
< p < 4, (6.2)
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where Aω is defined in (4.4), is invertible. Note that continuity of the operator (6.2) follows from

Theorem 3.3. Due to Theorem 7(ii) in the reference [30], the operator

A0 :
[
B̃

− 1
p

p,p (SD)
]3 × [

B̃
1− 1

p
p,p (SN )

]3 → [
B

1− 1
p

p,p (SD)
]3 × [

B
− 1

p
p,p (SN )

]3
,

4

3
< p < 4, (6.3)

where A0 is given by (4.7), is invertible. In view of Theorem 3.3 and the mapping properties

(4.8)-(4.11), the difference Aω −A0 is a smoothing operator (see (4.12))

Aω −A0 :
[
B̃

− 1
p

p,p (SD)
]3 × [

B̃
1− 1

p
p,p (SN )

]3 → [
B

2− 1
p

p,p (SD)
]3 × [

B
1− 1

p
p,p (SN )

]3
.

Therefore, by the Rellich-Kondrashov compact embedding theorems, the operator Aω defined by

(6.2) is a compact perturbation of the invertible operator A0 defined by (6.3) and consequently

it is a Fredholm operator with zero index. Further, we show that the null space of the operator

Aω is trivial. To this end, let us assume that a vector-function

X = (φ,ψ)⊤ ∈
[
B̃

− 1
p

p,p (SD)
]3 × [

B̃
1− 1

p
p,p (SN )

]3
is a solution to the homogeneous equation

AωX = 0.

This equation implies that the vector-function

u(x) = −Vω(φ)(x) +Wω(ψ)(x) + i c ω Vω(ψ)(x), x ∈ Ω−, (6.4)

solves the homogeneous mixed BVP (2.1)-(2.3). According to Theorem 3.1 we have the inclusion

u ∈
[
H1

p,loc(Ω
−)

]3 ∩ SK(Ω−). Since 4
3 < p < 4, due to the uniqueness theorem for the exterior

mixed BVP under consideration (see [4, Theorem 3.3]) we conclude u(x) = 0 in Ω−. If we extend

the vector-function u in the domain Ω+ by the same formula (6.4), with the help of the jump

relations for the layer potentials stated in Theorem 3.2 and using the same arguments as in Section

4, we easily find the relations:

{u}+ = 0 on SD, {Tu}+ + i c ω {u}+ = 0 on SN ,

which are understood in the sense of the spaces
[
B

1− 1
p

p,p (SD)
]3

and
[
B

− 1
p

p,p (SN )
]3

respectively. There-

fore, the vector-function u ∈
[
H1

p (Ω
+)

]3
defined by (6.4) solves the homogeneous interior Dirichlet-

Winkler type mixed BVP (4.17) in Ω+. Since 4
3 < p < 4, by the uniqueness theorem for the interior
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mixed BVP (4.17) in the space
[
H1

p (Ω
+)

]3
(see Theorem 7.2 in Appendix 7, [4, Theorem 3.6]) we

have u(x) = 0 in Ω+. Thus, the vector-function u(x) given by (6.4) vanishes in Ω+ ∪ Ω−, which

in turn implies φ = 0 and ψ = 0 on S. Therefore the null space of the operator (6.2) is trivial and

consequently it is invertible.

In turn, the invertibility of the operator (6.2) implies that the system of integral equations

(4.3) is uniquely solvable in the space
[
B̃

− 1
p

p,p (SD)
]3 × [

B̃
1− 1

p
p,p (SN )

]3
for arbitrary right-hand side

vector-functions f and F satisfying conditions (6.1).

From these results directly follows that the exterior mixed BVP (2.1)-(2.3) with boundary data

f and F , satisfying conditions (6.1), possesses a unique solution u ∈
[
H1

p,loc(Ω
−)

]3 ∩ SK(Ω−),

which can be represented by the linear combination of the single and double layer potentials (4.1),

where the density vector-functions φ ∈
[
B̃

− 1
p

p,p (SD)
]3

and ψ ∈
[
B̃

1− 1
p

p,p (SN )
]3

are unique solutions

to the system of integral equations (4.3). This completes the proof. ■

7 Appendix 1: Uniqueness theorem for the mixed Dirichlet-

Winkler type BVPs

For arbitrary solution u ∈
[
H1

p (Ω
+)

]3
to the homogeneous equation A(∂, ω)u(x) = 0 in Ω+ we

have the general integral Somigliana type representation formulas (see [4], [20], [23])

Wω({u}+)(x)− Vω({Tu}+)(x) =

 u(x) in Ω+,

0 in Ω−,
(7.1)

where Vω and Wω are the single and double layer potentials defined in (3.2) and (3.3).

Theorem 7.1 The homogeneous interior Dirichlet-Winkler type mixed boundary value problem

(4.17) possesses only the trivial solution in the space
[
H1

2 (Ω
+)

]3
=

[
W 1

2 (Ω
+)

]3
for all ω ∈ R.

Proof. Let u ∈
[
H1

2 (Ω
+)

]3
be a solution to the homogeneous Dirichlet-Winkler type mixed

boundary value problem (4.17). Since {u}+ ∈
[
H̃

1
2
2 (SN )

]3
and {Tu}++ icω{u}+ = 0 on SN , from

Green’s formula (2.7) we get∫
Ω+

[E(u, u)− ϱω2 |u|2]dx+ icω

∫
SN

|{u}+|2 dS = 0. (7.2)

Keeping in mind that E(u, u) ≥ 0, by separating the imaginary and real parts from (7.2) we find

{u}+ = 0 on SN , implying {u}+ = 0 on S for ω ̸= 0. If ω = 0, then from (7.2) we have E(u, u) = 0
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in Ω+. Therefore u(x) = [a×x]+ b, where a and b are constant three-dimensional complex-valued

vectors, and due to the homogeneous Dirichlet type condition on SD we infer u(x) = 0 in Ω+.

Thus, {u}+ = 0 on S for all ω ∈ R. Consequently, {Tu}+ = 0 on SN and due to formula (7.1) we

have

u(x) = −Vω({Tu}+)(x) = −
∫
SD

Γ(x− y, ω)
{
T (∂y, n(y))u(y)

}+
dSy, x ∈ Ω+, (7.3)

and

−Vω({Tu}+)(x) = −
∫
SD

Γ(x− y, ω)
{
T (∂y, n(y))u(y)

}+
dSy = 0, x ∈ Ω−. (7.4)

Since the single layer potential Vω({Tu}+) with the density {Tu}+ ∈
[
H̃

− 1
2

2 (SD)
]3

is analytic

vector-function with respect to the real variable x in the connected domain R3 \ SD, from (7.4)

it follows that Vω({Tu}+)(x) = 0 in R3 \ SD. Therefore, u(x) = 0 in Ω+ in view of (7.3) for all

ω ∈ R. ■

There holds a more general theorem (see [4, Thorem 3.6]).

Theorem 7.2 The homogeneous interior Dirichlet-Winkler type mixed boundary value problem

(4.17) possesses only the trivial solution in the space
[
H1

p (Ω
+)

]3
with 4

3 < p < 4.

Remark 7.3 If the surfaces S, SD, and SN are Lipschitz, then the representation (7.1) and

Theorem 7.1 remain true.

8 Appendix 2: Some results from the theory of pseudodifferential

equations on manifolds with boundary

Here we present some results from the theory of strongly elliptic pseudodifferential equations

on manifolds with boundary in Bessel potential and Besov spaces which are the main tools for

proving existence theorems for mixed boundary, boundary-transmission and crack type problems

by the potential and boundary integral equations methods. They can be found in [6], [13], [31].

Let M ∈ C∞ be a compact, n-dimensional, non-self-intersecting manifold with boundary

∂M ∈ C∞ and let A be a strongly elliptic N × N matrix pseudodifferential operator of order
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ν ∈ R on M. Denote by σ(x, ξ) the principal homogeneous symbol matrix of the operator A in

some local coordinate system (x ∈ M, ξ ∈ Rn \ {0}).

Let λ1(x), · · · , λN (x) be the eigenvalues of the matrix

[σ(x, 0, · · · , 0,+1) ]−1[σ(x, 0, · · · , 0,−1) ], x ∈ ∂M,

and introduce the notation

δj(x) = Re
[
(2π i)−1 lnλj(x)

]
, j = 1, · · · , N.

Here the branch in the logarithmic function ln ζ is chosen with regard to the inequality −π <

arg ζ ≤ π. Due to the strong ellipticity of A we have the strong inequality −1/2 < δj(x) < 1/2 for

x ∈ M, j = 1, N . Note that the numbers δj(x) do not depend on the choice of the local coordinate

system. In the particular case, when σ(x, ξ) is a positive definite matrix for every x ∈ M and

ξ ∈ Rn \ {0}, we have δj(x) = 0 for j = 1, · · · , N, since all the eigenvalues λj(x) (j = 1, N) are

positive numbers for any x ∈ M.

The Fredholm properties of strongly elliptic pseudodifferential operators on manifolds with

boundary are characterized by the following theorem.

Theorem 8.1 Let s ∈ R, 1 < p <∞, 1 ≤ q ≤ ∞, and let A be a strongly elliptic pseudodifferen-

tial operator of order ν ∈ R, that is, there is a positive constant c0 such that

Re
[
σ(x, ξ) η · η

]
≥ c0 |η|2

for x ∈ M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .

Then the operators

A :
[
H̃s

p(M)
]N →

[
Hs−ν

p (M)
]N ( [

B̃s
p,q(M)

]N →
[
Bs−ν

p,q (M)
]N )

(8.1)

are Fredholm with zero index if

1

p
− 1 + sup

x∈ ∂M, 1≤j≤N
δj(x) < s− ν

2
<

1

p
+ inf

x∈ ∂M, 1≤j≤N
δj(x). (8.2)

Moreover, the null-spaces and indices of the operators (8.1) are the same (for all values of the

parameter q ∈ [1,+∞]) provided p and s satisfy the inequality (8.2).
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9 Appendix 3: Embedding properties of the Bessel potential and

Besov spaces

For a sufficiently smooth m-dimensional manifold M (M ∈ C∞, say), the following continuous

inclusions hold in the case of the Bessel potential and Besov spaces ([34, Section 4.6], [5, Theorem

6.2.4])

Hs
p(M) ⊂ Ht

q(M), Bs
p,r(M) ⊂ Bt

q,r(M),

1 < p, q <∞, 1 ⩽ r ⩽ ∞, −∞ < t ⩽ s <∞, s− m

p
⩾ t− m

q
;

Hs
p(M) ⊂ Bt

q,p(M), Bs
p,q(M) ⊂ Ht

q(M),

1 < p, q <∞, −∞ < t < s <∞, s− m
p ⩾ t− m

q ;

Bs
p,min{2,p}(M) ⊂ Hs

p(M) ⊂ Bs
p,max{2,p}(M),

Bs+ε
p,∞(M)⊂Bs

p,1(M)⊂Bs
p,q1(M)⊂Bs

p,q2(M)⊂Bs
p,∞(M)⊂Bs−ε

p,1 (M),

ε > 0, −∞ < s <∞, 1 < p <∞, 1 ⩽ q1 ⩽ q2 ⩽ ∞.

These inclusions hold true when M is replaced by a smooth bounded region Ω ⊂ Rm.

Evidently, if M ∈ {SD, SN}, then m = 2, and if

s ⩾
2

p
− 1

2
, s ⩾

1

2
, p > 1,

we have the inclusions

Bs
p,2(SD)⊂B

1
2
2,2(SD) = H

1
2
2 (SD), Bs−1

p,2 (SN )⊂B− 1
2

2,2 (SN ) = H
− 1

2
2 (SN ).

For a bounded domain Ω ⊂ Rm and for (m− 1)-dimensional manifold M (M = ∂Ω, say), the

following embedding relations hold (see, e.g., [34, Section 4.6])

Hr
p(M)⊂Cτ (M), Br

p,q(M)⊂Cτ (M), Hs
p(Ω)⊂Ct(Ω), Bs

p,q(Ω)⊂Ct(Ω), (9.1)

1 < p <∞, 1 ⩽ q ⩽ ∞, τ ⩾ 0, r > τ +
m− 1

p
, t ⩾ 0, s > t+

m

p
.

If t (resp. τ) is not an integer, then in (9.1) one can take s = t+ m
p (resp. r = τ+ m−1

p ). Note that

here Ct(Ω) and Cτ (M) with t > 0 and τ > 0 denote the Zygmund spaces, which for non-integers

t and τ coincide with the Hölder spaces C t(Ω) and C τ (M) respectively (see, e.g., [34, Sections

4.5, 4.6]).
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[36] I.N. Vekua, On metaharmonic functions, Proc. Tbilisi Mathem. Inst. of Acad. Sci. Georgian

SSR, 12 (1943), 105–174 (Russian) (English translation: Lecture Notes of TICMI, Vol. 14,

Tbilisi University Press, Tbilisi, 2013).

30


