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Abstract

This paper investigates an optimal investment-reinsurance problem for an insurer who possesses extra information regarding the

future realizations of the claim process and risky asset process. The insurer sells insurance contracts, has access to proportional

reinsurance business, and invests in a financial market consisting of three assets: one risk-free asset, one bond and one stock.

Here, the nominal interest rate is characterized by the Vasicek model; and the stock price is driven by the Heston’s stochastic

volatility model. Applying the enlargement of filtration techniques, we establish the optimal control problem in which an insurer

maximizes the expected power utility of the terminal wealth. By using the dynamic programming principle, the problem can be

changed to four-dimensional Hamilton-Jacobi-Bellman equation. In addition, we adopt a deep neural network method by which

the partial differential equation is converted to two backward stochastic differential equations and solved by a stochastic gradient

descent-type optimization procedure. Numerical results obtained using TensorFlow in Python and the economic behavior of

the approximate optimal strategy and the approximate optimal utility of the insurer are analyzed.
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ment of filtration, Machine learning solution

1. Introduction

Due to the inherent nature of insurance products, insurers often accumulate
substantial amounts of cash to be invested in financial markets. This surplus
serves as a financial buffer to cover future claims and mitigate the risk of finan-
cial ruin. In addition, insurers strategically choose to transfer a portion of their
premiums to reinsurance companies, in exchange for protection against adverse
claim volatilities. Effectively managing the risks posed by insurance claims and
financial market fluctuations necessitates the formulation of reinsurance and in-
vestment strategies. Since the groundbreaking work by [1], extensive research
has been conducted in this area, with notable contributions from [2–5].

It is evident that insurance companies are typically exposed to risks from both
the insurance market and the financial market. In the early days, insurers would
attempt to manually collect and analyze relevant information to adapt to the in-
surance market. For example, an insurer may have exclusive knowledge that the
costs associated with treating a specific disease are expected to decline due to ad-
vancements in medical technology through information analysis. Consequently,
the insurer with this privileged information may outperform competitors who lack
such knowledge. Empirical evidence supporting this phenomenon has been docu-
mented in the literature, for example, [6] and [7]. As technology and understand-
ing have progressed, insurers have gradually started leveraging emerging tech-
nologies such as machine learning and big data to predict accident claims or health
risks, which has become quite mature ([8, 9]). For instance, one of the largest in-
surance companies in the United States, Allstate, developed an automatic driving
technology and analytics platform called Arity. By collecting and analyzing vast
driving data, they can predict risks, improve driving behavior, and provide more
accurate insurance pricing and personalized recommendations for their customers.
Oscar Health utilizes a large volume of health data, including customers’ personal
health records and medical diagnosis data, to predict their risk levels using data
analysis and machine learning algorithms. This helps the company develop more
accurate insurance strategies and pricing, thereby managing their own insurance
risks. Currently, many insurers are actively exploring and applying these tech-
nologies to improve their operational strategies and risk management levels. The
aforementioned examples imply that some economic agents possess information
regarding future claims.
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Another type of risk that insurance companies need to approach with caution is
the risk associated with the financial market. In the early stages of the 2008 finan-
cial crisis, AIG underestimated the potential impact of its derivative trades on the
company’s liabilities. The company failed to consider the possibility that a down-
turn in the financial market could lead to a decrease in the value of derivatives
on its balance sheet, triggering contractual obligations for higher compensation.
As the real estate market collapsed and triggered the subprime crisis, the value
of these derivatives rapidly declined. Consequently, AIG was unable to meet the
required collateral payments, resulting in a significant increase in its liabilities.
Ultimately, the U.S. government intervened by injecting billions of dollars into
AIG to prevent its bankruptcy [10]. This case serves as a vital lesson for other
insurance companies, highlighting the importance of evaluating not only future
financial risks but also the impacts arising from the interaction between liabili-
ties and capital gains, which lead to a phenomenon worth studying that insurers’
risk assessment not only helps them adapt to the insurance market but also en-
ables them to improve their investment strategies. This phenomenon aligns with
economic intuition, as the evolution of the overall societal environment simulta-
neously affects various aspects of the economy. Hence, the objective of our study
is to investigate the optimal reinsurance and investment problem based on a nega-
tive correlation between financial risk and insurance risk where the insurer possess
extra information.

Optimal investment for an insider is a classical problem investigated by many
scholars, such as [11–14]. In recent years, optimal investment-reinsurance prob-
lems with inside information have also gained some attention. [15] examine
optimal investment-reinsurance problems under insider information, where the
inside information influences insurers’ strategy based on an expanded informa-
tion filtration, leading to a new semimartingale process concerning insurance risk.
This framework has been adopted by some studies. For example, [16] focus on
an investment-reinsurance game between two insurance companies with differ-
ing opinions on extra information based on this model. [17] extends the model
proposed by [15], they incorporating jumps and random coefficients in the risk
process. [18] consider model uncertainty and investigate an optimal investment-
reinsurance problem in the presence of insider information. Our work also builds
upon this framework. Specifically, we consider the wealth process of the insurer
who obtains some extra information about the future realization of the claim pro-
cess.

We also consider a negative correlation between claims and risk assets, as
supported by relevant literature [10, 19, 20]. This implies that unexpected claim
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payments may be partially offset by financial market returns for insurers. Further-
more, insurers have access to extra information related to insurance risks, which
indirectly affects their understanding of the financial market and subsequently in-
fluences their investment strategies. This incorporation of extra information not
only impacts the claim process but also introduces mathematical complexities in
analyzing the behavior of risky assets. In terms of model setup, we consider the
optimal reinsurance and investment for an insider under the joint risks of interest
rate, inflation and volatility. As far as we know, when the investment time horizon
is long, an insurer can not ignore the interest risk. [21] address the optimal rein-
surance and investment problem for insurers exposed to interest rate and inflation
risks. They utilize an Ornstein-Uhlenbeck process to model nominal interest rates
and employ zero-coupon bonds as a hedging tool against interest rate risks. Build-
ing upon their work, they further incorporate ambiguity and volatility risks into
the insurer’s decision-making framework[22]. As highlighted in [23], stochastic
volatility models can accurately capture the characteristics of peaked and heavy-
tailed returns seen in stock prices, thereby incorporating a part of the observed
volatility smile curve. Thus, we draw upon the framework proposed in [22] and
present a model that considers three financial risks: interest rate risk and volatility
risk. Specifically, interest rates follow an Ornstein-Uhlenbeck process, while the
stock price is driven by Heston’s stochastic volatility model.

To solve this problem, we adopt the technique proposed in [21] to transform
the original problem into a self-financing problem, which is more theoretically
tractable. The stochastic dynamic programming method is used to derive the
four-dimensional Hamilton-Jacobi-Bellman (abbr. HJB) equation. Due to the
fully nonlinear nature of the four-dimensional parabolic partial differential equa-
tion (PDE) we obtained, it is challenging to obtain the solution using conventional
methods. Moreover, classical numerical techniques for solving such equations of-
ten encounter the ”curse of dimensionality”. Hence, we will employ recently
emerged machine learning methods to solve the PDE [24], [25], [26]. Recently,
machine learning and artificial intelligence have changed our community, and of-
fered novel approaches to the insurance industry, such as reducing losses, claim
reserve estimation, and policy design [27], [28]. To be specific, firstly, we adopt
the analytic techniques of the HJB to derive the semi-analytic form, alleviating the
complexity of the computation. Secondly, we will establish a connection between
the PDE and second-order backward stochastic differential equations (2BSDEs),
which enables us to handle fully nonlinear PDEs and nonlinear expectations [29].
Thirdly, we will utilize the deep 2BSDE method proposed in [30] to solve the
PDE.
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The contribution of this paper is twofold. First, we formulate the optimal
investment-reinsurance problem for an insurer with extra information and multi-
ple risks. In addition, extra information is involved not only with the claims but
also with risky assets, which is more aligned with real-world scenarios, and as far
as we know, there have been few explorations of this phenomenon to date. Second,
we applying a new neural network-based deep learning procedure to overcome the
computational difficulty of solving the high-dimensional HJB equation. Hence,
we believe that our efforts provide certain inspiration for future work on the op-
timal control problem in financial markets. The contributions of this paper are
twofold. Firstly, we establish the optimal investment reinsurance problem for an
insurer with extra information and is exposed to multiple risks. Notably, this extra
information encompasses both claims and risky assets, exhibits greater realism
to real-world scenarios. Remarkably, there have been limited investigations into
this phenomenon thus far. Secondly, we employ a new neural network-based deep
learning approach to overcome the computational challenges associated with solv-
ing the high-dimensional Hamilton-Jacobi-Bellman (HJB) equation in the optimal
investment-reinsurance problem. We believe that our efforts provide valuable in-
spiration for future research on optimal control problems in financial markets.

The rest of the paper is organized as follows. In section 2, we introduce the
extra information and use the enlargement of filtration techniques to obtain the
risk model. In section 3, we transform the problem into a self financing problem
by introducing an auxiliary problem, and obtain a semi-analytical solution by the
stochastic dynamic programming principle. In section 4, we first convert the PDE
related to the HJB equation to a second-order backward stochastic differential
equation and then obtain the approximate optimal solution of the HJB equation
by using a deep learning method called deep 2BSDEs. In section 5, we explain
the economic behavior of the insurer through sensitivity analysis based on the
approximate optimal solution. In section 6, we provide some conclusions.

2. Reference model

2.1. The Basic Model
Consider the complete probability space (Ω,F ,P). All stochastic processes

we discuss below are adapted to {Ft}t≥0, and [0,T ] is the time horizon. The surplus
process of the insurer is characterized by the classical Lundberg modeldR(t) = cdt − d

{
Nt∑
i=1

Zi

}
,

R(0) = R0,

(2.1)
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where Zi is the size of the i-th claim and c is the premium rate. Nt is a Poisson
process subject to the intensity of λ and is independent of Zi. Claim size Zi is
independent of each other, and its first moment and second moment are µ1 and µ2,
respectively. The premium rate c = (1 + η) λµ1, and η represents the safe load,
with η > 0. Referring to [22], we approximately express the compound Poisson
process above to the continuous formdR(t) = λµ1ηdt +

√
λµ2dW̃0(t),

R(0) = R0,
(2.2)

where
{
W̃0(t), t ∈ [0,T ]

}
is a standard Brownian motion on (Ω,F ,P).

To reduce the risks involved in the claims process, the insurer has the option
to purchase proportional reinsurance protection. A proportional reinsurance strat-
egy is represented by the function u(t) : R+ → [0,+∞), where 1 − u(t) denotes
the proportion of claims covered by the reinsurance company at time t, while the
remaining proportion u(t) is covered by the insurer. In the case of proportional
reinsurance, a continuous premium is paid at a rate of (1+ θr)(1− u(t))λµ1, where
θr represents the safety loading of the proportional reinsurance, satisfying θr ≥ η.
It is worth noting that the value of u(t) can exceed 1, indicating that the insur-
ance company acquires new business. The surplus process of insurers adopting
proportional reinsurance is

dX(t) = [η − θr + θru(t)]λµ1dt + u(t)
√
λµ2dW̃0(t). (2.3)

In order to secure a relatively stable and sustainable cash flow income dur-
ing a specific future period, the insurer will allocate investments to both risk-free
and risky assets. We consider a market that encompasses interest rate risk. The
dynamics of the risk-free assets are denoted by

dS 0(t)
S 0(t)

= rn(t)dt,

S 0(0) = s0.
(2.4)

where rn(t) is nominal interest and satisfies the following Ornstein-Uhlenbeck pro-
cess: {

drn(t) = a(b − rn(t))dt − σrndWrn(t),
rn(0) = r0,

(2.5)

where a is the velocity of mean reversion, b is the mean reversion level, σrn is the
volatility of interest and is non-zero, and {Wrn(t), t ∈ [0,T ]} is a standard Brownian
motion.
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The first risky asset is a zero-coupon nominal bond, denoted as B(t,T ). This
bond provides a nominal payoff of 1 upon maturity at date T . Considering the
absence of arbitrage and the market price of interest rate risk given by λrn , the
value of B(t,T ) can be determined by solving the following partial differential
equation, with the boundary condition B(T,T ) = 1:

Brna(b − rn) +
∂B
∂t
+

1
2

Brnrnσ
2
rn
= Brn − Brnλrnσrn ,

where Brn and Brnrn represent the first and second order partial derivatives of
B(t,T ) with respect to rn. The solution of B(t,T ) is given by the explicit formula:

B(t,T ) = exp(q1(T − t) − q0(T − t)rn(t)),

with

q1(T − t) =
2(eν(T−t) − 1)

(ν + a − λrnσrn)(eν(T−t) − 1) + 2ν
,

q0(T − t) =
−ab
σ2

rn

[
2 log

(ν + a − λrnσrn)(e
ν(T−t) − 1) + 2ν

2ν
− (ν + a − λrnσrn)(T − t)

]
,

where ν ≡
√

(a − λrnσrn)2 + 2σ2
rn

. The returns on the nominal zero-coupon bond
could be expressed as the following stochastic differential equation:

dB(t,T )
B(t,T )

= rn(t)dt + σB1(T − t)(λrndt + dWrn(t)), (2.6)

σB1(T − t) = σrnq1(T − t). (2.7)

Due to the presence of bonds with specified maturities in the financial market, the
use of a rolling zero coupon bond with a constant time to maturity K is considered
as a replacement for the zero coupon bond. The dynamics of this rolling bond
could be described as:

dBK(t)
BK(t)

= rn(t)dt + σB1(K)(λrndt + dWrn(t)). (2.8)

According to the findings reported in Stein (2012), a negative correlation ex-
ists between liabilities and capital gains within financial markets. Building upon
the research conducted by [19] and [20], under the probability measure P, we
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assume a negative correlation between the stock price and the claim process, as
symbolically denoted by

d[cov(W̃S (t), W̃0(t))] = ρ0dt.

By Cholesky decomposition (see [31]), we can derive

dW̃S (t) = ρ0dW̃0(t) +
√

1 − ρ2
0dWS (t), (2.9)

where ρ0 ∈ [−1, 0] represents the negative correlation.
Traditionally, many studies have utilized geometric Brownian motion to model

stock prices. However, the existence of market anomalies demands more ad-
vanced methodologies to incorporate stock returns and volatility, such as stochas-
tic expected returns or stochastic volatility. Moreover, with the introduction of
extra information, insurers may identify certain patterns of fluctuation in stochas-
tic volatility. To address this issue, we consider the Heston’s stochastic volatility
model, providing a comprehensive framework to analyze insurers’ investment be-
havior in stocks supplemented with extra information. The dynamics of the price
of stock can be expressed by

dS 1(t)
S 1(t)

= rn(t)dt + σS 1(λrndt + dWrn(t))

+ vL(t)dt +
√

L(t)dW̃S (t),
S 1(0) = s1,

(2.10)

and the dynamics of volatility are denoted bydL(t) = α(β − L(t))dt + σL

√
L(t)dW̃L(t),

L(0) = l0,
(2.11)

where α is the velocity of mean reversion, β is the reversion level, and σL is
the risk level. To guarantee that volatility is nonnegative, volatility of the stock
needs to satisfy the Feller condition 2αβ > σ2

L. In addition, W̃S (t) and W̃L(t) are
dependent and we have

d[cov(W̃S (t), W̃L(t))] = ρS dt, for ρS ∈ [−1, 1],

and we can derive

dW̃L(t)) = ρS dW̃S (t) +
√

1 − ρ2
S dWL(t). (2.12)
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By substituting (2.9) and (2.12) into (2.11), we have the dynamics of volatility of
stock satisfy that

dL(t) = α(β − L(t))dt + σL

√
L(t)ρSρ0dW̃0(t) + σL

√
L(t)ρS

√
1 − ρ2

0dWS (t)

+ σL

√
L(t)

√
1 − ρ2

S dWL(t),

L(0) = l0,
(2.13)

where {WS (t), t ∈ [0,T ]} and {WL(t), t ∈ [0,T ]} are two standard Brownian mo-
tions. In addition, we supposed that W̃0, Wrn , WS and WL are independent of each
other.

2.2. Extra information
In this paper, we will follow the idea that the insurer can obtain some extra

information about the future claim. Here, we refer to it as extra information about
the future claim. This means that the insurer can leverage new technologies such
as big data and machine learning to predict potential events that may have an
impact on the insurance market and the timing of their occurrence. Suppose that
the extra information at time T0 is stored in a random variable W̃0(T0), with the
condition T0 > T . We should mention that once the time t is close to T0, The
value of δ(t) tends to infinity, which means the information is too accurate for
the insurer. Hence, the condition that T0 > T guarantees the regularity of this
problem. In addition, the insurer’s expectation of the future is affected by the size
of the information W̃0(T0).

To measure the increase in information, we need to consider a new filtration
G = {Gt}t∈[0,T ] which is defined as

Gt = Ft ∪ σ(W̃0(T0)),

where Ft = σ
(
W̃0(t),Wrn(t),WS (t),WL(t)

)
is the natural filtration induced by the

standard Brownian motions W̃0(t),Wrn(t),WS (t),WL(t), for any t ∈ [0,T ]. σ(W̃0(T0))
is the σ−algebra generated by the extra information W̃0(T0). The new filtration
satisfied completeness and right continuity and

Ft ⊂ Gt,∀t ∈ [0,T ].

The following lemma will show the decomposition of the process W̃0 with
respect to G.
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Lemma 2.1. The process {W̃0(t), t ≥ 0} is a semi-martingale with respect to G
and its semi-martingale decomposition is

W̃0(t) = W0(t) +
∫ t

0
δ(s)ds,

where

δ(t) =
W̃0(T0) − W̃0(t)

T0 − t
, 0 ≤ t < T0,

and W0(t) is a G−Brownian motion. Furthermore, set

δ0 =
W̃0(T0)

T0
,M(t) =

∫ t

0

1
T0 − s

dW0(t),

where M(t) is the stochastic part of the information drift. Then, we have

dW̃0(t) = (δ0 − M(t))dt + dW0(t). (2.14)

Proof. Please refer to the proof of Theorem 3.1 and Proposition 3.1 in [15].

Remark 2.2. For any t < T0, we have

E

[∫ t

0
δ(s)2ds

]
= log

(
T0

T0 − t

)
< ∞.

Remark 2.3. The lemma 2.1 provides a model framework for understanding how
extra information can influence an insurers’ strategy. δ0 represents the influence
of the extra information at time T0 on the surplus process. A positive value for
W̃0(T0) indicates that future events are expected to lead to lower claims than ini-
tially anticipated, thereby favoring the insurer’s surplus, and vice versa. The term
M(t) represents the information drift, acknowledging that the insurer’s predic-
tions are subject to potential deviations from actual outcomes. Hence, δ0 − M(t)
indicates that future forecasts can still be disrupted by unforeseen factors. The
factor 1/(T0 − t) signifies that the impact of unexpected factors increases as the
forecasted time T0 approaches. This aligns with reality, as events further in the
future have less influence on the present compared to imminent occurrences.

Consequently, with respect to G, the dynamics of the nominal interest rate,
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information drift and stochastic volatility are

drn(t) = a(b − rn(t))dt − σrndWrn(t), rn(0) = r0, (2.15)

dM(t) =
1

T0 − t
dW0(t),M(0) = 0, (2.16)

dL(t) =
(
α(β − L(t)) + σL

√
L(t)ρSρ0(δ0 − M(t))

)
dt

+ σL

√
L(t)

(
ρSρ0dW0(t) + ρS

√
1 − ρ2

0dWS (t)
)

+ σL

√
L(t)

√
1 − ρ2

S dWL(t), L(0) = l0. (2.17)

2.3. The risk model
In the financial market, the insurer allocates the premiums into the three assets.

The wealth of the insurer is influenced by the insurance business and portfolios
in the market simultaneously. Denote the investments in cash, zero coupon bond,
TIPS and stock at time t by π0, πB1 and πS respectively. The surplus process of the
insurer is 

dXu(t) = (η − θr + θru(t))λµ1dt + u(t)
√
λµ2dW̃0(t)

+ πB1(t)
dBK(t)
BK(t)

+ π0(t)
dS 0(t)
S 0(t)

+ πS (t)
dS 1(t)
S 1(t)

,

X(0) = x0.

(2.18)

Substituting (2.4), (2.8), (2.10), (2.12), (2.13) and (2.14) into (2.18) and using the
relationship X(t) = πB1(t)+ πP(t)+ π0(t)+ πS (t), the dynamics of the process Xũ(t)
can be rewritten as follows:dXũ(t) = (η − θr)λµ1dt + ũ(t)⊤σ(L(t))(Λ(M(t), L(t))dt + dW(t)),

X(0) = x0,
(2.19)
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where

ũ(t) ≜ (u(t), πB1(t), πS (t))⊤, (2.20)

Λ(M(t), L(t)) ≜



λµ1θr
√
λµ2
+ (δ0 − M(t))

λrn(
v
√

L(t) −
λµ1θrρ0
√
λµ2

)
1√

1 − ρ2
0


, (2.21)

σ(L(t)) ≜


√
λµ2 0 0
0 σB1(K) 0

√
L(t)ρ0 σS 1

√
L(t)

√
1 − ρ2

0

 , (2.22)

dW(t) ≜

dW0(t)
dWrn(t)
dWS (t)

 . (2.23)

We denote

µd(t,m, l, u, πB1 , πS ) ≜ (η − θr)λµ1 + u(t)⊤σ(l)Λ(m, l),

σd1(t, l, u) ≜ u
( √

λµ2 +
√

lρ0

)
,

σd2(t, πB1) ≜ πB(σB1(K) + σI1 + σS 1),

σd3(t, l, πS ) ≜ πS

(√
l
√

1 − ρ2
0

)
.

Then we introduce the admissible set Π of all the admissible strategies as follows:

Definition 2.4. (Admissible Strategy). A strategy ũ(t) = (u(t), πB1(t), πS (t))t∈[0,T ] is
said to be admissible if
(1) u(t) ≥ 0,∀t ∈ [0,T ];
(2) ũ(t) is progressively measurable with respect to {Gt}t∈[0,T ] and

E
(∫ T

0
[u(t)2 + π2

B1
(t) + π2

S (t)]dt
)
< ∞;

(3) ∀(t, x,m, l) ∈ [0,T ]×R×R×R+, Eq. (2.19) admits a unique pathwise positive
solution Xũ(t) > 0, t ∈ [0,T ].
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Assumption 2.5. (1) A uniformly Lipschitz condition in Π: there exists K1 ≥ 0,
such that for all x, x′,m,m′ ∈ R, l, l′ ∈ R+ and (u, πB1 , πS ) ∈ Π,

|µd(t, x,m, l, u, πB1 , πS ) − µd(t, x,m′, l′, u, πB1 , πS )|

+ |σd1(t, l, u) − σd1(t, l′, u)| + |σd3(t, l, πS ) − σd3(t, l′, πS )|
≤ K1(|x − x′| + |m − m′| + |l − l′|).

(2.24)

(2) L2-integrability condition in Π: for all x,m ∈ R, l ∈ R+ and (u, πB1 , πS ) ∈ Π,

E
[ ∫ T

0

(
|µd(t,m, l, u(t), πB1(t), πS (t))|2

+ |σd1(t, l, u(t)|2 + |σd2(t, πB1(t))|
2 + |σd3(t, l, πS (t))|2

)
dt

]
< ∞.

(2.25)

From the standard stochastic control theory (see, for example [32]), conditions
(2.24) and (2.25) ensure that for all ũ = (u, πB1 , πS ) ∈ Π, and for any initial
condition (t, x,m, l) ∈ [0,T ] × R × R × R+, the SDE in (2.19) admits a strong
unique solution. In this case, we also have

E

[
sup

0≤t≤T
|Xũ(t)|2

]
< ∞. (2.26)

2.4. The optimization problem
Our purpose is to explore how insurers can maximize the utility at the terminal

time T through the asset allocation strategy in [0,T ]. Considering the insurer’s
wealth, the objective of the insurer is

sup
ũ
E

(
U

(
Xũ(T )

))
,

s.t. Xũ(t) satisfies Eq. 2.18,
rn(t) satisfies Eq. 2.15,
M(t) satisfies Eq. 2.16,
L(t) satisfies Eq. 2.17.

(2.27)

In this paper, the utility function is specified by the constant relative risk aver-
sion (abbr. CRRA) case

U(x) =
x1−γ

1 − γ
, γ > 0, γ , 1,

where the γ is relative risk aversion, which measures the insurers’ sensitivity to
risk.
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3. Solution of the optimization problem

In order to solve Problem (2.27), we first introduce an auxiliary process. The
original process (2.19) is not self-financing, i.e., there is a continuous outflow of
money for the insurer. The outflow rate of the wealth is λµ1(η − θr). On the other
hand, the value of an asset D(t, s) at time t with payment λµ1(η − θr) at time s is dD(t,s)

D(t,s) = rn(t)dt + σB1(s − t)[λrndt + dWrn(t)],
D(s, s) = λµ1(η − θr).

Next we define the accumulated future outflow of money at time t by

F(t,T ) =
∫ T

t
D(t, s)ds = λµ1(η − θr)

∫ T

t
Bn(t, s)ds, t ∈ [0,T ].

A simple calculation shows that F(t,T ) satisfies the following BSDE:
dF(t,T ) = −λµ1(η − θr)dt + F(t,T )

[
rn(t) + λrnσF(t,T )

]
dt

+F(t,T )σF(t,T )dWrn(t),
F(T,T ) = 0,

(3.28)

where σF(t,T ) =
∫ T

t

λµ1(η − θr)σB1(s − t)Bn(t, s)
F(t,T )

ds.

3.1. An auxiliary optimal control problem
Define an auxiliary process Y(t) = X(t)+ F(t,T ). We can derive the dynamics

of the auxiliary process

dYu(t) = rn(t)Yu(t)dt + u(t)σ(L(t))(Λ(M(t), L(t))dt + dW(t)), (3.29)

where

u(t) = ũ(t) +
(
0,

F(t,T )σF(t,T )
σB1(K)

, 0
)⊤
.

Definition 3.1. A strategy u(t) is said to be admissible if
(1) u(t) ≥ 0,∀t ∈ [0,T ];
(2) u(t) is progressively measurable with respect to {Gt}t∈[0,T ] and

E
(∫ T

0

[
u(t)2 + πB(t)2 + π2

S (t)
]

dt
)
< ∞, where πB(t) = πB1(t) +

F(t,T )σF(t,T )
σB1(K)

;

(3) ∀(t, y,m, l) ∈ [0,T ]×R×R×R+, Eq. (3.29) admits a unique pathwise positive
solution Y ũ(t) > 0, t ∈ [0,T ].

14



We denote

µy(t, y, rn,m, l, u, πB, πS ) ≜ rny + u(t)⊤σ(l)Λ(m, l),

σy1(t, l, u) ≜ u
( √

λµ2 +
√

lρ0

)
,

σy2(t, πB) ≜ πB(σB1(K) + σI1 + σS 1),

σy3(t, l, πS ) ≜ πS

(√
l
√

1 − ρ2
0

)
.

Combining with assumption 2.5, we provide another assumption

Assumption 3.2. (1) A uniformly Lipschitz condition in AG: there exists K2 ≥ 0,
such that for all y, y′, rn, r′n,m,m

′ ∈ R, l, l′ ∈ R+ and (u, πB, πS ) ∈ AG,

|µy(t, y, rn,m, l, u, πB, πS ) − µy(t, y′, r′n,m
′, l′, u, πB, πS )|

+ |σy1(t, l, u) − σy1(t, l′, u)| + |σy3(t, l, πS ) − σy3(t, l′, πS )|
≤ K2(|y − y′| + |rn − r′n| + |m − m′| + |l − l′|).

(3.30)

(2) L2-integrability condition in AG: for all y, rn,m ∈ R, l ∈ R+ and (u, πB, πS ) ∈
AG,

E
[ ∫ T

0

(
|µy(t, y, rn,m, l, u(t), πB(t), πS (t))|2

+ |σy1(t, l, u(t)|2 + |σy2(t, πB(t))|2 + |σy3(t, l, πS (t))|2
)
dt

]
< ∞.

(3.31)

From conditions (2.24) and (2.25), we can ensure that for all u = (u, πB, πS ) ∈
AG, and for any initial condition (t, y, rn,m, l) ∈ [0,T ] × R × R × R × R+, the SDE
in (3.29) admits a strong unique solution. For any initial condition (t, y, rn,m, l) ∈
[0,T ] ×R ×R ×R ×R+ and all u ∈ AG, (3.29) admits strong unique solutions and

E

[
sup

t≤s≤T

∣∣∣Yu(s)
∣∣∣2 ∣∣∣∣∣∣Y(t) = y, rn(t) = rn,M(t) = m, L(t) = l

]
< ∞. (3.32)

Now we can transform the original problem (2.27) into the following auxiliary
self-financing problem:

sup
u∈AG
E

(
U

(
Yu(T )

))
,

s.t. Yu(t) satisfies Eq. 3.29,
rn(t) satisfies Eq. 2.15,
M(t) satisfies Eq. 2.16,
L(t) satisfies Eq. 2.17.

(3.33)
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3.2. Verification Theorem
We apply the stochastic dynamic programming principle to solve the problem

(3.33), and we need to have a verification theorem before giving the HJB equation.
We focus the problem beginning at time t with the state y, rn, m, l. We define the
value function V(t, y, rn,m, l) as

V(t, y, rn,m, l)

= sup
u∈AG
E

[
U

(
Yu(T )

) ∣∣∣∣∣Y(t) = y, rn(t) = rn,M(t) = m, L(t) = l
]
.

In addition, we define an operator as follows.

Definition 3.3. Define the operator by

L uJ(t, y, rn,m, l)
= (rny + u⊤σΛ) × Jy(t, y, i, rn,m, l) + a(b − rn) × Jrn(t, y, rn,m, l)

+ (α(β − l) +
√

lσLρ0ρS (δ0 − m)) × Jl(t, y, rn,m, l)

+
1
2

u⊤σσ⊤u × Jyy(t, y, rn,m, l) +
1
2
σ⊤r σr × Jrnrn(t, y, rn,m, l)

+
1
2
σ⊤t σt × Jmm(t, y, rn,m, l)

+
1
2
σ2

Llσ⊤L1
σL1 × Jll(t, y, rn,m, l) + u⊤σσr × Jyrn(t, y, rn,m, l)

+ u⊤σσt × Jym(t, y, rn,m, l)

+
√

lσLu⊤σσL1 × Jyl(t, y, rn,m, l)

+
√

lσLσ
⊤
t σL1 × Jml(t, y, rn,m, l),

where

σr =
(
0, −σrn , 0

)⊤
, σt =

(
1

T0 − t
, 0, 0

)⊤
,

σL1 =

(
ρ0ρS , 0,

√
1 − ρ2

0ρS

)⊤
,

(3.34)

and J(t, y, rn,m, l) ∈ C1,2,2,2,2 represents the partial derivatives Ψy, Ψrn , Ψl, Ψyy,
Ψrnrn ,Ψmm,Ψll,Ψyrn ,Ψym,Ψyl,Ψml in the space of the value functionΨ(t, y, rn,m, l)
on [0,T ] × R × R × R × R+ are continuous.
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Using Definition 3.3, we can give a verification theorem as follows:

Theorem 3.4. (Verification Theorem) Define Ω ≜ [0,T ) × R × R × R × R+ and
Ω ≜ [0,T ] × R × R × R × R+. Let J be a function in C1,2,2,2,2(Ω) ∩ C0(Ω), which
satisfies a quadratic growth condition, i.e. there exists K3 > 0 such that

|J(t, y, rn,m, l)| ≤ K3

(
1 + |y|2 + |m|2 + |l|2

)
, (3.35)

for all (t, y, rn,m, l) ∈ Ω.
Define u∗ =

(
u∗, π∗B, π

∗
S

)
, we have

u∗(t) = ũ∗(t) +
(
0,

F(t,T )σF(t,T )
σB1(K)

, 0
)
, (3.36)

and

u∗(t, y, rn,m, l) = argmaxu

{
∂J
∂y

u⊤σΛ +
∂2J
∂y∂rn

u⊤σσr

+
∂2J
∂y∂m

u⊤σσt +
∂2J
∂y∂l

√
lσLu⊤σσL1 +

1
2
∂2J
∂y2 u⊤σσ⊤u

}
.

(3.37)

(i) Suppose that

−
∂J(t, y, rn,m, l)

∂t
− sup

u∈AG
{L uJ(t, y, rn,m, l)} ≥ 0, (3.38)

J(T, y, rn,m, l) ≥ U (y) , (3.39)

for all (t, y, rn,m, l) ∈ Ω, we have J ≥ V on Ω.
(ii) The process u∗ = (u∗, π∗B, π

∗
S ) lies in AG, and it follows that

−
∂J(t, y, rn,m, l)

∂t
−L u∗ J(t, y, rn,m, l) = 0. (3.40)

Then
J(t, y, rn,m, l) = V(t, y, rn,m, l) on Ω. (3.41)

Proof. See Appendix 8.1. □

Under the assumptions of Theorem 3.4, we can easily solve the value function

V(t, y, rn,m, l) = sup
u∈AG
E

[
U

(
Yu(T )

)]
.
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In fact, it suffices to solve J(t, y, rn,m, l), which satisfies the Hamilton-Jacobi-
Bellman equation (3.40). Moreover, Theorem 3.4 states that the optimal strategy
can be expressed as (3.36) and (3.37) when J(·) = V(·).

Furthermore, let the function h(t, rn,m, l) satisfy

V(t, y, rn,m, l) =
1

1 − γ
y1−γh(t, rn,m, l), with h(T, rn,m, l) = 1. (3.42)

The optimal strategies for auxiliary problems will be presented in the following
proposition.

Proposition 3.5. The optimal reinsurance and investment strategy is

u∗(t) = (X∗(t) + F(t,T ))

1
γ

P1(t)
P2(t)
P3(t)


 , (3.43)

where

P1(t) =
vρ0
√

L(t)
√
λµ2(ρ2

0 − 1)
+
δ0 − M(t)
√
λµ2

+
µ1θr

µ2(1 − ρ2
0)
+

1
T0 − t

1
√
λµ2

h̃m(t)
h̃(t)

,

P2(t) =
1
σB1

(
λrn +

σS 1v
ρ2

0 − 1
−

ρ0µ1σS 1θr
√
λ√

L(t)µ2(ρ2
0 − 1)

− ρsσLσS 1

h̃l(t)
h̃(t)
− σrn

h̃rn(t)
h̃(t)

)
,

P3(t) = −
v

ρ2
0 − 1

+
µ1θrρ0

√
λ√

L(t)µ2(ρ2
0 − 1)

+ ρsσL
h̃l(t)
h̃(t)

.

Here, h̃(t) is short for h(t, rn(t),M(t), L(t)), which satisfies

h̃t

h̃
+

h̃rn

h̃

(
a(b − rn) −

(
1 −

1
γ

)
Λ⊤σr

)
+

h̃m

h̃
1 − γ
γ
Λ⊤σt

+
h̃l

h̃

(
α(β − l) + ρ0ρsσL

√
l(δ0 − m) +

1 − γ
γ

σL

√
lσ⊤L1
Λ

)
+

1
2

h̃rnrn

h̃
σ⊤r σr

+
1
2

h̃mm

h̃
σ⊤t σt +

1
2

h̃ll

h̃
σ2

Ll +
h̃mh̃l

h̃2

1 − γ
γ

σL

√
lσ⊤L1

σt −
h̃2

rn

h̃2

γ − 1
2γ

σ⊤r σr

−
h̃2

m

h̃2

γ − 1
2γ

σ⊤t σt −
h̃2

l

h̃2

γ − 1
2γ

σ2
Llσ⊤L1

σL1 +
1 − γ

2γ
Λ⊤Λ

+
h̃ml

h̃
σL

√
lσ⊤t σL1 + (1 − γ)rn = 0,

(3.44)
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in which

h̃t =
∂h̃
∂t
, h̃rn =

∂h̃
∂rn

, hm =
∂h̃
∂m

, h̃l =
∂h̃
∂l
,

h̃rnrn =
∂2h̃
∂r2

n
, h̃mm =

∂2h̃
∂m2 , h̃ll =

∂2h̃
∂l2 , h̃ml =

∂2h̃
∂m∂l

.

In addition, h̃rn(t), h̃m(t) and h̃l(t) are short for hrn(t, rn(t),M(t), L(t)), hm(t, rn(t),M(t), L(t))
and hl(t, rn(t),M(t), L(t)), respectively.

Proof. See Appendix 8.2. □

According to Proposition 3.5, in order to determine the optimal strategy for
the auxiliary problem, it is crucial to employ a suitable approach to solve for
(3.44), which will be the main focus of our investigation. The solution to the
original problem can be obtained by subtracting the additional zero coupon bonds,
as described below:

ũ∗(t) = u∗(t) −
(
0,

F(t,T )σF(t,T )
σB1(K)

, 0
)⊤
.

4. Problem solving by deep learning

Due to the difficulty in obtaining the analytical solution directly, a numerical
method is necessary to solve the problem represented by (3.44). However, this
equation is a four-dimensional nonlinear parabolic partial differential equation
(PDE), which is prone to the curse of dimensionality when solved using tradi-
tional grid-based methods. Additionally, the presence of nonlinear terms further
complicates the problem of finding a solution.

To circumvent these challenges, we will employ a deep learning method to
solve this PDE. Specifically, we will utilize a deep learning technique called
deep 2BSDE. This approach establishes a unified formulation that combines the
PDE and the two-dimensional backward stochastic differential equation (2BSDE)
based on their underlying connection. Subsequently, we approximate the solu-
tion through temporal forward discretization and spatial approximation using deep
neural networks. According to [29], under certain smoothness and regularity con-
ditions, the 2BSDE has at most one solution. This provides a stochastic represen-
tation for solutions of fully nonlinear parabolic PDEs. For a more comprehensive
understanding of the theoretical foundations of this method, we refer readers to
Theorem 1 and Theorem 2 in [33].
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4.1. 2BSDE system
In this section, we will represent the nonlinear parabolic PDE into second-

order forward backward stochastic differential equations.
The deep 2BSDE method establishes a connection between fully nonlinear

second-order partial differential equations (PDEs) and second-order backward
stochastic differential equations (2BSDEs). The relationship is demonstrated in
Theorem 4.10 of [29] and Lemma 3.1 of [30].

Lemma 4.1. Let d ∈ N , T ∈ (0,∞), let u = (u(t, x))t∈[0,T ],x∈Rd ∈ C1,2([0,T ] ×
Rd,R), µe ∈ C(Rd × Rd), σe ∈ C(Rd, Rd×d), f : [0,T ] × Rd × R × Rd × Rd×d → R,
and g : Rd → R be functions which satisfy for all t ∈ [0,T ), x ∈ Rd that ∇xu ∈
C1,2([0,T ] × Rd,Rd), u(T , x) = g(x), and

∂u
∂t

(t, x) = f(t, x,u(t, x), (∇xu)(t, x), (∆xu)(t, x)),

where ∇x and ∆x are operators of the first-order partial derivation and second-
order partial derivation of x, respectively. Let (Ω,F,P) be a probability space,
letW = (W (1), ...,W (d)) : [0,T ] × Ω → Rd be a standard Brownian motion
on (Ω,F,P), let {Ft}t∈[0,T ] be the normal filtration on (Ω,F,P) generated by W,
let ξ : Ω → Rd be an F0/B(Rd)-measurable function, let X = (X(1), ...,X(d)) :
[0,T ] × Ω → Rd be an F-adapted stochastic processes with continuous sample
paths which satisfies that for all t ∈ [0,T ] it holds P-a.s. that

Xt = ξ +

∫ t

0
µe(Xs)ds +

∫ t

0
σe(Xs)dWs,

for every ψ ∈ C1,2([0,T ]×Rd,R), letAψ : [0,T ]×Rd → R be the function which
satisfies for all (t, x) ∈ [0,T ] × Rd that

(Aψ)(t, x) =
(
∂ψ

∂t

)
(t, x) +

1
2

Trace(σeσ
⊤
e (∆xψ)(t, x)),

and let Y : [0,T ] × Ω → R, Z = (Z(1), ...,Z(d)) : [0,T ] × Ω → Rd, Γ =
(Γ(i, j))(i, j)∈{1,...,d}2 : [0,T ] × Ω → Rd×d, and A = (A(1), ..., A(d)) : [0,T ] × Ω → Rd

be the stochastic processes which satisfy for all t ∈ [0,T ], i ∈ {1, 2, ..., d} that

Yt = u(t,Xt), Zt = (∇xu)(t,Xt),

Γt = (∆xu)(t,Xt), A(i)
t =

(
L

(
∂u
∂xi

))
(t,Xt).
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Then, it holds that Y, Z, Γ, and A are F-adapted stochastic processes with contin-
uous sample paths which satisfy that for all t ∈ [0,T ] it holds P-a.s. that

Yt = g(XT ) −
∫ T

t
(f(s,Xs,Ys,Zs,Γs)

+
1
2

Trace(σ(Xs)σ(Xs)⊤Γs))ds −
∫ T

t
⟨Zs, dXs⟩Rd

and

Zt = Z0 +

∫ t

0
Asds +

∫ t

0
ΓsdXs.

Proof. Please see the proof of Lemma 3.1 in [30] for details. □

Let X = (rn,m, l). ∇X and ∆X are operators of the first-order partial deriva-
tion and second-order partial derivation of X, respectively. Define H(t,X) =
ln [h(t,X)]. Then, equation (3.44) can be rewritten as

Ht(t,X) = G(t,X,H(t,X),∇XH(t,X),∆XH(t,X)), (4.45)

where

G(t,X,H(t,X),∇XH(t,X),∆XH(t,X)) =

− Hrn

(
a(b − rn) −

(
1 −

1
γ

)
Λ⊤σr

)
− Hm

1 − γ
γ
Λ⊤σt

− Hl

(
α(β − l) + ρ0ρSσL

√
l(δ0 − m) +

1 − γ
γ

σL

√
lσ⊤L1
Λ

)
−

1
2

(Hrnrn + H2
rn

)σ⊤r σr −
1
2

(Hmm + H2
m)σ⊤t σt −

1
2

(Hll + H2
l )σ2

Llσ⊤L1
σL1

− HmHl
1 − γ
γ

σL

√
lσ⊤L1

σt + H2
rn

γ − 1
2γ

σ⊤r σr + H2
m
γ − 1

2γ
σ⊤t σt

+ H2
l
γ − 1

2γ
σ2

Llσ⊤L1
σL1 − (HmHl + Hml)σL

√
lσ⊤L1

σt −
1 − γ

2γ
Λ⊤Λ

− (1 − γ)rn.

(4.46)

The terminal condition is H(T,X) = 0.

Assumption 4.2. In this paper, we assume that H,∇XH belongs to C1,2,2,2([0,T ]×
R × R × R+).

21



For all t ∈ [0,T ], let the stochastic processes WD
t = (Wrn(t),W0(t),WS (t),WL(t))

on (Ω,G,P), and Xt = (rn(t),M(t), L(t)) satisfying that

Xt = ξ +

∫ t

0
µD(Xs)ds +

∫ t

0
σD(Xs)dWD

s ,

where X0 = ξ,

µD(Xs) ≜

 a(b − rn(s))
0

α(β − L(s)) + σLρ0ρS
√

L(s)(δ0 − M(s))

 , (4.47)

and

σD(Xs) ≜


−σrn 0 0 0

0
1

T0 − t
0 0

0 ρSρ0σL
√

L(s) ρSσL

√
(1 − ρ2

0)L(s) σL

√
(1 − ρ2

S )L(s)

 .(4.48)

Let e(3)
1 = (1, 0, 0), e(3)

2 = (0, 1, 0), e(3)
3 = (0, 0, 1) ∈ R3 be the standard basis

vectors of R3 , for every ϕ ∈ C1,2([0,T ]×R3,R3) letAϕ : [0,T ]×R3 → R3 be the
function which satisfies for all (t, x) ∈ [0,T ] × R3 that

(Aϕ)(t, x) =
∂ϕ

∂t
+

1
2

3∑
i=1

(
∂2ϕ

∂x2

)
(t, x)

(
σDe(3)

i , σDe(3)
i

)
,

and let Y : [0,T ] × Ω → R, Z : [0,T ] × Ω → R3, Γ : [0,T ] × Ω → R3×3,
A : [0,T ] × Ω → R3 be the stochastic processes which satisfy for all t ∈ [0,T ]
that

Yt ≜ H(t,Xt), Zt ≜ (∇XH) (t,Xt), (4.49)

Gt ≜ (∆XH) (t,Xt), (4.50)

At ≜ (A(∇xH))(t,Xt). (4.51)

Lemma 4.1 implies that for all τ1, τ2 ∈ [0,T ] with τ1 < τ2, it holds P-a.s. that

Xτ2 = Xτ1 +

∫ τ2

τ1

µD(Xs)ds +
∫ τ2

τ1

σD(Xs)dWD
s , (4.52)
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Yτ2 = Yτ1 +

∫ τ2

τ1

(
G(s,Xs,Ys,Zs,Gs) +

1
2

Trace(σD(Xs)⊤σD(Xs)Gs)
)

ds

+

∫ τ2

τ1

⟨Zs, dXs⟩,

(4.53)

and

Zτ2 = Zτ1 +

∫ τ2

τ1

Asds +
∫ τ2

τ1

GsdWD
s . (4.54)

The PDE (4.46)is related to the 2BSDE system (4.52)-(4.54).
We define the forward discretization of the 2BSDE system. Let t0, t1, ..., tN ∈

[0,T ] be real numbers with

0 = t0 < t1 < ... < tN = T

which makes the mesh size is sufficiently small. Here, the paths of X, Y , Z for
all n ∈ {0, 1, ...,N − 1} are as follows:

Xt0 = X0 = ξ, Yt0 = Y0 = H(0, ξ), Zt0 = Z0 = (∇XH) (0, ξ),

Xtn+1 ≈ Xtn + µ
D(Xtn)(tn+1 − tn) + σD(Xtn)(W

D
tn+1
−WD

tn ),

Yn+1 ≈ Ytn +

(
G(tn,Xtn ,Ytn ,Ztn ,Gtn) +

1
2

Trace(σD(Xtn)
⊤σD(Xtn)Gtn)

)
(tn+1 − tn)

+ ⟨Ztn ,Xtn+1 − Xtn⟩,

and

Ztn+1 ≈ Ztn +Atn(tn+1 − tn) + Gtn(Xtn+1 − Xtn).

4.2. Deep Learning Approximations
Now, we will use a deep neural network to approximate the unknown function

of the 2BSDE system. We consider

G
θ
n(x) ≈ G (tn, x)

and
A
θ
n(x) ≈ A (tn, x)
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as an approximation of G and A for all suitable θ, x and all n ∈ {0, 1, ...,N − 1},
where θ are the parameters of the deep neural network. We denote the approxima-
tion 2BSDE system as

Y
θ
n+1 = Y

θ
n +

(
G(tn,Xn,Y

θ
n,Z

θ
n,G

θ
n(Xn)) +

1
2

Trace(σD(Xn)⊤σD(Xn)Gθn(Xn))
)

(tn+1 − tn)

+ ⟨Zθn,Xn+1 − Xn⟩,

(4.55)

and

Z
θ
n+1 = Z

θ
n + A

θ
n(Xn)(tn+1 − tn) +Gθtn(Xn)(Xn+1 − Xn). (4.56)

Meanwhile, we aim to ensure that the initial state ξ in the 2BSDE system can
attain H(T,XT ) = 0 at the terminal time T . To achieve this, the loss function is
defined as

E
[
|YθN − H(tN ,XtN )|2

]
= E

[
|YθN |

2
]
. (4.57)

By combining the Monte Carlo and stochastic gradient descent algorithms, we
can iteratively update the parameter θ until convergence. This allows us to obtain
the approximate relationships between Gt and Xt, as well as between At and Xt.
Subsequently, we can calculate the approximate solution of (4.46) on the interval
[0,T ] using (4.55), with the initial condition X0 = ξ and the terminal condition
H(T,XT ) = 0.

After training the neural network, we can use the input Xt = (rn(t),M(t), L(t))
and the network Zθ to obtain the partial derivative values of the function H with
respect to x at time t, denoted as ∇xH(t, xt). Then, according to Proposition 3.5,
we can obtain the optimal reinsurance and investment strategy at time t.

The procedure of deep 2BSDE is illustrated in Figure 1. For brevity, we omit
unnecessary details in this description and refer the readers to [30, 34, 35] for
more comprehensive explanations. In the figure, the solid line represents the for-
ward calculation process. Initially, we initialize Zθ0, Yθ0, Aθ, and Gθ. By applying
equations (4.55) and (4.56), we calculate Yθ from X0 until YθN , as well as the
corresponding loss based on (4.57). In the figure, the long dotted line represents
the parameter updating process of the neural network. After obtaining the loss
function, we update the neural networks Gθ and Aθ using the stochastic gradient
descent method. Simultaneously, we update the initial values Zθ0 and Yθ0. The
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short dotted line indicates the recursive calculation process of Xθ, Yθ, and Zθ,
which we omit in this description.

Figure 1: The algorithm procedure of deep 2BSDE

We utilize a 4-layer neural network architecture with two hidden layers for our
analysis, where the number of nodes in each layer corresponds to the dimension
of (4.46). Specifically, the output layer, hidden layer I, hidden layer II, and output
layer comprise 4, 4, and 16 nodes, respectively. All layers, except for the out-
put layer, employ the Rectified Linear Unit (ReLU) activation function, while the
output layer does not utilize any activation function. Our training process adopts
a batch size of 64 and employs the Adam optimizer for optimization. We con-
duct 2000 training iterations. Furthermore, we implement the code using Python3
programming language and the TensorFlow package. The computations are per-
formed on an Intel Core i7-8700K CPU with a clock speed of 3.70GHz and 16GB
RAM.

5. Sensitivity analysis

In this section, we further investigate the impact of different factors on the
approximate optimal strategy and the approximate optimal value function through
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Table 1: Notation summary.

T r0 l0 λ η θ a b σrn µ1

5 0.03 0.4 3 0.05 0.1 0.1 0.02 0.02 0.08

µ2 K σS 1 λrn γ δ0 T0 α β σL

0.05 10 0.1 0.2 2 0.1 20 0.1 0.2 0.2

v ρ0 ρS

0.5 -0.2 0.5

sensitivity analysis. The values of the model parameters are provided in Table 1,
unless stated otherwise. The training process and the absolute error are depicted in
Figure 2 and Figure 3, respectively, under the specified parameter values. Figure
2 represents the absolute error obtained by recalculating the termination condition
based on our trained neural network. On the other hand, Figure 3 illustrates the
L2 error of termination condition, which corresponds to the loss function (4.57)
computed using the trained neural network.

Figure 2: The absolute error of H(T,X(T ))
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Figure 3: The empirical loss

5.1. Impact on reinsurance and investment strategy
The impact of the risk aversion coefficient γ on reinsurance and investment

strategies is illustrated in Figure 4 and Figure 5. When the risk aversion coeffi-
cient increases, insurers are inclined to retain fewer insurance policies and pur-
chase more reinsurance. This is because the risk aversion coefficient measures
an individual’s aversion to facing risks. Higher risk aversion coefficient signifies
a greater concern for potential losses, leading insurer to purchase more reinsur-
ance to mitigate the potential losses associated with insurance risk. In line with
the increasing risk aversion coefficient, insurers tend to reduce their investments
in zero-coupon bonds. In our opinion, this phenomenon can be attributed to in-
surers’ heightened sensitivity to long-term interest rate fluctuations, leading to in-
creased concerns regarding market uncertainty and volatility. Consequently, there
exists an inverse relationship between investments in zero-coupon bonds and the
risk aversion coefficient. Stock investments are generally perceived as high-risk,
high-reward investments. As a result, insurers tend to have a heightened level of
interest and concern regarding the risks and volatility associated with stocks. Con-
sequently, the volatility in stock prices is more likely to trigger insurers’ concerns,
leading to a tendency to decrease the allocation of stocks in their investment port-
folios to reduce the overall risk level, especially when the risk aversion coefficient
is high. These finding is consistent with the results in proposition 3.5.
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Figure 4: Effect of γ on reinsurance policy

(a) Effect of γ on zero-coupon bond strategies (b) Effect of γ on stock strategies

Figure 5: Effect of γ on investment strategies

Figure 6 - Figure 8 depict the influence of the negative correlation coefficient
ρ0 on reinsurance and investment strategies. With the increase of negative corre-
lation between insurance risk and stock risk, insurers tend to hold more insurance
policy. Simultaneously, a reduced negative correlation is also linked to an in-
crease in stock investments by insurers. We offer the following explanation: a
larger negative correlation coefficient denotes a more pronounced inverse associ-
ation between insurance risk and stock risk. Furthermore, insurers can mitigate
insurance risk through the acquisition of reinsurance, which allows the transfer
of risks to reinsurers. The cumulative effect of these factors leads to a further
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reduction in insurance risk. As a consequence, this manifests in a lower reinsur-
ance policy and a higher allocation of investments towards stocks. Figure 6b and
Figure 8b depict the influence of the negative correlation coefficient ρ0 on rein-
surance and investment strategies when extra information is negative (δ0 = −0.1).
These findings indicate that when there is higher-than-expected insurance risk in
the future, an increase in the negative correlation leads to an increased demand for
reinsurance by insurers. However, the magnitude of the increase in stock invest-
ment is smaller than expected. In our opinion, this can be attributed to the transfer
of insurance risk through the reinsurance policy, for which potentially diverts the
profits insurers could have gained from stocks when there is a negative correlation
between insurance risk and stock risk. As a result, the increase in stock investment
is not significant.

From Figure 7a and Figure 7b, we can observe that the investment in zero-
coupon bonds decreases as the negative correlation coefficient increases. A stronger
negative correlation indicates that insurers can balance stock risk and insurance
risk more effectively through portfolio and reinsurance policy, leading to more
aggressive strategies. Conversely, if insurance risk and stock risk cannot be eas-
ily diversified, insurers tend to choose conservative investments in zero-coupon
bonds.

Based on these findings, it is observed that if insurers can ascertain certain
extra information regarding the future, they tend to opt for more aggressive rein-
surance and investment strategies, regardless of whether the extra information is
positive or negative. This also partly elucidates the adoption of aggressive strate-
gies by AIG insurance company prior to the 2008 financial crisis. However, it
is only when insurers have the ability to ascertain the authenticity of extra in-
formation regarding future claim processes that they can benefit from aggressive
reinsurance and investment strategies.
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(a) Effect of ρ0 on reinsurance policy (δ0 = 0.1) (b) Effect of ρ0 on reinsurance policy (δ0 = −0.1)

Figure 6: Effect of ρ0 on reinsurance policy

(a) Effect of ρ0 on zero-coupon bond strategies (δ0 = 0.1) (b) Effect of ρ0 on zero-coupon bond strategies (δ0 = −0.1)

Figure 7: Effect of ρ0 on zero-coupon bond strategies
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(a) Effect of ρ0 on stock strategies (δ0 = 0.1) (b) Effect of ρ0 on stock strategies (δ0 = −0.1)

Figure 8: Effect of ρ0 on stock strategies

Figure 9 and Figure 10 demonstrate the impact of extra information on rein-
surance policies and stock strategies. The demand for reinsurance decreases as
the magnitude of extra information increases. This is because higher levels of ex-
tra information indicate lower expected claims, prompting insurers to retain more
policies when extra information is higher. This result aligns with our expecta-
tions. Conversely, stock investments only increase when the absolute value of
extra information is higher. We believe this may be due to the negative correla-
tion between insurance risk and stock risk. Insurers can balance insurance risk
and stock risk through reinsurance policies. As a result, stock strategies are only
influenced by the magnitude of extra information, regardless of its direction.

Figure 9: Effect of δ0 on reinsurance policy

31



Figure 10: Effect of δ0 on stock strategies

Figure 11-Figure 12 exhibit the influence of the volatility coefficient v on rein-
surance and investment strategies. It can be observed that when the volatility
coefficient is higher, insurers tend to retain more policies while increasing invest-
ments in stocks. This can be attributed to the presence of negative correlation and
positive extra information, which enable insurers to have more accurate predic-
tions regarding the insurance process and future stock dynamics. The availability
of extra information allows insurers to anticipate risk in advance. The negative
correlation, on the other hand, leads the anticipated extra information to propa-
gate into both stock dynamics and volatility dynamics, resulting in a deterministic
drift in stock dynamics that is positively correlated with the volatility coefficient.
In this scenario, reinsurance policies can be used by insurers to diversify the risks
associated with both stock and volatility, thereby partially mitigating such risks.
Consequently, a positive relationship between the volatility coefficient v and in-
surers’ inclination towards more aggressive reinsurance and investment strategies
is observed. Conversely, risk-averse investments such as zero-coupon bonds tend
to decrease as the volatility coefficient v increases.
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Figure 11: Effect of v on reinsurance policy

(a) Effect of v on zero-coupon bond strategies (b) Effect of v on stock strategies

Figure 12: Effect of v on investment strategies

5.2. Impact on initial utility
Figure 13 illustrates the relationship between extra information and initial util-

ity for insurers. It can be observed that the initial utility of insurers increases with
the presence of extra information. It is important to note that both negative and
positive extra information lead to an increase in initial utility for insurers, how-
ever, the magnitude of the increase is significantly lower for negative extra infor-
mation as compared to positive extra information. In other words, the absolute
value of extra information is a direct factor influencing insurers’ utility, regardless
of whether it is negative or positive. Here is our explanation: Negative extra in-
formation signifies higher future claims than expected, leading to an increase in
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the insurers’ demand for reinsurance. However, insurers still need to pay a certain
reinsurance premium to diversify the anticipated risks. On the other hand, positive
extra information indicates lower future claims than expected, resulting in insur-
ers choosing to retain more policies and thereby reducing the cost of reinsurance.
As a result, the utility gained by insurers from positive extra information is higher
than that from negative extra information.

Figure 13: Effect of δ0 on utility (t = 0)

Figure 14 displays the impact of negative correlation coefficient on insurers’
initial utility. It can be observed that as the negative correlation strengthens, the in-
surers’ initial utility increases. A stronger negative correlation indicates a stronger
association between insurance risk and stock risk. As insurers can implement rein-
surance policies, they can also mitigate the stock risk through reinsurance policies.
For example, when insurers anticipate lower-than-expected future claims, it sug-
gests a potential decline in stock prices. In such cases, insurers can balance this
adverse change by selecting appropriate reinsurance strategies. Conversely, when
future claims are expected to be higher than anticipated, stock prices may exhibit
an upward trend. Insurers can also address this situation by coordinating between
insurance risk and stock risk via reinsurance policies. Consequently, insurers’
initial utility improves as the negative correlation coefficient becomes higher.
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Figure 14: Effect of ρ0 on utility (t = 0)

Figure 15 depicts the impact of the volatility coefficient on insurers’ initial
utility. The volatility coefficient, represented as v, captures the influence of volatil-
ity, denoted as L, on stock prices. It can be observed that insurers’ initial utility
increases with the increment of the volatility coefficient. We believe that the un-
derlying reason for this result is similar to the factors driving the outcomes shown
in Figure 11 and Figure 12. The presence of negative correlation coefficient and
extra information leads to interdependencies between the insurance process, stock
prices, and stock volatility. As the volatility coefficient increases, these interde-
pendencies become stronger. With the existence of reinsurance policies, insurers
can effectively balance their investment portfolios and diversify risks across dif-
ferent components, thereby enhancing utility.
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Figure 15: Effect of v on utility (t = 0)

6. Conclusion

In this paper, we build a model of reinsurance and investment problems in-
volving multiple stochastic factors. Since the insurer will obtain some extra in-
formation about the future claim, we first use filtration enlargement to extract the
deterministic impact of the extra information. However, due to the negative corre-
lation between stocks and claims, extra information also contains some informa-
tion about stocks and their volatility, which leads to a certain correlation between
each state. Next, we obtain an HJB equation based on the CRRA utility function
and dynamic programming principle, and obtain a semi-analytical solution.

To reduce the difficulty of solving, we use deep learning to solve the HJB
equation. First, we convert the PDE related to the semi-analytical solution into
a 2BSDE system, then forward discretization is performed, and the functional
relationship between the state and the 2BSDE system is replaced by a deep neural
network. Then, we use the neural network and the 2BSDE system to obtain an
approximate optimal solution.

Finally, we conduct a sensitivity analysis. We have found that due to the neg-
ative correlation between insurance risk and stock risk, insurers can diversify the
part of risk between insurance and stock by implementing more aggressive rein-
surance and investment strategies. However, whether insurers can truly benefit
from this depends on their ability to discern the authenticity of extra informa-
tion. Furthermore, the impact of extra information on insurers is asymmetric, as
both positive and negative extra information can be advantageous to insurers, as
insurers will gain more benefits from positive extra information.
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8. Appendix

8.1. Proof of Theorem 3.4
Proof. (i) To simplify the symbol, we use J(·) as the simplified expression. The
control uses the similar expression u(·) and u∗(·). We apply Itô lemma to any
J ∈ C1,2,2,2,2(Ω). For any (t, y, rn, l,m) ∈ Ω, u ∈ AG, s ∈ [t,T ], and τ ∈ [t,+∞], we
can derive that

J
(
s ∧ τ,Yu∗(s ∧ τ), rn(s ∧ τ),M(s ∧ τ), L(s ∧ τ)

)
= J(t, y, rn,m, l) +

∫ s∧τ

t

(
∂J(z)
∂t
+L uJ(z)

)
dz +

∫ s∧τ

t

∂J(z)
∂y

u⊤σdW(z)

−

∫ s∧τ

t

∂J(z)
∂rn

σrndWrn(z) +
∫ s∧τ

t

∂J(z)
∂m

1
T0 − z

dW0(z)

+

∫ s∧τ

t

∂J(z)
∂L

σL

√
LρSρ0dW0(z) +

∫ s∧τ

t

∂J(z)
∂L

σL

√
LρS

√
1 − ρ2

0dWS (z)

+

∫ s∧τ

t

∂J(z)
∂L

σL

√
LρS

√
1 − ρ2

S dWL(z),

(8.58)

where s ∧ τ ≜ min {s, τ}.
We define a non-negative function φ(z) : [0,T ]→ [0,+∞)

φ(z) =
(
∂J(z)
∂y

)2 (
u⊤σσ⊤u

)
+

(
∂J(z)
∂rn

)2

σ2
rn

+

(
∂J(z)
∂m

)2 1
T0 − z

2

+

(
∂J(z)
∂l

)2

σ2
Ll.

(8.59)

For n = 1, 2, .... choose a stopping time τn satisfying

τn = inf
{

s ∈ [t,T ] :
∫ t

s
φ(z) ≥ n

}
. (8.60)
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Note that τn → T when n→ ∞, the stopping time processes∫ s∧τ

t

∂J(z)
∂y

u⊤σdW(z),
∫ s∧τ

t

∂J(z)
∂rn

σrndWrn(z),∫ s∧τ

t

∂J(z)
∂m

1
T0 − z

dW0(z),
∫ s∧τ

t

∂J(z)
∂L

σL

√
LρSρ0dW0(z),∫ s∧τ

t

∂J(z)
∂L

σL

√
LρS

√
1 − ρ2

0dWS (z),
∫ s∧τ

t

∂J(z)
∂L

σL

√
LρS

√
1 − ρ2

S dWL(z)

(8.61)

are true martingales. Taking expectations for (8.58), we can obtain

E
[
J(s ∧ τ,Yu(s ∧ τ), rn(s ∧ τ),M(s ∧ τ), L(s ∧ τ))

]
= J(t, y, rn,m, l) + E

[∫ s∧τ

t

(
∂J(z)
∂t
+L uJ(z)

)
dz

]
.

(8.62)

Combining with (3.38) and (3.39), we have∫ s∧τ

t

(
∂J(z)
∂t
+L uJ(z)

)
dz ≤ 0, u ∈ AG. (8.63)

Therefore, for every u ∈ AG

E
[
J(s ∧ τ,Yu(s ∧ τ), rn(s ∧ τ),M(s ∧ τ), L(s ∧ τ))

]
≤ J(t, y, rn,m, l).

(8.64)

According to (3.35), we can get

sup
∣∣∣∣∣J(s ∧ τ,Yu(s ∧ τ), rn(s ∧ τ),M(s ∧ τ), L(s ∧ τ))

∣∣∣∣∣
≤ K3

(
1 + sup

s∈[t,T ]

∣∣∣∣∣Yu(s)
∣∣∣∣∣2 + sup

s∈[t,T ]
|rn(s)|2 + sup

s∈[t,T ]
|M(s)|2 + sup

s∈[t,T ]
|L(s)|2

)
.

(8.65)

Combining (3.32) with (8.65), and sending n to infinity in (8.64), we have that

E
[
J(s,Yu(s), rn(s),M(s), L(s))

]
≤ J(t, y, rn,m, l). (8.66)

Since J(·) is continuous with respect to t and Y , sending s tends to T , we can again
apply the control convergence theorem to obtain

E
[
U

(
Yu(T )

)]
≤ J(t, y, rn,m, l), (8.67)
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for all u ∈ AG. Since u is arbitrary, we can infer that V ≤ J for all (t, y, rn,m, l),
and the equality holds at u∗.

(ii) Applying Itô lemma to J(t, y, rn, l,m) between t ∈ [0,T ] and s ∈ [t,T ], we
can get

E
[
J(s,Yu(s), rn(s),M(s), L(s))

]
= J(t, y, rn,m, l) + E

[∫ s

t

(
∂J(z)
∂t
+L uJ(z)

)
dz

]
.

(8.68)

According to the definition u∗ ∈ AG, we have

−
∂J(t, y, rn,m, l)

∂t
−L u∗ J(t, y, rn,m, l) = 0. (8.69)

Then

J(s,Yu∗(s), rn(s),M(s), L(s)) = J(t, y, rn,m, l). (8.70)

Applying the control convergence theorem, we have

J(t, y, rn,m, l) = E
[
U

(
Yu∗(T )

)]
. (8.71)

We find that J ≤ V . Combining the result in (i), we can derive that u∗ is the
optimal control and J = V .

□

8.2. Proof of Proposition 3.5
Proof. Substituting the (3.42) into (3.37) we can derive that

u∗(t) =
y
γ
Σ−1σΛ +

y
γ

hr

h
Σ−1σσr

+
y
γ

hm

h
Σ−1σσt +

y
γ

hl

h
σL

√
LΣ−1σσL1 ,

(8.72)

where Σ = σ⊤σ. Substituting (2.21), (2.22) and (3.34) into (8.72), we can de-
rive (3.43). In addition, combining (3.40), (3.41), (3.43) and (8.72), we have the
equation (3.44). □
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