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Abstract

To overcome the limitations of empirical synthesis and expedite the discovery of new polymers, this work aims to develop a

data-driven strategy for profoundly aiding in the design and screening of novel polyester materials. Initially, we collected 695

polyesters with their associated glass transition temperatures (Tgs) to develop a quantitative structure-property relationship

(QSPR) model. The model underwent rigorous validation (external validation, internal validation, Y-random and application

domain analysis) to demonstrate its robust predictive capabilities and high stability. Subsequently, by employing an in-silico

retrosynthesis strategy, over 95000 virtual polyesters were designed, largely expanding the available space for polyester materials.

External assessments highlight the good extrapolation ability of the QSPR model. Furthermore, we experimentally synthesized

diverse virtual polyesters with Tgs covering a sufficient large temperature range. It is believed that this data-driven approach

can drive future product development of polymer industry.

Introduction

Synthetic polymers are indispensable in our daily life.1, 2 Polyesters, in particular biodegradable polyesters,
are widely used in automotive parts, medical apparatus, packaging products, electronic devices, and other
fields owing to their good thermomechanical properties and biocompatibility.3-5 Polyesters are generally
consisting of ester containing repeating units produced by esterification reaction between diacids and
diols.6, 7Thus, combination of different functional diacids with various diols can yield an enormous space
of polyester materials. As a result, it becomes a non-trivial task to design and synthesize polyesters with
targeted properties.

Glass transition temperature (T g) of polymer governs the dynamic state of polymer chains, and further
affects the performance and application domains. For example, the high-T g polyester with a rigid ring
structure improves the thermal stability of polyester materials, aiming to provide bio-based polymers for the
plastic consumer market.8-10 In addition, aliphatic polyesters with lowT g have been studied as environmen-
tally friendly pressure-sensitive adhesives because of their low cost and potential biodegradability.11, 12 T g

is therefore an essential indicator for determining the properties of polymers.

Given the large polymer design space, it is difficult, time-consuming, and ineffective to screen polymers with
targeted properties (e.g., specific T g) through experimental procedures.13-15 To enable rapid polymer molec-
ular design and high-throughput screening of ideal products prior to laboratory synthesis and analysis, data-
driven alternatives,16-23 such as the quantitative structure-property relationship (QSPR) modeling24-28and
machine learning (ML) approaches29-33 have been successfully used to predict the properties for diverse
polymers.
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In this regard, Wang et al. used successfully trained machine learning to predict the gas permeability of
more than 11,000 homopolymers and found that the upper bound of CO2/CH4separation was exceeded
by synthesizing two promising polymeric membranes.34 Recently, Tao et al. first studied the performance
of 79 different models by combining polymer representation, feature engineering and ML algorithms.35, 36

They then designed millions of hypothetical polyimides by polycondensation of existing dianhydrides and
diamines or diisocyanates, and built an ML model to predict a diversity of their properties and verified
the predictive ability of the ML through molecular dynamics simulations. Finally, a new polyimide with
excellent thermal stability was successfully synthesized experimentally. By trained machine learning models,
Wang and Jiang have screened nearly 30,000 hypothetical polymers with fractional free volume (FFV) > 0.2,
enabling the design of high FFV polymers. 37 Wang et al. present a method for designing high-temperature
polymer dielectrics by combining tailored structural units, and the design method is justified by analyzing
ML predictions and experimental results.38Chen et al. developed an ML model that accurately predicts
different frequency-dependent dielectric constants( ), and subsequently utilized the model to successfully
design ten polymers with the desired andT g for application in the capacitor and microelectronics fields.39

Meanwhile, Lin et al. proposed using a material genome approach design and screening of new heat-resistant
resin materials by define gene and extracting key features of properties.40-42 This strategy was subsequently
used in the design of various high-performance polymers. These advances highlight the innovative potential
of data-driven approaches in the design of polymers. However, rational design of polyester materials is still
less explored. Therefore, it is promising to use data-driven methods to predict the target properties of
polyesters and to design new polyesters to complement the existing library.

Herein, we report a data-driven strategy to enable the evaluation of the relationship between molecular
structure and T gof polyesters and further guide the design of novel polyesters with specific T gs. The
workflow is illustrated inFigure 1 . First, an multiple linear regression (MLR)-based QSPR model is
developed by employing ring repeating unit (RRU)43, 44 to uniquely represent polyesters and norm descriptors
for feature engineering. The predictability, robustness, and chance correlation of the model are evaluated
by internal validation, external validation, andY -randomized analysis, respectively. We then construct a
virtual library by designing over 95000 hypothetical polyesters by in-silico retrosynthesis. Later on, theT g

prediction is performed by using the well-trained QSPR model. Ultimately, several polyesters with specificT

g are synthesized and characterized to validate the data-driven polymer design strategy. This work puts
the QSPR modeling approach a further step forward by expanding the application scope from properties
prediction to model-based design of polymers.

Figure 1. The workflow of this work

Methods

2.1 Data Collection and Pretreatment

An available dataset, Dataset A, is established by collecting experimental T g values of polyesters from the
polymer database,PolyInfo 45. The data selection criteria include: number average molar mass (Mn ) >

2
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6000 g mol-1, weight average molar mass (Mw ) > 10000 g mol-1, and T g measured by differential scanning
calorimetry (DSC). For polyesters with multipleT g values from different sources, a median is chosen. The
final dataset includes 695 polyesters withT g values ranging from -78 to 345 (Figure S1). The dataset is
randomly divided into a training set and a testing set by the ratio of 4:1.

2.2 Modeling process

The diagram of modeling process shown in Figure 2 includes 4 steps.

Figure 2 The pipeline of QSPR model construction

(i) The first step is unique representation of the molecular structure, which is vital for reliable property
prediction.43, 44Here, the structures of polyesters are approximated by RRU.

(ii) Subsequently, norm descriptors are adopted to characterize the RRU-based polymer structures, which
contain details about the properties and topological connections of each atom. Among them, the topological
connection relation is represented by step matrix (MS ), showing the position relationship of each atom in
a molecule. In this work, 10 basic step matrices (i.e., MS F, MS A, MS B, MS C, MS AB, MS ABC, MS

bon,MS ABC aro, MS ABC cyc, and MS bon cyc) are derived according to the definitions by Eqs (S1)-(S10) in
Supporting Information.

The property information of an atom refers to some basic properties of the atom (e.g. ionization energy,
and number of outermost electrons), which are expressed in the form of a property matrix (P ), as shown in
Table S1. As such, the atomic distribution matrix (M ) is generated by combining MS and P according to
Eq. (1). Finally, the normal descriptors are obtained by using 7 norm indexes, whose formulas are expressed
by Eqs. (S11)-(S17) in Supporting Information.

(iii) The dimensionality of the norm descriptors is then reduced by using bidirectional stepwise regression.
Ultimately, 29 norm descriptors are screened out. Lastly, the QSPR model between chemical structures and
targeted properties is developed through MLR.

2.3 Model validation and evaluation

The statistical parameters, including squared correlation coefficient (R2 ), average absolute error (AAE), and
correlation coefficient for leave-one-out cross validation (Q 2

LOO-CV) are employed to evaluate the goodness-
of-fit of the model. The definitions of these statistical parameters are given in Eqs (2)-(4). Additionally,
the testing set is used in the external validation to assess the external predictive abilities of the model. To
evaluate the model’s robustness, the internal validation results are offered. Application domain analysis and
Y-randomized analysis are performed to confirm the reliability of the model and to exclude chance-related
aspects from the modeling process.

Note: T g i,exp and T g i,cal represent experimental and calculated values of the polyesters, respectively. n
is the number of data points.n train is the number of data points in the training set.

2.4 Chemical space under exploration

In order to explore the chemical structure space and broaden the existing library of polyester at this stage, a
larger polyester library is built by retrosynthesis. Figure 3a-3c illustrates the process of building the virtual
polyester library. By assuming that the polyesters are formed by the polycondensation of a diol and a diacid,

3



P
os

te
d

on
29

O
ct

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

85
41

29
.9

00
48

85
5/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

the collected polyesters are split into secondary building blocks, namely, diols and diacids. Subsequently by
de-duplicating the same structure, we obtain a total of 267 diacids and 358 diols, which are listed in Sheet
S2 in the Supporting Information (data.xlsx). Ultimately, 95586 hypothetical polyesters are generated and
their T gs are predicted by the as-developed QSPR model (Figure 3d ), which are described as dataset
B and given in Sheet S3 in the Supporting Information(data.xlsx). Figure 3e lists the structures of some
hypothetical polyesters.

Figure 3. Design process of virtual polymers. Colors of Ri represent different substructures. a. Splitting
polyesters into diacids and diols, where Di and Ai represent the diol and the diacid, respectively. b. De-
duplicating the molecules with same structure that are generated during splitting. c. Exhaustive combination
of diol and diacid into hypothetical polyesters. d. Prediction of T g for virtual polyesters by using the as-
developed QSPR model. e. Examples of hypothetical polyesters.

2.5 Synthesis and characterization of polyesters

Synthesis of 10 selected polyesters from dataset B with diverseT gs is carried out via a successive esterification
and condensation two-stage polymerization process in a 250 mL three-neck flask equipped with mechanical
overhead stirrer, vacuum-tight stirrer bearings and distillation columns. Detailed synthesis procedure for
each polyester is shown in supporting information.

The T g values of final products are measured by differential scanning calorimetry (DSC) analysis. DSC was
carried out on a Q2000 (TA Instruments, USA) with a temperature range of -70 to 200 . The data are collected
from the second heating thermogram and the heating curves are presented in supporting information.

3.Results and Discussion

3.1 QSPR model and validation

A QSPR model was developed with 29 NI descriptors to quantify the relationship between the molecular
structure characteristics andT gs of 695 polyesters, as shown in Eq. (4). The norm descriptors (I ) and the
corresponding coefficients (b ) in the model are listed in Table S2 of the Supplementary Information.

4
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Figure 4 shows the predictability of the QSPR model. With 556 data points used as the training set and
139 data points used as the testing set, the scatter plot of predicted and experimentalT g values is shown
in Figure 4a . It is obvious that the majority of the data points are distributed close to the diagonal
line, which indicates that the model provides good prediction accuracy, with AAE < 20 andR 2 > 0.90.
The calculated and experimental T gs for the 695 polyesters are shown in the Sheet S1 of the Supporting
Information(data.xlsx). Moreover,R 2

training = 0.9054 andR 2
testing = 0.9077 are significantly greater than

0.6, proving the good predictive performance of the model. Meanwhile, the two R 2 are very close, implying
that the model has strong generalizability and is capable of well learning the relationship between the
chemical structure of polyesters and their associated T g.

n = 695; R 2 = 0.9060;Q 2
LOO-CV= 0.8889; AAE = 17.7197

where nA is number of atoms,nnH is number of non-hydrogen atoms;MSF are calculated with the polyester
structures (H-suppressed); bi is the parameters andIi is the norm descriptors.

Figure 4. Results of the QSPR model. (a) plot of calculatedvs. experimental T g of training set and testing
set, (b) plot of internal validation via LOO-CV, (c) distribution of errors of the QSPR model and LOO-CV,
(d) result of the 10,000Y -randomization tests and (e) William plot.

To further confirm the robustness of the developed model, the scatter plots of the experimental and LOO-
CV estimated values, as well as the error distributions for the LOO-CV and the QSPR model, are shown
inFigure 4b and Figure 4c , respectively. Specifically,Q 2

LOO-CV is 0.8889 and greater than 0.5, showing
that the model is robust and stable. Further, the absolute error (AE) distribution of LOO-CV is generally
in good agreement with that of the QSPR model, with most polyesters having an error ofT g within 20 .

Table 1. Statistical parameters of the QSPR model

Methods Variables Samples Values

LOO-CV Q2
LOO-CV 695 0.8889

AAELOO-CV 695 18.9256
External validation R2

training 556 0.9054
R2

testing 139 0.9077

5
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Methods Variables Samples Values

AAEtraining 556 17.6530
AAEtesting 139 17.9863

Overall data set R2 695 0.9060
AAE 695 17.7197

Y -random validation 695 0.0521
695 0.0038

Subsequently, 10,000 times of Y -random validation was performed to assess the chance correlation. Plot
ofR Y

2 versusQ Y
2 is shown in Figure 3d. The average values of R Y

2 andQ Y
2 for the 10,000Y -random

validation are 0.0521 and 0.0038, respectively, which are much lower than the R 2 andQ 2
LOO-CV of the

developed model. Therefore, the influence of randomness of the dataset itself on the instability of the QSPR
model can be ruled out. William plot was used to visualize the developed model’s application domain.
Almost all the plots, as depicted in Figure 4e , are within the tolerance of three standard deviations of [-3,
3] and critical leverage level (h *=0.1619). It therefore can be concluded that the QSPR model is reliable to
predict T g. The values of relevant statistical parameters of QSPR model are shown inTable 1 .

3.2 Virtual Library of Designed Polyesters

Traditional polyesters are mainly made by the condensation of diacids and diols. In silico retrosynthesis
route enables the generation of a virtual library of 95,586 polyesters, i.e., dataset B, based on 695 original
polyesters. From the computer-aided design point of view, we assumed that once the ester group is correctly
present the corresponding polyester is yielded. To illustrate the relationship between datasets A and B more
clearly, we then visualized the two datasets separately in two-dimensional chemical space, as shown in Figure
5a . It shows that the chemical diversity of the two datasets is quite similar, while compared to dataset A
(blue points), dataset B (pink points) clearly covers more possible chemical structures of polyesters. This
result implies these virtual polyesters significantly expand the chemical space of the existing polyesters and
effectively overcomes the issue of data scarcity. In silico design of these virtual polyesters helps us to explore
new polyesters with desired properties from a wider region of chemical space.

However, it is unrealistic to obtain over 95000 polyesters by experimental synthesis. By using the as-
developed QSPR model,T gs of the hypothetical polyesters in dataset B were predicted. Figure 5b depicts
the distributions ofT gs in datasets A and B. Similar trend in both datasets demonstrates that the hypo-
thetical polyesters are almost consistent with the polyesters already presented in the database A. Therefore,
a trustworthy virtual library for polyester has been successfully established, expanding the existing space for
polyester materials and providing certain data support for the synthesis analysis of polyester materials.

6
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Figure 5 . (a) Chemical space visualization of the dataset A (blue points) and the dataset B (pink points).
(b)T g distribution of datasets A and B in red and blue, respectively. There are 269 and 47708 polyesters
withT g higher than 100 in datasets A and B, respectively. Samples of polyesters in dataset B with differentT

g range show in (c) T g> 100 , (d) 0 < T g< 100 and (e) T g < 0 .

Polyesters with high T g have good heat resistance and thermal stability, thereby offering great potential in
high temperature and harsh environments. Typically, we describe polyester materials as high-T g polyester
if theT g > 100 . As shown inFigure 5b , in dataset A, there are only 269 polyesters withT g higher than
100 , which may also include some polyesters that are not easy to synthesize experimentally. By comparison,
there are 47708 virtual polyesters with T g higher than 100 in dataset B, which means that more than
170 times of potential candidates for high-T g polyester materials are explored. These screened high-T g

polyesters provide a sound support for further synthesis of high-temperature resistant polyester materials.
It can be found that the screened high-T g candidates all have ring groups, as shown in Figure 5c , such
as benzene and alicyclic rings, and the presence of these ring groups increases the rigidity of the polyester
chains, which leads to high T g values. Additionally, by screening the candidate polyesters with 0 <T g

< 100 (Figure 5d ), compared with the candiates withT g>100,these have more aliphatic carbon chain
and fewer rigid structures. And forT g < 0 (Figure 5e ), almost all the candidates have longer aliphatic
carbon chain structures. LowerT g is ascribed to the longer chains polyester molecules more flexible and
facilitating an easier inter-chain segment movement. As shown in Figure 5e , the T gof M7 is lower than
that of M95760, which is attributed to all aliphatic chain structure of M7, while the rigid hexatomic ring in
M95760 trade-offs the chain flexibility.

3.3 Experimental validation

Lastly, 10 polyesters with different predictedT gs were selected from the dataset B for experimental synthesis
and characterization to verify the design rationality and further validate the predictability of the model. The
DSC curves for determining T gs are provided in the supporting information (Figure S2 with data summarized
in Table S4).Figure 6 visualizes that the experimentally determinedT gs are in good agreement with those

7
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predicted ones. The AAE of these screened polyesters is 17.4045 , which is smaller than the model’s AAE of
17.7197 . Also, the effect of various groups on T g were then compared. For instance, cyclic alkanes in diols
contribute more to T gthan linear alkanes do for M4584, M4594, and M4642. For long chain acids, the T

gs of the polyesters decrease as the length of the chain increases (M1413, M1612 and M20). This is mostly
caused by the increased chain flexibility by contrast to that of the cycloalkanes, which gives the polyesters
lowerT gs. Additionally, it is found that para-phthalic acids (e.g., M436 and M26484) are more beneficial
for improvingT g when compared to ortho-phthalic acids.

Figure 6 . Comparison of T g of the selected 10 polymers between the experimental method and the
theoretical calculation method.

Conclusions

In this contribution, we have successfully developed the QSPR model for evaluating the chemical structure
of 695 polyesters with respect to their T g through a series of rigorous validations. Specifically, R 2 > 0.90
and Q 2

LOO-CV = 0.88. Following this, a virtual library of nearly 100,000 polyesters has been built by in
silico retrosynthesis, which greatly expands the available space for polyester materials. Their associatedT

gs were predicted by the developed model as well. t-SNE shows significant chemical overlap with the known
polyester database, i.e., dataset A, and the virtual library, i.e., dataset B, which demonstrates the rationality
and feasibility of the design process.

Subsequently, 10 designed polyesters with differentT gs located in different temperature ranges were screened
out for experimental synthesis. Good agreement between the experimental and predicted T gs not only
demonstrates the accurate prediction performance of the QSPR model, but also verifies the efficiency of

8
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the design method. The rationality of the relationship between chemical structures andT gs was analyzed
accordingly.

The methodology presented and the results gained in this work offer the potential to accelerate the design
of high-performance polyesters, and may drive future product development of polymer industry.
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