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Abstract

Monte Carlo simulations have long been a widely used method in the industry for control system validation. They provide an

accurate probability measure for sufficiently frequent phenomena, but are often time-consuming and may fail to detect very

rare events. Conversely, deterministic techniques such as μ or IQC-based analysis allow fast calculation of worst-case stability

margins and performance levels, but in the absence of a probabilistic framework, a control system may be invalidated on the

basis of extremely rare events. Probabilistic μ-analysis has therefore been studied since the 1990s to bridge this analysis gap

by focusing on rare but nonetheless possible situations that may threaten system integrity. The solution adopted in this paper

implements a branch-and-bound algorithm to explore the whole uncertainty domain by dividing it into smaller and smaller

subsets. At each step, sufficient conditions involving μ upper bound computations are used to check whether a given requirement

– related to the delay margin in the present case – is satisfied or violated on the whole considered subset. Guaranteed bounds

on the exact probability of delay margin satisfaction or violation are then obtained, based on the probability distributions of

the uncertain parameters. The difficulty here arises from the exponential term classically used to represent a delay, which must

be replaced by a rational expression to fit into the Linear Fractional Representation (LFR) framework imposed by μ-analysis.

Two different approaches are proposed and compared in this paper. First, an equivalent representation using a rational function

of degree 2 with the same gain and phase as the real delay, which results into an LFR with frequency-dependent uncertainty

bounds. Then, a Padé approximation, whose order should be chosen carefully to handle the trade-off between conservatism and

complexity. A constructive way to derive minimal LFR from Padé approximations of any order is also provided as an additional

contribution. The whole method is first assessed on a simple satellite benchmark, and its applicability to realistic problems

involving a larger number of states and uncertainties is then demonstrated.
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Abstract

Monte Carlo simulations have long been a widely used method in the industry for control system validation. They provide
an accurate probability measure for sufficiently frequent phenomena, but are often time-consuming and may fail to detect very
rare events. Conversely, deterministic techniques such as µ or IQC-based analysis allow fast calculation of worst-case stability
margins and performance levels, but in the absence of a probabilistic framework, a control system may be invalidated on the
basis of extremely rare events. Probabilistic µ-analysis has therefore been studied since the 1990s to bridge this analysis gap
by focusing on rare but nonetheless possible situations that may threaten system integrity. The solution adopted in this paper
implements a branch-and-bound algorithm to explore the whole uncertainty domain by dividing it into smaller and smaller
subsets. At each step, sufficient conditions involving µ upper bound computations are used to check whether a given requirement
– related to the delay margin in the present case – is satisfied or violated on the whole considered subset. Guaranteed bounds
on the exact probability of delay margin satisfaction or violation are then obtained, based on the probability distributions of
the uncertain parameters. The difficulty here arises from the exponential term classically used to represent a delay, which must
be replaced by a rational expression to fit into the Linear Fractional Representation (LFR) framework imposed by µ-analysis.
Two different approaches are proposed and compared in this paper. First, an equivalent representation using a rational function
of degree 2 with the same gain and phase as the real delay, which results into an LFR with frequency-dependent uncertainty
bounds. Then, a Padé approximation, whose order should be chosen carefully to handle the trade-off between conservatism
and complexity. A constructive way to derive minimal LFR from Padé approximations of any order is also provided as an
additional contribution. The whole method is first assessed on a simple satellite benchmark, and its applicability to realistic
problems involving a larger number of states and uncertainties is then demonstrated.

I. INTRODUCTION

Time delays are an integral part of almost every control engineering problem. They introduce linear phase shifts that limit
the control bandwidth and affect closed-loop stability. They can be constant or time-varying, although constant ones are
considered in most studies, including this one. The objective of this paper is to quantify the probability that a given delay
margin requirement is satisfied or violated for a (potentially high-dimensional) uncertain linear system. Moreover, the focus
is on detecting rare but nonetheless possible uncertainty combinations that may threaten system integrity, i.e. on studying
cases where the probability of violation is very low but not zero. As highlighted in the abstract, probabilistic µ-analysis has
been identified for many years as a serious alternative to Monte Carlo simulations to analyze such rare events [1], [2], [3].
It combines efficient µ-based algorithms with a branch-and-bound scheme to explore the whole uncertainty domain, also
considering probability distributions on the uncertain parameters [4]. Some efficient algorithms already exist to study robust
stability, performance, as well as gain, phase and disk margins, see e.g. [5], [6]. It therefore seems natural to extend this
approach to delay margin analysis.

The most common techniques to analyze the impact of delays on stability or performance in the time domain are based on
Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin functions [7]. Driven by the classical Lyapunov theory, they aim
at constructing energy-storage function(al)s for time-delay closed-loop systems. The Lyapunov–Krasovskii theorem requires
the time derivative of the functionals to be negative definite along the solutions of the system, while the Lyapunov–Razumikhin
condition requires negative definiteness only for the solutions that tend to escape the neighborhood of the equilibrium [8].
Research on Lyapunov methods and their applications to time-delay systems are numerous. A lot of literature deals with
deterministic Linear Time Invariant (LTI) problems either in the presence or absence of uncertainty, see e.g. [9], [10]. The
use of Lyapunov function(al)s usually leads to criteria that can be expressed in terms of Linear Matrix Inequalities (LMI) and
solved with dedicated solvers. For small-scale problems, LMI-based computations are very suitable and fast. Nevertheless,
they become quite time-consuming when realistic high-dimensional systems with multiple uncertainties are considered. There
are also contributions dedicated to the analysis of nonlinear, time-varying or stochastic systems, as in [11], [12]. But their
application to high-order systems also remains tricky.

Most frequency domain approaches are based on the small-gain theorem and generally rely on µ-analysis or Integral
Quadratic Constraints (IQC). µ-analysis makes use of the structured singular value to study robust stability and H∞
performance of linear systems, while accounting for the structure of the uncertainties [13]. Guaranteed and very accurate
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bounds on stability margins and performance levels can usually be obtained quickly, even for real-world problems [14].
Examples of how µ-analysis can be used to study time-delay systems are proposed in [15], [16], [17]. IQC analysis can
be interpreted as the combination of (scaled) small gain techniques and positivity/passivity techniques which study the
interconnection of a linear operator with a non-linearity (Lur’e problem) [18]. It can simultaneously deal with uncertainties,
time-varying parameters and non-linearities, and therefore allows to analyze a broader range of systems. However, it can be
conservative and requires the use of an LMI solver (unlike µ-analysis for which efficient LMI-free techniques exist), leading
to significant computational times for high-order systems. Applications of IQC to the robustness analysis of time-delay
systems can be found in [18], [19], [20].

Given the objective of this study and this brief literature review, frequency domain analysis techniques are naturally
preferred to time domain ones in the sequel. The commonly accepted representation of a constant delay in the frequency
domain is the exponential term e−sτ , where s is the Laplace variable and τ is the considered time delay in seconds.
Nevertheless, most approaches require it to be replaced by a polynomial or rational expression to fit into the Linear Fractional
Representation (LFR) framework. This step has a major influence on the conservatism of the analysis. In some studies,
time delays are eliminated by covering their value sets with unit disks, which leads to overly conservative results [21].
Various other approaches replace the exponential term by Padé approximations [22], Taylor series expansions [23] or the
Laguerre formula [24]. Introducing more complexity by increasing the order of the approximation improves accuracy, at the
price of a higher computational cost. Alternatively, an equivalent replacement function is presented in [16], which has the
same properties (unit gain and phase varying linearly with frequency) as the actual time delay. However, a parameter with
frequency-dependent bounds is introduced, which makes the use of standard robustness analysis techniques more difficult,
as explained in Section IV-B. In this context, two different approaches – introduced in Section IV-A – are investigated
and compared in this paper. First, a new equivalent representation using a rational function of degree 2, simpler than that
of [16], is introduced and transformed into a minimal LFR. Second, a classical Padé approximation is considered, and a
new constructive way to derive a minimal LFR whatever the order is provided.

The main contribution of this paper is then to propose a branch-and-bound algorithm, which explores the whole uncertainty
domain and uses the aforementioned characterizations to compute tight bounds on the probability of delay margin violation
for linear systems in the presence of parametric uncertainties with given probability distributions. In particular, sufficient
conditions involving µ upper bound computations are introduced in Sections IV-B an IV-C to check whether the delay margin
requirement is satisfied or violated on an entire subset of the uncertainty domain. The paper is organized as follows. The
considered problem is first formally stated in Section II. Section III gives a brief overview to the proposed solutions and
highlights the contributions. The main theoretical results are then detailed in Section IV, as well as all practical algorithms.
The performance of the method in terms of accuracy and computational time is finally evaluated in Section V, by applying
it to a set of benchmarks of increasing complexity.

II. PROBLEM STATEMENT

Let us consider the following continuous-time uncertain LTI system:{
ẋ = A(δ)x+B(δ)u

y = C(δ)x+D(δ)u
(1)

The real uncertain parameters δ = (δ1, . . . , δN ) are bounded and without loss of generality normalized, so that the whole set
of admissible uncertainties is covered when δ ∈ Bδ = [−1 1]

N . They are independent random variables, whose probability
density functions f are supported on the bounded interval [−1 1]. It is assumed that A(δ), B(δ), C(δ), D(δ) are polynomial
or rational functions of the δi with real coefficients, and that system (1) can be transformed into a Linear Fractional
Representation y = Fu(M(s),∆)u, as defined in [13] and shown in Fig. 1. In simple words, the uncertainties are separated
from the nominal LTI system M(s) and isolated in a block-diagonal operator ∆ = diag(δ1In1 , . . . , δNInN

) ∈ Rp×p, where
Ini

is the ni × ni identity matrix. The set of matrices with the same block-diagonal structure as ∆ is denoted ∆. Let
B∆ = {∆ ∈ ∆ : δ ∈ Bδ} and D∆ = {∆ ∈ ∆ : δ ∈ D} be the subsets of ∆ corresponding to Bδ and to a given box
D ⊂ Bδ respectively.

In this work, system (1) and Fig. 1 describe a control loop opened at the place where the delay margin should be computed.
The closed-loop interconnection is therefore recovered by applying a unit negative feedback between y and u, i.e. by setting
G(τs) = 1 in Fig. 2. Using these notations, probabilistic delay margin analysis can be formalized as follows:

Problem 2.1: Compute the probability P
φ

∆,f (M(s)) that the delay margin is smaller than a given threshold φ when
∆ ∈ B∆ for the negative feedback loop obtained by connecting y to u in Fig. 1.

In other words, P
φ

∆,f (M(s)) is the probability that the interconnection of Fig. 2 becomes unstable for some G(τs) = e−τs,
τ ∈ [0 φ]. A control system can then be rejected or validated depending on whether P

φ

∆,f (M(s)) does or does not exceed
a given threshold ε. Two approaches are presented in Section IV to compute tight bounds on P

φ

∆,f (M(s)) for Single-Input
Single-Output (SISO) systems, i.e. when u ∈ R and y ∈ R. The global underlying idea is first summarized in Section III.



Fig. 1: Linear Fractional Representation y = Fu(M(s),∆)u

Fig. 2: Feedback loop for delay margin analysis

Remark 2.1: Most of the theoretical considerations in this paper rely on the structured version of the small gain theorem,
see Theorem 11.8 of [13]. So strictly speaking, ∆ should belong to an open set, i.e. Bδ should be equal to ]−1 1[

N . The
deliberate choice was made to define it as a closed set for two reasons. Firstly, this is relevant from an engineering point of
view. And secondly, the main objective here is to compute probabilities, and the probability that δ belongs to the boundary
of Bδ (which is a space of dimension N − 1) is zero, so considering open or closed sets does not affect the results.

III. OVERVIEW OF THE PROPOSED SOLUTION

In recent years, a significant effort has been put in the development of probabilistic µ theory and its implementation in
the STOchastic Worst Case Analysis Toolbox (STOWAT) [5]. Probabilistic µ-analysis is not intended to replace either its
deterministic counterpart or Monte Carlo simulations. It actually finds its place between the two as shown in Fig. 14 of
[4]. If an excessive degradation in stability or performance is detected by deterministic worst-case µ-analysis, probabilistic
µ can provide more insight into the probability of failure. It allows for very fast iterations between probability levels
and uncertainty characterization, and makes uncertainty resizing possible at medium cost. Moreover, it provides useful
information to the Monte Carlo analysis carried out during the final stage of the Verification & Validation (V&V) process.
Probabilistic stability and H∞ performance were studied first [25], [4], followed by gain/phase/disk margins, in the SISO
case initially [6], and then for Multiple-Input Multiple-Output (MIMO) systems [26]. Lately, a first delay margin analysis
algorithm was introduced in [27]. The present work follows on from [27] and aims to provide consolidated results on
probabilistic delay margin analysis.

As with the other probabilistic stability margins, the proposed approach combines µ-based tools with a branch-and-bound
algorithm to explore the whole uncertainty domain Bδ . The delay margin is first computed at the center of Bδ , i.e. for
∆ = 0. If it is larger (resp. smaller) than the desired threshold φ, a satisfaction (resp. violation) test is then performed to
check whether the delay margin requirement is satisfied (resp. violated) on the entire domain Bδ using sufficient conditions
involving µ upper bound computations (see Sections IV-B and IV-C). If this cannot be guaranteed, Bδ is finally partitioned
into smaller boxes and this process is repeated until each box has guaranteed sufficient/insufficient delay margin, or is small
enough to be neglected (see Section IV-D). Guaranteed upper and lower bounds on the exact probability of delay margin
violation P

φ

∆,f (M(s)) are finally obtained, based on the probability distributions f of the uncertain parameters δ, thus
solving Problem 2.1.

As highlighted in Section I, a preliminary step to using µ-analysis is to transform the interconnection of Fig. 2 into an LFR,
which requires to replace the exponential delay G(τs) = e−τs with a rational function. In [27], a simple function of degree
2 was proposed with exactly the same characteristics as the delay, i.e. unitary gain and linear phase. A major difficulty with
respect to the gain/phase/disk margins is that this equivalent representation introduces a parameter with frequency-dependent
bounds that adds to the uncertainties already present in ∆. An algorithm was proposed in [27] to take this dependence



on frequency into account, but only for the satisfaction test. In contrast, a second-order Padé approximation was used for
the violation test, which allows to implement the same approach as for the gain/phase/disk margins, but introduces some
conservatism as highlighted in [27]. In this context, the main contributions of this paper are twofold:

1) Higher-order Padé approximations are considered in Section IV-C for the violation test. It is shown in Section V-A
that very accurate results can be obtained with almost no increase in computational time. In addition, a method to
transform Padé approximations of any order into minimal LFR is introduced in Section IV-A-2, which is a new result.

2) An alternative method based on the aforementioned equivalent characterization of the delay is proposed for the
violation test in Section IV-C. A thorough comparison of both approaches is performed in terms of conservatism
and computational efficiency in Sections IV-C and V.

Moreover, all theoretical results are carefully demonstrated, the algorithms are thoroughly documented, and the applicability
of the proposed approach to realistic systems with a larger number of states and uncertainties is studied, which was not
carried out in [27].

IV. PROBABILISTIC DELAY MARGIN

A. Interconnection for delay margin analysis

The negative feedback loop of Fig. 2 is first built from the LFR of Fig. 1. G(τs) represents a time delay τ ∈ [0 φ]:

G(τs) = e−τs (2)

and the nominal closed-loop uncertain system is obtained for τ = 0, i.e. G(τs) = 1. G(τs) does not have a rational
dependence on τ . Therefore, it should be replaced with a rational function to be able to build an LFR and apply robustness
tools such as µ-analysis. Two solutions are proposed in this paper. They are introduced below and their use is discussed
further in Sections IV-B and IV-C.

1) Equivalent representation: The first approach was introduced in [27], and is inspired by [16] while being significantly
simpler. It relies on the fact that G(τs) has a unitary gain and introduces a frequency-dependent phase shift equal to −τω at
the frequency ω. The delay margin is thus guaranteed to be larger than φ if the system remains stable for any phase shift in
the interval I(ω) = [−min(φω, 2π) 0] at the frequency ω. G(τs) can therefore be equivalently replaced with any rational
expression Φ(α) such that |Φ(α)| = 1, and whose phase ∠Φ(α) covers the interval I(ω) when α covers [0 αmax(ω)]. The
following choice is made:

Φ(α) =
2jα2 − 2(1 + j)α+ 1

−2jα2 − 2(1− j)α+ 1
(3)

for which:

αmax(ω) =


1− t(ω)−

√
1 + t(ω)2

2
if ω < π/φ

0.5 if ω = π/φ

1− t(ω) +
√

1 + t(ω)2

2
if ω > π/φ

(4)

and t(ω) = tan −min(φω,2π)
2 . To get equation (4), just note that:

∠Φ(α) = 2 arctan
2α(α− 1)

1− 2α
(5)

which gives for α = αmax(ω):

tan
∠Φ(αmax(ω))

2
= t(ω) =

2αmax(ω)(αmax(ω)− 1)

1− 2αmax(ω)
(6)

and finally 2αmax(ω)2 + 2(t(ω) − 1)αmax(ω) − t(ω) = 0. The motivation for this choice of Φ(α) is that ∠Φ(α) and
αmax(ω) are simple functions with a smooth behavior, as shown in Fig. 3.

The function Φ(α) being rational in α, il can be written as an LFR Fu(T,∆m), where T is a static matrix defined as:

T =

 2 −j 1
2 −2j 2
0 −2j 1

 (7)

and ∆m = αI2, α ∈ [0 αmax(ω)], contains a single parameter with frequency dependent bounds. Standard matrix
manipulations based on the Redheffer star product [13] finally allow to equivalently transform the interconnection of Fig. 2,
where G(τs) is replaced with Φ(α), into that of Fig. 4. Note that a rational function Φ(α) of degree 1 in α would lead to
a simpler LFR, where α is not repeated in ∆m. This is however not possible here: α would indeed tend to ±∞ to allow
∠Φ(α) to cover [−2π 0], but the µ-based tools used in the sequel require the ∆ block of the LFR to be bounded.



Fig. 3: Functions ∠Φ(α) and αmax(ω) involved in the equivalent representation of the delay function

Fig. 4: Transformation of the interconnection of Fig. 2

2) Padé approximation: A more common approach to deal with the non-rational dependence on τ of the exact time-
delay (2) is to replace it with a Padé approximation Ψn(τs) [23]. The latter is characterized by a unitary gain as for the
delay. However, its phase is not a linear function of the frequency, but becomes closer to −τω when the order n of the
approximation increases, as shown in Fig. 5 (left). The choice of n therefore allows to handle the trade-off between accuracy
and complexity. On the one hand, it has been observed in [27] that a simple second-order approximation sometimes leads
to conservative results when used in a probabilistic µ framework, which was to be expected given the discrepancy between
the phase plot of the delay and that of the second-order approximation. On the other hand, it will be shown in Section V-A
that higher-order approximations usually solve this problem, with an almost negligible increase in computational time. A
fifth-order approximation typically appears to be a good candidate, since its phase plot almost coincides with that of the
delay over the frequency interval [0 2π].

Fig. 5: Phase plots of the delay function and its (scaled) Padé approximations for τ = 1s

An important property of Padé approximations in the context of this paper is that their phase is always greater than that
of the delay, regardless of the order. This is illustrated in Fig. 5 (left) for n = 2 . . . 5. It is also possible to define scaled



versions Ψn(λnτs) for n ≥ 3, whose phase is, this time, always lower than that of the delay over the interval [0 2π]. It
is shown in [28] that λn = ωn/2π, where ωn is the phase crossover frequency of Ψn(τs) at the −2π line. An example is
shown in Fig. 5 (right) for n = 3. This is formalized in Lemma 4.1, which primarily builds upon Lemma 5 of [28].

Lemma 4.1: The phase functions ∠Ψn(τω) and ∠Ψn(λnτω) of the Padé approximation and its scaled version satisfy:

−τω ≤ ∠Ψn(τω) ≤ 0 ∀ω ∈ [0 ωn] and ∀n ≥ 0 (8)
−2π ≤ ∠Ψn(λnτω) ≤ −τω ∀ω ∈ [0 2π] and ∀n ≥ 3 (9)

Proof: Lemma 5 of [28] proves the left-hand side of (8) for n ≥ 1 and the right-hand side of (9) for n ≥ 3. Ψ0(τω) = 1,
i.e. ∠Ψ0(τω) = 0, which proves (8) for n = 0. For n ≥ 1, it can be shown using Lemma 4 of [28] that:

d∠Ψn(λnτω)

dω
=

−λnτVn−1((λnτω)2)

Vn−1((λnτω)2) + (λnτω)2n
(10)

where Vn−1 is a polynomial of degree n−1 with strictly positive coefficients. The fact that ∠Ψn(0) = 0 and d∠Ψn(τω)
dω ≤ 0

(obtained by setting λn to 1 in (10)) shows that ∠Ψn(τω) ≤ 0, i.e. proves the right-hand side of (8). Finally, the fact that
∠Ψn(λnτ 2π) = ∠Ψn(τωn) = −2π and d∠Ψn(λnτω)

dω ≤ 0 shows that ∠Ψn(λnτω) ≥ −2π for all ω ∈ [0 2π], i.e. proves
the left-hand side of (9). �

Like Φ(α) above, Ψn(τs) is a rational function. It can therefore be written as an LFR Fu(Pn(s),∆m), where Pn(s) is
a nth-order LTI system and ∆m = βIn contains a single normalized parameter β = −1 + 2τ/φ ∈ ]−1 1], as stated in
Proposition 4.1.

Proposition 4.1: The Padé approximation Ψn(τs) of any order n ≥ 1 of the time delay τ > 0:

Ψn(τs) =

n∑
i=0

(−1)iai(τs)
i

n∑
i=0

ai(τs)
i

, ai =
(2n− i)!
i!(n− i)!

(11)

can be written as a Linear Fractional Representation Fu(Pn(s), βIn), where β = −1 + 2τ/φ and φ > 0. A state-space
representation of Pn(s) is given by:

AP =
2

φ



−an−1

an
−an−2

an−1
0 . . . 0

an−1

an
0 −an−3

an−2

. . .
...

...
...

. . . . . . 0

...
...

. . . −a0a1
(−1)n an−1

an
0 . . . . . . 0


∈ Rn×n (12)

BP =



1 1 0 . . . 0 2

−1 0 1
. . .

... 0
...

...
. . . . . . 0

...
...

...
. . . 1

...

(−1)n+1 0 . . . . . . 0 1 + (−1)n+1


∈ Rn×(n+1) (13)

CP =
2

φ



an−1

an
0 . . . 0

0 an−2

an−1

. . .
...

...
. . . . . . 0

0 . . . 0 a0
a1

(−1)n+1 an−1

an
0 . . . 0


∈ R(n+1)×n (14)



DP =



−1 0 . . . 0 0

0 −1
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 −1 0

(−1)n 0 . . . 0 (−1)n

 ∈ R(n+1)×(n+1) (15)

where ai−1

ai
= (2n−i+1)i

n−i+1 . This representation is normalized in the sense that β ∈ ]−1 1] ⇔ τ ∈ ]0 φ], and minimal since
the order of Pn(s) and the number of repetitions of β are as small as possible (both equal to n).
Proof: See appendix. �

Standard matrix manipulations based on the Redheffer star product [13] finally allow to equivalently transform the intercon-
nection of Fig. 2, where G(τs) is replaced with Ψn(τs), into that of Fig. 4, where ∆m = βIn.

Let us now consider a box D ⊂ Bδ . In both cases – equivalent representation and Padé approximation – the interconnection
N(s)−diag (∆,∆m) ,∆ ∈ D∆, of Fig. 4 is normalized and replaced with Ñ(s)−diag (∆̃,∆m), ∆̃ ∈ B∆. Several methods
are then introduced in Sections IV-B and IV-C to check whether the delay margin requirement φ introduced in Section II is
satisfied or violated on the entire box D.

Remark 4.1: Both the equivalent representation (3) and the Padé approximation (11) of the delay (2) lead to the intercon-
nection of Fig. 4, with the same ∆, but with different N(s) and ∆m. In the sequel, ∆m is made explicit when necessary to
avoid confusion: Ñ(s)− diag (∆̃, αI2) (resp. Ñ(s)− diag (∆̃, βIn)) corresponds to the equivalent (resp. Padé-based) LFR.

B. Satisfaction test

Based on the equivalent representation (3) of the delay function, Proposition 4.2 provides a necessary and sufficient
condition to verify whether the delay margin requirement is satisfied on an entire box D ⊂ Bδ .

Proposition 4.2: The delay margin is larger than φ on a given box D ⊂ Bδ if and only if the interconnection Ñ(s) −
diag (∆̃, αI2) is stable ∀∆̃ ∈ B∆ and ∀α ∈ [0 αmax(ω)].
Proof: The delay margin is larger than φ on D iff the interconnection of Fig. 2, where G(τs) = e−τs, is stable ∀∆ ∈ D∆

and ∀τ ∈ [0 φ]. This condition remains necessary and sufficient first when G(τs), τ ∈ [0 φ], is replaced with Φ(α),
α ∈ [0 αmax(ω)], then when the resulting interconnection is replaced with that of Fig. 4, where ∆m = αI2, α ∈ [0 αmax(ω)],
and finally when ∆ is normalized. Indeed, these successive interconnections are rigorously equivalent. �

As stated in Lemma 4.2, Proposition 4.2 boils down to solving a non-standard µ-analysis problem, where the bound on α
is frequency-dependent.

Lemma 4.2: The following two conditions are equivalent:
1) Ñ(s)− diag (∆̃, αI2) is stable ∀∆̃ ∈ B∆ and ∀α ∈ [0 αmax(ω)]
2) µ(Ñω(jω)) ≤ 1 ∀ω ≥ 0

where the interconnection Ñω(s)− diag (∆̃, ξI2) is obtained from Ñ(s)− diag (∆̃, αI2) by normalizing α at the frequency
ω, i.e. by setting α = αmax(ω)

2 (ξ + 1), ξ ∈ [−1 1].
Proof: According to the definition of the structured singular value µ and the structured version of the small gain theorem,
1) ⇒ 2). The converse is not straightforward, since Nω(s) has some complex coefficients coming from the transformation
matrix T introduced in (7). It must be shown than there is no need to consider negative frequencies in condition 2). Assume
that µ(Ñω(jω)) ≤ 1 for some ω > 0. This means that:

det
(
I − Ñω(jω) diag

(
∆̃, ξI2

))
6= 0 (16)

∀∆̃ ∈ B∆ and ∀ξ ∈ [−1 1]. This is equivalent to:

det (I −M(jω) diag (∆,−G(jω))) 6= 0 (17)

Noting that det(X) = det(X) for any complex square matrix X , that ∆ is a real matrix, and that M(s) has real coefficients,
condition (17) is in turn equivalent to:

det
(
I −M(−jω) diag

(
∆,−G(jω)

))
6= 0 (18)

According to equation (2), G(jω) = e−jτω = ejτω = G(−jω). Therefore, condition (18) is equivalent to:

det (I −M(−jω) diag (∆,−G(−jω))) 6= 0 (19)

This shows that the non-singularity condition (17) – and therefore (16) – is also satisfied when ω is replaced with −ω, and
that condition 2) is sufficient to cover both positive and negative frequencies, which means that 2) ⇒ 1). �



A classical approach to solve the µ-analysis problem of Lemma 4.2 is to replace the whole frequency range with a finite
grid (ωk)k, and check if µ(Ñωk

(jωk)) ≤ 1 for all k (due to NP-hardness, upper bounds µ(Ñωk
(jωk)) are computed in

practice instead of the exact values, typically using the (D,G)-scaling formulation of [29]). But this strategy is doomed to
fail. When the box D gets closer to the limit between the domains of delay margin satisfaction and violation, the peak value
of µ tends to 1 and the risk of missing critical frequencies where µ > 1 increases. Adding more frequencies to the grid
can be tempting, but the computational time quickly becomes prohibitive. Moreover, several tests have shown that some
frequencies where µ > 1 always end up being missed, thus leading to the erroneous claim that the delay margin requirement
is satisfied.

A better approach relies on the Hamiltonian-based algorithm of [30], which computes an entire frequency interval on
which a µ upper bound remains valid, assuming that all uncertainties have constant bounds. This algorithm can be used
as is for ω ≥ 2π/φ, since in this case αmax(ω) = 1, see Fig. 3 (right). However, a three-step adaptation formalized in
Algorithm 1 has to be introduced for ω ∈ [0 2π/φ], where αmax(ω) is frequency-dependent:

1) The method of [30] is first applied at a given frequency ωk, assuming that all uncertainties (including α) have constant
bounds. This leads to an interval

[
ω0
k ω

0
h

]
including ωk on which µ(Ñωk

(jω)) ≤ 1 with the D,G scalings computed
at ωk. But the upper bound αmax(ω) on α actually increases with frequency for the considered delay margin problem,
as shown in Fig. 3 (right). The real objective is therefore to compute the largest possible interval [ωk ωk] including
ωk on which µ(Ñω(jω)) ≤ 1. The increase of αmax(ω) with frequency implies that ωk < ω0

k. On the other hand, ω0
h

is not an admissible upper bound, but ωk can be sought in the interval [ωk ω
0
h]. At this stage, all that is known is that[

ω0
k ω

0
k

]
, where ω0

k = ωk, is a valid interval. The next two steps respectively consist of decreasing its lower bound
and increasing its upper bound as much as possible.

2) As illustrated in Fig. 6 (left), a way to decrease the lower bound is to normalize α at ω1
k = ω0

k, and compute using [30]
an interval [ω1

k ω
1
k] on which µ(Ñω1

k
(jω)) ≤ 1, still considering the D,G scalings previously computed at ωk. ω1

k is
necessary lower than ω0

k, since the range of variation of α is lower than before, [0 αmax(ω1
k)] instead of [0 αmax(ωk)].

The same is repeated at frequencies ω2
k = ω1

k, . . . , ω
i
k = ωi−1

k until the decrease becomes marginal, which finally leads
to ωk = ωik. Stability is then proved for the gray region in Fig. 6 (left), which encompasses the area under the αmax(ω)
curve over the interval [ωk ωk].

3) The upper bound can be increased using a dichotomic search on the interval
[
ω0
k ω

0
h

]
. To do this, α is normalized at

the central frequency ω1
k, and it is first checked if µ(Ñω1

k
(jω0

k)) ≤ 1 with the D,G scalings previously computed at
ωk. If no, the dichotomy continues over the interval

[
ω1
k ω

1
h

]
=
[
ω0
k ω

1
k

]
. Otherwise, an interval [ω0

k ω
1
m] on which

µ(Ñω1
k
(jω)) ≤ 1 is computed, as depicted in Fig. 6 (right). If ω1

m ≥ ω1
k (case ilustrated in the figure), it can be

concluded that ω1
k = ω1

k is a lower bound on ωk, and the dichotomy continues over the interval
[
ω1
k ω

1
h

]
=
[
ω1
k ω

0
h

]
.

The same process is then repeated at the central frequency ω2
k. In the example of Fig. 6 (right), ω2

m ≤ ω2
k. ω2

m is thus
a lower bound on ωk, and the dichotomy continues over the interval

[
ω2
k ω

2
h

]
=
[
ω2
m ω2

k

]
. The frequencies ω3

k, . . . , ω
i
k

are determined in the same way until the increase becomes marginal, which finally leads to ωk = ωik (i = 3 in the
figure). Stability is then proved for the gray region in Fig. 6 (right), which encompasses the area under the αmax(ω)
curve over the interval [ωk ωk].

In practice, Algorithm 1 is applied repeatedly at frequencies ω1, ω2, . . . for which no µ upper bound is known yet, until:
• the union of all validity intervals [ω1 ω1] , [ω2 ω2] , . . . covers the whole frequency range, i.e. ∪k [ωk ωk] = R+, which

guarantees that the delay margin is larger than φ on D,
• or a frequency ωk is found such that µ(Ñωk

(jωk)) > 1, which means that either the delay margin is not larger than φ
on the entire box D, or the µ upper bound is too conservative to prove the converse (see Remark 4.2).

Remark 4.2: Although the equivalent representation (3) of the delay function is used, the condition of Proposition 4.2
becomes only sufficient if µ upper bounds are computed instead of the exact values. Fortunately, conservatism remains low
in most cases, as highlighted in [14]. Moreover, [31] shows that it tends to zero when the size of D tends to zero.

Remark 4.3: Algorithm 1 requires a single µ upper bound computation, at step 1.2. The associated D,G scalings are
then simply reused when applying the Hamiltonian-based technique of [30], which is quite fast since it boils down to an
eigenvalue computation. Therefore, computing the interval [ωk ωk] around ωk on which µ(Ñω(jω)) ≤ 1 is not much longer
than checking whether µ(Ñωk

(jωk)) ≤ 1. This allows to cover the whole frequency range R+ quickly.
Remark 4.4: It would be possible to use the scaled Padé approximation Ψn(λnτs) instead of the equivalent representa-

tion (3) of the delay function for the satisfaction test. Indeed, the phase variations of Ψn(λnτs) for all τ ∈ [0 φ] encompass
those of G(τs), as seen in Fig. 5 (right) and proved in Lemma 4.1. But unlike the equivalent representation, Ψn(λnτs) is
only an approximation. Its order n can be increased to improve accuracy, and it should in any case be greater than 3 for the
right-hand side of inequality (9) to be satisfied. As a consequence, the parameter β is repeated n ≥ 3 times in the resulting
LFR, whereas α (and therefore ξ) is only repeated twice with the equivalent representation. The latter is therefore both more
accurate and computationally less involving, that is why it is privileged here.



Fig. 6: Determination of the frequency interval [ωk ωk] on which µ(Ñω(jω)) ≤ 1 (left = lower bound, right = upper bound)

Algorithm 1 Validity interval [ωk ωk] around a given frequency ωk

Step 1 - Initialization:
1) normalize α at ωk to get the fully normalized interconnection Ñωk

(s)− diag (∆̃, ξI2), ∆̃ ∈ B∆, ξ ∈ [−1 1]
2) check whether µ(Ñωk

(jωk)) ≤ 1 using the (D,G)-scaling formulation of [29]
3) if not then STOP else use [30] with the D,G scalings of step 1.2 to compute an interval

[
ω0
k ω

0
h

]
around ωk on

which µ(Ñωk
(jω)) ≤ 1

Step 2 - Lower bound improvement:
initialization: set i = 0 and ω0

k = ωk
while ωik − ωik > ε do

1) set i← i+ 1 and ωik = ωi−1
k

2) normalize α at ωik and compute Ñωi
k
(s)

3) use [30] with the D,G scalings of step 1.2 to compute an interval [ωik ω
i
k] on which µ(Ñωi

k
(jω)) ≤ 1

end while
set ωk = ωik
Step 3 - Upper bound improvement:
initialization: set i = 0 and ω0

k = ωk
while ωih − ωik > ε do

1) set i← i+ 1 and ωik =
(ωi−1

k +ωi−1
h )

2

2) normalize α at ωik and compute Ñωi
k
(s)

3) if µ(Ñωi
k
(jωi−1

k )) ≤ 1 with the D,G scalings of step 1.2 then
• use [30] with the D,G scalings of step 1.2 to compute an interval [ωi−1

k ωim] on which µ(Ñωi
k
(jω)) ≤ 1

• if ωim > ωik then set
[
ωik ω

i
h

]
=
[
ωik ω

i−1
h

]
else set

[
ωik ω

i
h

]
=
[
ωim ωik

]
else set

[
ωik ω

i
h

]
=
[
ωi−1
k ωik

]
end while
set ωk = ωik

C. Violation test

Based on the Padé approximation (11) of the delay function, Proposition 4.3 provides a sufficient condition to verify
whether the delay margin requirement is violated on an entire box D ⊂ Bδ .

Proposition 4.3: The delay margin is lower than φ on a given box D ⊂ Bδ if ∀∆̃ ∈ B∆, ∃ β̂ ∈ [−1 1] such that the
interconnection Ñ(s)− diag (∆̃, β̂In) is unstable.



Proof: The delay margin is lower than φ on D iff ∀∆ ∈ D∆,∃τ ∈ [0 φ] such that the interconnection of Fig. 2, where
G(τs) = e−τs, is unstable. The fact that the left-hand side of equation (8) is not an equality means that there is a region
between the phase plots of G(φs) and Ψn(φs) that cannot be reached by any nth-order Padé approximation Ψn(τs), τ ∈ [0 φ].
So replacing G(τs) with Ψn(τs) makes the condition of Proposition 4.3 only sufficient. Finally, equivalently replacing the
interconnection of Fig. 2 with that of Fig. 4, and normalizing ∆ and τ , does not change the result. �

The condition of Proposition 4.3 cannot be directly evaluated by means of standard µ-based tools and is therefore replaced
by that of Proposition 4.4, which amounts to choosing the same value of β̂ for all ∆̃ ∈ B∆.

Proposition 4.4: The delay margin is lower than φ on a given box D ⊂ Bδ if ∃ β̂ ∈ [−1 1] such that the interconnection
Ñ(s)− diag (∆̃, β̂In) is unstable ∀∆̃ ∈ B∆.

Proof: The condition of Proposition 4.4 being obtained by imposing the same value of β̂ for all ∆̃ ∈ B∆, it implies that
of Proposition 4.3. �

As β̂ remains constant in Proposition 4.4, it can be integrated into Ñ(s) to form a reduced normalized interconnection
Ñr(s) − ∆̃, where Ñr(s) is unstable. It is then sufficient to check whether this reduced interconnection remains unstable
∀∆̃ ∈ B∆, which can be done easily by determining with standard µ-based tools if µ(Ñr(jω)) ≤ 1 ∀ω ≥ 0. Note that it is
sufficient to consider positive frequencies here. Indeed, Ñr(s) being the normalized interconnection of system (1) and the
Padé approximation (11), it only has real coefficients.

As suggested in [6], β̂ can be determined by studying the stability of the nominal interconnection Ñ(s)−diag (0p×p, βIn).
A finite number of values (βk)k which grid the interval [−1 1] are considered, and the one which moves a pole of the
interconnection the farthest in the right half-plane is selected to be β̂. One drawback is that it does not prevent a pole of
Ñr(s) from being very close to the imaginary axis, which might make the aforementioned µ-test fail. An alternative is to
select the βk which makes Ñr(s) unstable and maximizes the smallest distance between a pole of Ñr(s) and the imaginary
axis. It has been observed in practice that this strategy increases the chances of the aforementioned µ-test being successful.

Unlike the delay margin satisfaction test of Section IV-B, some conservatism is introduced here:
1) The Padé approximation (11) is used instead of the exact delay (2). This is admissible, since its phase is smaller in

absolute value than that of G(τs) for all frequencies, as stated in Lemma 4.1. But unlike Proposition 4.2, this makes
the condition of Proposition 4.3 non-necessary. Fortunately, high-order Padé approximations can be used to mitigate
this conservatism with almost no increase in computational time, see Remark 4.5 and Section V.

2) β̂ is fixed to a constant value in Proposition 4.4, which makes the condition even more non-necessary. But as the size
of D decreases along the iterations of the branch-and-bound algorithm (see Algorithm 2 in Section IV-D), there is
more and more chance that a single value of β̂ will suit.

3) The way to choose β̂ is intuitive, but it may not be optimal. It may even happen that no β ∈ (βk)k makes Ñr(s) unstable,
whereas there exists one in [−1 1] which does. In the latter case, the satisfaction test of Proposition 4.2 is performed
on the box D instead of the violation test of Proposition 4.4, and it inevitably fails due to the aforementioned unstable
configuration. Failing to detect a destabilizing β̂ therefore has no other consequence than splitting D unnecessarily
when applying the branch-and-bound algorithm of Section IV-D, which might slightly increase the computational time
but is not a critical issue. Moreover, it has been observed in [6] when working on the gain and phase margins that the
grid-based approach to select β̂ usually gives satisfactory results.

It is also possible to propose a sufficient condition based on the equivalent representation (3) instead of the Padé
approximation Ψn(τs) to check whether the delay margin requirement is violated on an entire box D ⊂ Bδ . β̂ is first
computed as above, giving a delay τ̂ ∈ [0 φ] such that the interconnection of Fig. 2 is unstable for G(τ̂ s) and ∆ = 0. This
conversion from β̂ into τ̂ is always possible, since the phase variations of G(τs) for all τ ∈ [0 φ] encompass those of
Ψn(τs), as seen in Fig. 5 and proved in Lemma 4.1. The interconnection Ñ(s)− diag (0p×p, α̂(ω)I2) is therefore unstable,
where α̂(ω) is obtained from equation (4) by replacing φ with τ̂ .

Proposition 4.5: The delay margin is lower than φ on a given box D ⊂ Bδ if the interconnection Ñ(s)−diag (∆̃, α̂(ω)I2)
is unstable ∀∆̃ ∈ B∆.

Unlike α which belongs to a (frequency-dependent) interval in Proposition 4.2, α̂(ω) is fixed here at a given frequency.
It should therefore be integrated into Ñ(s) before a µ-based test can be performed. However, this results in frequency-
dependent state-space matrices, which prevents the use of the Hamiltonian-based algorithm of [30]. The problem could be
solved on a frequency grid, but as already highlighted in Section IV-B, this is not reliable. Consequently, the sufficient
condition of Proposition 4.5 cannot be evaluated easily and is replaced with that of Proposition 4.6. The idea is to check
instability for all values of α in a small interval [α̂(ω)− εα α̂(ω) + εα] around α̂(ω), and not only for α = α̂(ω). α is thus
considered as an uncertainty as in Section IV-B.

Proposition 4.6: The delay margin is lower than φ on a given box D ⊂ Bδ if the interconnection Ñ(s)− diag (∆̃, αI2)
is unstable ∀∆̃ ∈ B∆ and ∀α ∈ [α̂(ω)− εα α̂(ω) + εα], where εα introduces a small deviation around α̂(ω).

Proof: The condition of Proposition 4.6 clearly implies that of Proposition 4.5. �



Similarly to Proposition 4.2, Proposition 4.6 boils down to solving a non-standard µ-analysis problem, where the bounds
on α are frequency-dependent. A variant of Algorithm 1 can be used for this purpose, with the following key differences:
• The normalization at a given frequency ω is done by setting α = α̂(ω) + εαξ, ξ ∈ [−1 1].
• A the end of step 1, ω0

k is the largest between the lower bound of the interval determined by the Hamiltonian-based
method of [30] (case shown in Fig. 7), and the frequency ω for which α̂(ω) = α̂(ωk)− εα. Similarly, ω0

k is the smallest
between the upper bound of the interval determined by [30], and the frequency ω for which α̂(ω) = α̂(ωk) + εα (case
shown in Fig. 7).

• Step 2 is similar to Algorithm 1, except that the frequency ω for which α̂(ω) = α̂(ωik)− εα must also be considered
as in the previous item when computing ωik.

• Step 3 is not a dichotomic search anymore, but becomes similar to Step 2.
In the example of Fig. 7, instability is proven for the (light and dark) gray region, which encompasses the α̂(ω) curve over the
interval [ω1

k ω
1
k]. By letting the algorithm run until progress becomes marginal, larger and larger intervals [ω2

k ω
2
k], [ω3

k ω
3
k], . . .

are obtained, the last one being the desired validity interval [ωk ωk].

Fig. 7: Adaptation of Algorithm 1 for the delay margin violation test

On the one hand, εα should be sufficiently small to maximize the chances of the µ-test being successful at step 1.2, and
thus to limit conservatism. On the other hand, a very small value makes the length of the intervals [ωik ω

i
k] increase quite

slowly, which results in a large computational time. In practice, setting εα ≈ 0.01 seems to be a good compromise. Several
variations of this algorithm can be implemented. A skew-µ computation can for example be performed at step 1.2 instead
of a µ-test to determine the largest εα which makes the interconnection Ñ(s) − diag (∆̃, αI2) unstable ∀∆̃ ∈ B∆. It is
also possible to consider the interval [α̂(ω)− ε1α α̂(ω) + ε2α], where typically ε1α < ε2α, to take into account the fact that a
system usually tends to become more unstable when increasing the delay than when reducing it. Finally, another option is
to consider two different intervals [α̂(ω) − εα α̂(ω)] and [α̂(ω) α̂(ω) + εα] depending on whether ω is smaller or larger
than ωk, i.e. for step 2 and step 3 respectively. Values below (resp. above) α̂(ω) are indeed useless when computing ωk
(resp. ωk), and even penalizing. This last variant only requires instability to be proven for the dark gray region in Figure 7.
It has proved to be the most effective in practice, and this is the one evaluated in Section V.

The equivalent representation (3) is more accurate than Padé approximations. Nevertheless, some conservatism is introduced
in Proposition 4.6. First, the function α̂(ω) is obtained from β̂ and therefore suffers from the same drawbacks (see items 2
and 3 above). Then, there is a region between the phase plots of G(φs) and Ψn(φs) that cannot be reached by any nth-order
Padé approximation Ψn(τs), τ ∈ [0 φ]. This means that there may be delays in [0 φ] that destabilize the system, whereas
no nth-order Padé approximation does. But this risk decreases as the order of the approximation increases. Moreover, as
already highlighted above, failing to detect a destabilizing delay has no other consequence than splitting D unnecessarily
when applying the branch-and-bound algorithm of Section IV-D. Finally, instability is investigated over the whole interval
[α̂(ω)− εα α̂(ω) + εα] instead of just for α̂(ω). This justifies the choice of a sufficiently small εα, but nevertheless not too
small, as explained above.

Remark 4.5: As in Section IV-B, using a Padé approximation (11) is more conservative than using the equivalent
representation (3) of the delay function. But unlike the satisfaction test, β is set to β̂ for the violation test, and no longer
appears in the LFR. The Padé-based condition of Proposition 4.4 is therefore faster than its satisfaction-oriented counterpart
mentioned in Remark 4.4, but also faster than the condition of Proposition 4.6, where α cannot be replaced with α̂ and still
appears in the LFR. Moreover, it is possible to choose a high-order approximation without any significant increase in the
computational time, as illustrated in Section V.



D. Algorithmic issues

The conditions for determining whether a given delay margin requirement is satisfied (Proposition 4.2) or violated
(Proposition 4.4 or 4.6) on an entire box D ⊂ Bδ are embedded into the branch-and-bound scheme of Algorithm 2,
which is similar to the one of [6]. The uncertainty domain is divided into smaller and smaller boxes until each box has
guaranteed sufficient/insufficient delay margin, or has a probability lower than a user-defined threshold pmin. Before that, a
preliminary stability analysis should be performed with Algorithm 1 of [25], leading to:

Bδ = Ds ∪Ds ∪Dsu (20)

where Ds, Ds and Dsu are the domains of guaranteed stability, guaranteed instability and undetermined stability respectively.
The delay margin can indeed only be evaluated for stable systems, so the application of Algorithm 2 is restricted to Ds,
leading to:

Ds = Dm ∪Dm ∪Dmu (21)

where Dm, Dm and Dmu are the domains of guaranteed delay margin satisfaction, guaranteed delay margin violation and
undetermined delay margin, with corresponding probabilities p(Dm), p(Dm) and p(Dmu). Combing (20) and (21) leads to
the following partitioning of Bδ:

Bδ = Dm ∪Dm ∪Dmu
∪Ds ∪Dsu (22)

Guaranteed bounds on the exact probability P
φ

∆,f (M(s)) of delay margin violation are finally obtained, which solves
Problem 2.1:

p(Dm) ≤ Pφ∆,f (M(s))≤ p(Dm) + p(Dmu
) + p(Dsu) = p(Ds)− p(Dm) + p(Dsu) (23)

Algorithm 2 Probabilistic delay margin analysis
L ← {Bδ} . list of all boxes left to investigate
Dm, Dm, Dmu

← ∅
p(Dm), p(Dm), p(Dmu)← 0

while L 6= ∅ do
extract the box D ∈ L with the highest probability
compute the interconnection Ñ(s)− diag (∆̃, βIn)
check if β̂ exists which makes Ñr(s) unstable
if not then . nominal delay margin on D is ≥ φ

check margin satisfaction on D with Proposition 4.2
if guaranteed then

add D to Dm and set p(Dm)← p(Dm) + p(D)
else

declare current iteration as inconclusive
end if

else . nominal delay margin on D is < φ
check margin violation on D with Proposition 4.4 or 4.6
if guaranteed then

add D to Dm and set p(Dm)← p(Dm) + p(D)
else

declare current iteration as inconclusive
end if

end if
if current iteration is inconclusive then

if p(D) > pmin then
select a direction for cutting D, e.g. using the µ-sensitivities [4]
partition D and add the resulting boxes into L

else
add D to Dmu

and set p(Dmu
)← p(Dmu

) + p(D)
end if

end if
end while



V. NUMERICAL RESULTS AND COMPARATIVE STUDY

The two variants of Algorithm 2 (using either Proposition 4.4 or 4.6 for the delay margin violation test) have been
implemented and incorporated into the STOchastic Worst Case Analysis Toolbox (STOWAT). To assess their capabilities,
a simple satellite model with two uncertainties, adapted from [13], is first analyzed in Section V-A. The low number of
uncertainties allows for graphical representation of the results, which enhances clarity. Similar to the other probabilistic
stability margins [6], the analysis of more advanced models with more states and uncertainties is also possible, as shown
in Section V-B. All computational times reported in this paper were obtained using Matlab R2022b running serially on a
single core on a Windows 10 laptop from 2021 with an Intel Core i7-1165G7 CPU running at 3 GHz and 16 GB of RAM.

A. Spinning satellite benchmark

The satellite is represented as a symmetric cylinder spinning around the symmetry axis z with a constant angular rate Ω.
The angular rates ωx and ωy around the x and y axes are controlled using torques Tx and Ty . Let Ix, Iy = Ix and Iz be
the inertia of the satellite with respect to the x, y and z axes respectively. The rotational motion can be described by:{

Tx = Ixω̇x − ωyΩ(Ix − Iz)
Ty = Ixω̇y − ωxΩ(Iz − Ix)

(24)

Uniformly distributed uncertain parameters δ1 ∈ [−0.5 2.5] and δ2 ∈ [0 2] are introduced, leading to:[
ω̇x
ω̇y

]
=

[
0 a
−a 0

][
ωx
ωy

]
+

[
δ1 0
0 δ2

] [
ux
uy

]
(25)

where a = Ω
(

1− Iz
Ix

)
, ux = Tx

Ix
and uy =

Ty

Ix
. Two measures νx and νy are available:[
νx
νy

]
=

[
1 a
−a 1

] [
ωx
ωy

]
(26)

and a static controller K is applied: [
ux
uy

]
= −K

[
νx
νy

]
= −

[
1 0
0 1

] [
νx
νy

]
(27)

It is assumed in the sequel that a = 10. A preliminary probabilistic stability analysis is performed on the uncertain closed-
loop system (25)-(27) using Algorithm 1 of [25], so as to obtain partition (20). The first channel of the control-loop model
is then opened, the second one remaining closed. An LFR is obtained as in Fig. 1, where u = ux and y = νx. Probabilistic
delay margin analysis is finally carried out for φ = 0.2s with Algorithm 2, where the violation test is performed using either
a second-order Padé approximation as in [27] (variant #1) or the equivalent representation of the delay function (variant #2).
All results are summarized in Table I for different values of the stopping criterion pmin. The number of iterations and the
CPU time correspond to the delay margin analysis only, i.e. the stability analysis is not taken into account.

pmin (%) p(Dm) (%) p(Dm) (%) p(Dmu ) (%) Iterations CPU time (s)
p(Ds) (%) p(Dsu ) (%)

#1 #2 #1 #2 #1 #2 #1 #2 #1 #2

10−2 20.13 20.10 26.80 26.62 1.46 1.67 586 610 4.4 9.3 48.74 2.87
10−3 21.44 21.42 27.51 27.39 0.46 0.60 1913 2133 12.6 26.9 49.62 0.97
10−4 21.73 21.72 27.80 27.71 0.18 0.29 5517 6853 34.1 87.1 49.93 0.36
10−5 21.89 21.89 27.91 27.87 0.05 0.09 22500 33248 145.8 428.9 50.06 0.09

TABLE I: Results for φ = 0.2s using both variants of Algorithm 2 and different values of the stopping criterion pmin

As expected, the domains of undetermined stability Dsu and undetermined delay margin Dmu
become smaller as pmin

decreases. Moreover, it can be checked that most boxes of Dmu
include combinations of uncertainties for which the delay

margin is higher than φ, and others for which it is lower. This means that they could not be assigned to Dm or Dm anyway,
which shows that the various sources of conservatism highlighted in Section IV-C are negligible in this example. Another
positive feature is that the average CPU time per iteration is quite low – about 6.5ms (resp. 12.8ms) for variant #1 (resp.
#2) – given the number of tasks performed, including the determination of β̂, a µ upper bound computation on the whole
frequency range, but also a number of other calculations, as described in Algorithm 2. Finally, it appears that variant #1 is
slightly more efficient than variant #2, both in terms of accuracy and computational time. A likely explanation is that the
second-order Padé approximation used instead of the exact delay in variant #1 is almost non-conservative in this example,
while the threshold εα in variant #2 is a little less so. This is confirmed by decreasing εα, which improves accuracy but at
the cost of a significant increase in computational time. The results obtained with variant #1 and pmin = 10−2% are plotted
in Fig. 8 as an example, with the following color code:



• green: the delay margin is guaranteed to be ≥ φ,
• red: the delay margin is guaranteed to be < φ,
• blue: the delay margin is undetermined,
• orange: instability is guaranteed,
• gray: stability is undetermined.

A comparison is made with a classical grid-based approach, where the delay margin is computed for a finite number of
points in the uncertainty domain:
• magenta: the delay margin is guaranteed to be ≥ φ,
• yellow: the delay margin is guaranteed to be < φ,
• black: the system is unstable.

It can be observed that both analyses are in good agreement, but Algorithm 2 provides guaranteed results on the whole
uncertainty domain, and not only for a finite number of points.

Fig. 8: Delay margin analysis for φ = 0.2s using variant #1 with pmin = 10−2% and a second-order Padé approximation

As pmin decreases, the gray and blue areas shrink, becoming almost indistinguishable when pmin ≤ 10−4%. However,
if variant #1 is run again for φ = 0.4s, a substantial part of the uncertainty domain remains undetermined, whatever the
value of pmin. This can be observed in Fig. 9 (obtained with pmin = 10−3%), which focuses on the reduced uncertainty
domain δ1 ∈ [0 1] and δ2 ∈ [0 0.75]. To find out why, these results are compared with two grid-based approaches, where the
system is perturbed by either an exact time delay (Fig. 9a) or a second-order Padé approximation (Fig. 9b). The two grids
differ significantly in the undetermined area (blue), where the Padé approximation does not destabilize the system, while
the true time delay does. Conservatism of variant #1 therefore results from the use of a second-order Padé approximation. It
cannot be reduced by changing the stopping criterion of Algorithm 2, but rather by considering higher-order approximations.
This is confirmed by Table II and Fig. 10 (obtained with pmin = 10−3%), where a significant decrease in p(Dmu) can be
observed when the order of the Padé approximation increases. The number of iterations and the computational time follow
the same trend. A costly iterative process, which consists of dividing the undetermined domain into smaller and smaller
boxes until the stopping criterion is reached, is indeed alleviated. It can be seen that a forth-order Padé approximation is the
best compromise here, since there is no improvement with a fifth-order one. Moreover, the increase in computational time
resulting from the choice of a higher-order approximation is marginal, as explained in Remark 4.5. As shown in Table II
and Fig. 11, variant #2 gives intermediate results, better than variant #1 with a Padé approximation of order 2, but worse
than with an approximation of order greater than or equal to 3. This illustrates the fact that variant #1 becomes better than
variant #2 as soon as using a Padé approximation instead of a real delay for the violation test is not too conservative, which
is the case if the order of the approximation is sufficiently high. In addition, since increasing the order has no real impact
on computational time, it can be assumed that in the majority of cases, variant #1 will give better results.



Variant Order p(Dm) (%) p(Dm) (%) p(Dmu ) (%) Iterations CPU time (s)

#1 2 10.98 36.39 2.04 4431 30.7
#1 3 10.98 37.61 0.82 2839 18.1
#1 4 10.98 37.69 0.74 2731 17.5
#1 5 10.98 37.69 0.74 2731 17.6
#2 NA 10.98 37.24 1.19 3303 41.8

TABLE II: Results for φ = 0.4s using both variants of Algorithm 2 with increasing-order Padé approximations

(a) Exact grid (b) Padé-based grid

Fig. 9: Comparison for φ = 0.4s between variant #1 (second-order Padé) and two grid-based methods

(a) Padé approximation of order three (b) Padé approximation of order four/five

Fig. 10: Delay margin analysis for φ = 0.4s using variant #1 with increasing-order Padé approximations



Fig. 11: Comparison for φ = 0.4s between variant #2 and an exact grid-based method

B. Extensive benchmark analysis

To show the applicability of Algorithm 2 to real-world problems, five models of increasing complexity are analyzed:
an academic example, a mass-spring-damper system, a bus steering system, a flexible aircraft and a hard disk drive. All
these benchmarks are documented in published papers and implemented in the SMART library of the SMAC toolbox [32].
Table III presents for each of them the input/output structure, the number of states, and the size and structure of the
uncertainty block ∆ (n× p means that there are n uncertainties repeated p times each).

Benchmark Description Reference I/O structure States Size of ∆ Structure of ∆

1 Academic example [33] SISO 4 3 3×1
2 Bus steering system [34] SISO 9 5 1×2 + 1×3
3 Mass-spring-damper system [35] SISO 7 6 6×1
4 Flexible aircraft [15] MIMO 46 20 20×1
5 Hard disk drive [36] SISO 29 27 19×1 + 4×2

TABLE III: Benchmarks used for algorithm assessment

The framework for this study is as follows:
• Benchmarks 4 and 5 are not stable on Bδ . It can indeed be seen in [14] that the peak value of µ is equal to 4.47 and

1.21 respectively. The focus being here on probabilistic delay margin assessment, the uncertainty domain is shrunk by
a factor of 5 (resp. 1.4) for benchmark 4 (resp. 5) to ensure robust stability, i.e. p(Ds) = 100%.

• All uncertainties follow a normal distribution of mean value 0 and standard deviation 1/3 truncated on [−1 1].
• As already highlighted in Section I, probabilistic µ-analysis is particularly suitable to detect rare events. To properly

assess the performance of Algorithm 2, the threshold φ is therefore set to 1.1φwc, where φwc denotes the worst-case
delay margin on Bδ computed with the SMART Library of the SMAC Toolbox [32]. This ensures that P

φ

∆,f (M(s)) –
the probability that the delay margin is smaller than φ – is sufficiently low.

• The delay margin is analyzed at the plant input. All benchmarks have a single control input, except the flexible aircraft,
which has two. Algorithm 2 being dedicated to the analysis of SISO systems, a loop-at-a-time analysis is performed
for benchmark 4. In the sequel, loop 1 (resp. 2) simply means that a delay is introduced in loop 1 (resp. 2).

• The stopping criterion is not given in terms of pmin as in Section V-A. Here, the branch-and-bound algorithm is
interrupted as soon as the probability of undetermined delay margin p(Dmu) becomes lower than 10−3%, i.e. when
p(Dm) + p(Dm) ≥ 99.999%.

All numerical results obtained with variant #1 (resp. variant #2) are included in Table IV (resp. Table V), using in all cases
a fifth-order Padé approximation to compute β̂. CPUm (resp. CPUm) denotes the average CPU time per iteration when the
delay margin satisfaction (resp. violation) test is performed.



Benchmark (loop) φ (s) p(Dm) (%) p(Dm) (%) Iterations CPU time (s) CPUm (ms) CPUm (ms)

1 0.0407 99.99897 3.8×10−5 396 4.3 11.8 5.4
2 0.0340 99.99827 7.4×10−4 364 8.7 24.9 18.2
3 0.0337 99.99911 0 17 0.7 32.0 NA

4 (1) 0.0315 99.99970 0 21 7.5 278.8 NA
4 (2) 0.0163 99.99931 0 27 11.8 378.0 NA

5 4.051×10−5 99.99905 0 196 95.7 486.2 NA

TABLE IV: Probabilistic delay margin analysis results with variant #1

Benchmark φ (s) p(Dm) (%) p(Dm) (%) Iterations CPU time (s) CPUm (ms) CPUm (ms)

1 0.0407 99.99893 7.2×10−5 459 6.5 11.9 20.6
2 0.0340 99.99846 5.4×10−4 971 33.9 24.8 65.3

TABLE V: Probabilistic delay margin analysis results with variant #2

In all cases, the guaranteed probability p(Dm) of delay margin satisfaction is close to 100%, which confirms that delay
margin violation is a rare event. Algorithm 2 is therefore being used properly. The number of iterations differs greatly
from one benchmark to another, the general trend being that the more rare an event is, the fewer iterations are needed to
obtain a high value of p(Dm). The computational time always remains very low, even for benchmarks with many states and
uncertainties, which is a nice result. But it should be kept in mind that it would increase significantly for larger values of
φ, i.e. for larger values of p(Dm), where Monte Carlo simulations would probably be more efficient.

A comparison of the last two columns of Table IV shows that the violation test of Proposition 4.4 is faster than the
satisfaction test of Proposition 4.2, which is in line with Remark 4.5. On the opposite, the last two columns of Table V show
that the violation test of Proposition 4.6 is slower than the satisfaction test of Proposition 4.2. This is again consistent, since
more iterations are required to compute the validity interval [ωk ωk] due to the threshold εα, as explained in Section IV-C.
As a result, it can be observed that both variants of Algorithm 2 have roughly the same accuracy, but as already noticed in
Section V-A, variant #2 is slower.

Finally, when the number of uncertainties is large, Algorithm 2 fails to compute a non-zero value of p(Dm), even though
there are uncertainties for which the delay margin requirement is not satisfied. The violation test is never called, so both
variants of Algorithm 2 give exactly the same results, that is why benchmarks 3-6 do not appear in Table V. By letting
the algorithm run longer, it can be observed that p(Dm) tends towards 100%, which shows that the probability of delay
margin violation is in fact extremely small. This phenomenon is a combination of two factors. Firstly, the most critical
uncertainty combinations are generally located close to the vertices of the uncertainty domain. Secondly, all uncertainties
follow a normal distribution here, so the more uncertainties there are, the lower the probability of being close to a vertex.

VI. CONCLUSION

The objective of this paper is to quantify the probability that a given delay margin requirement is violated for a (potentially
high-dimensional) uncertain linear system. Moreover, the focus is on detecting rare but nonetheless possible uncertainty
combinations, i.e. on studying cases where the probability of violation is very low but not zero. A probabilistic approach
mixing branch-and-bound and µ-analysis is proposed, and two algorithms are developed. The first one replaces the delay
with a Padé approximation. Introduced in [27], it was originally limited to second-order approximations, which sometimes
made the analysis very conservative. But thanks to a new constructive method to transform Padé approximations of any order
into minimal LFR, a generalization is performed in this paper, allowing to significantly increase accuracy with almost no
impact on the computational time. The second contribution is an alternative method based on an equivalent representation of
the delay function using a rational function of degree 2 involving a parameter with frequency-dependent bounds. A thorough
comparison of both algorithms in terms of conservatism and computational efficiency is performed. The final contribution
consists of demonstrating their applicability to realistic problems with a potentially large number of states and uncertainties.
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APPENDIX
PROOF OF PROPOSITION 4.1

Dividing Ψn(τs) by (τs)n in the numerator and denominator leads to:

Ψn(τs) =
Y (s)

U(s)
=

n∑
i=0

(−1)iai(τs)
i−n

n∑
i=0

ai(τs)
i−n

(28)

Let us now take the term i = n out of the sum:

Y (s) = (−1)nU(s) +

(
n−1∑
i=0

(−1)i
ai
an

(τs)i−n

)
U(s)−

(
n−1∑
i=0

ai
an

(τs)i−n

)
Y (s) (29)



Then the term i = n− 1:

Y (s) = (−1)n
(
U(s)− an−1

an
(τs)−1

(
U(s) + (−1)nY (s)

+

(
n−2∑
i=0

(−1)i+n−1 ai
an−1

(τs)i−n+1

)
U(s)−

(
n−2∑
i=0

(−1)n−1 ai
an−1

(τs)i−n+1

)
Y (s)

)) (30)

And so on with all the terms:

Y (s) = (−1)n
(
U(s)− an−1

an
(τs)−1

(
U(s) + (−1)nY (s)

− an−2

an−1
(τs)−1

(
U(s) + (−1)n−1Y (s)

− an−3

an−2
(τs)−1

(
U(s) + (−1)nY (s)

− . . .

− a0

a1
(τs)−1

(
U(s)− Y (s)

)
. . .

))))
(31)

The next step is to transform equation (31) into an LFR Fu(P̃n(s), τ−1In):
ẋ = Ãx+

[
B̃1 B̃2

] [ w
u

]
[
z
y

]
=

[
C̃1

C̃2

]
x+

[
D̃11 D̃12

D̃21 D̃22

] [
w
u

]
w = τ−1Inz

(32)

To do so, the inputs w ∈ Rn, outputs z ∈ Rn and states x ∈ Rn are progressively introduced in (31). Firstly:

y = (−1)n (u− w1) (33)
w1 = τ−1z1 (34)

z1 =
an−1

an
x1 (35)

ẋ1 = u+ (−1)ny − w2 = 2u− w1 − w2 (36)

By continuing in this way, the following relationships are then established:

wi = τ−1zi (37)

zi =
an−i
an−i+1

xi (38)

ẋi = 2u− w1 − wi+1 for i = 1, 3, . . . (39)
= w1 − wi+1 for i = 2, 4, . . . (40)
=

(
1 + (−1)n+1

)
u+ (−1)nw1 for i = n (41)

and the state-space matrices of equation (32) are finally obtained as follows:

Ã = 0n×n ,
[
B̃1 B̃2

]
=



−1 −1 0 . . . 0 2

1 0 −1
. . .

... 0
...

...
. . . . . . 0

...
...

...
. . . −1

...
(−1)n 0 . . . . . . 0 1 + (−1)n+1


(42)

[
C̃1

C̃2

]
=



an−1

an
0 . . . 0

0 an−2

an−1

. . .
...

...
. . . . . . 0

0 . . . 0 a0
a1

0 . . . . . . 0


,

[
D̃11 D̃12

D̃21 D̃22

]
=



0 . . . . . . 0 0
...

...
...

...
...

...
0 . . . . . . 0 0

(−1)n+1 0 . . . 0 (−1)n

 (43)



The next step is to set τ−1In = Fu(T̃n, βIn), where T̃n =

[
−In 2

φIn

−In 2
φIn

]
. In other words, β = −1 + 2τ/φ is

normalized in the sense that β ∈ ]−1 1] ⇔ τ ∈ ]0 φ]. Then Ψn(τs) = Fu(P̃n(s), τ−1In) = Fu(P̃n(s),Fu(T̃n, βIn)) =
Fu(S(T̃n, P̃n(s)), βIn), where S(., .) denotes the Redheffer star product defined in Section 10.4 of [13]. Noting that Ã = 0,
C̃2 = 0, D̃11 = 0 and D̃12 = 0, a state-space representation of Pn(s) = S(T̃n, P̃n(s)) is given by:

AP =
2

φ
B̃1C̃1 , BP =

[
−B̃1 B̃2

]
, CP =

2

φ

[
C̃1

D̃21C̃1

]
, DP =

[
−In 0

−D̃21 D̃22

]
(44)

Combining (42), (43) and (44) finally leads to equations (12)-(15). Moreover, the LFR Fu(Pn(s), βIn) is minimal. Indeed,
Ψn(τs) is a transfer function of degree n, so Pn(s) cannot have less than n states. And τn appears in both the numerator
and denominator of Ψn(τs) in (11), so β (which is an affine function of τ ) cannot be repeated less than n times. �


