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Abstract

Aging brain undergoes multiple structural and functional changes. These may contribute to an increased risk of neurodegenera-
tive disease (NDD) and other age-related diseases, highlighting the importance of assessing deviations from healthy brain aging
trajectory. In this human brain study, 50 healthy adults were investigated by functional near-infrared spectroscopy (fNIRS). A
resting state single channel multiwavelength fNIRS was measured from the forehead in a supine position. The subjects were
divided into four age groups. A machine learning approach was utilized for age group classification by using support vector
machine and random forest learners with nested cross-validation. The results suggest brain aging effects being more distinct
in the oldest age group and a difference in the brain aging for the subjects of the in-between groups. Our study shows high
potential for the use of fNIRS in the analysis of brain aging.
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Martti.ilvesmaeki@oulu.fi Aging brain undergoes multiple structural and functional changes. These may con-
tribute to an increased risk of neurodegenerative disease (NDD) and other age-related diseases, highlighting
the importance of assessing deviations from healthy brain aging trajectory. In this human brain study, 50
healthy adults were investigated by functional near-infrared spectroscopy (fNIRS). A resting state single
channel multiwavelength fNIRS was measured from the forehead in a supine position. The subjects were
divided into four age groups. A machine learning approach was utilized for age group classification by using
support vector machine and random forest learners with nested cross-validation. The results suggest brain
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aging effects being more distinct in the oldest age group and a difference in the brain aging for the subjects
of the in-between groups. Our study shows high potential for the use of fNIRS in the analysis of brain aging.
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fNIRS, brain aging, aging, machine learning

ABBREVIATIONS AD, Alzheimer’s disease; bacc, balanced accuracy; CSF, cerebrospinal fluid; CV,
cross-validation; DPF, differential path length factor; dPhaseTE, differential phase transfer entropy; EEG,
electroencephalography; ESSC, envelope-signal spectra correlation; fMRI, functional magnetic resonance
imaging; fAPF, fractional amplitude of physiological fluctuations; fNIRS, functional near-infrared spectrosco-
py; FC, functional connectivity; H2O, water, HbO, oxygenated-hemoglobin; HbR, deoxygenated-hemoglobin;
HbT, total-hemoglobin; LED, light-emitting diodes; LOOCV, leave-one-out-cross-validation; MBBL, modi-
fied beer-lambert law; MCCV, Monte Carlo cross-validation; MREG, magnetic resonance encephalography;
MRI, magnetic resonance imaging; MRMR, minimum redundancy maximum relevance; MCI, mild cognitive-
impairment ; NDD, neurodegenerative disease; NIR, near-infrared; PFC, prefrontal cortex; PSD, power spec-
tral density; SampEn, sample entropy; SD, source-detector; SVM, support vector machine; TBI: traumatic
brain injury

1 | INTRODUCTION

The life expectancy of the global population is steadily continuing to increase [1]. As aging possess an in-
creased risk of developing neurodegenerative diseases (NDD), such as Alzheimer’s disease (AD), the better
understanding of healthy brain aging process is of importance. The assessment of the brain aging trajectory
is of interest to detect of deviations from the healthy trajectory, and to monitor the efficacy of the treat-
ments and interventions. The increased understanding of the brain aging process can lead to development
of improved interventions, with an aim to delay age-related disease onset and to reduce their severity in the
later years of life.

Brain aging has been widely studied, and multiple interconnected structural and functional changes have
been reported. The changes can be observed in different scales of interest, such as micro or macro scale. Some
notable changes are DNA damage, which is considered as one of the key hallmarks of aging, cerebrovascular
changes observed as decreased vessel size, reduced number of capillaries, small infractions and microbleeds,
causing overall decreased cerebral perfusion, changes in functional connectivity (FC), and regional brain
atrophy, manifested in overall decrease of brain volume and weight. [2] In recent years, neuroimaging methods
such as magnetic resonance imaging (MRI) and electroencephalography (EEG) have been utilized to measure
the healthy brain aging trajectory. The methods commonly aim to quantify the biological age of the brain,
which is assumed to be congruent with the chronological age of the healthy individuals, while being increased
in the presence of aging related disease and decreased in successful aging [3]

Functional near-infrared spectroscopy (fNIRS) presents an intriguing method for the assessment of aging
related-changes in the brain due to its good temporal resolution, affordability, and portable light-weight
equipment. This enables development of brain health monitoring applications which can be used in a natural
environment. The method is based on applying light source-detector (SD) pairs with minimum distance of 2.5
cm to the scalp [4], utilizing wavelengths in the optical window of approximately 650 nm – 1000 nm, where the
near-infrared (NIR) light is able to propagate through the superficial biological layers of the skin, skull and
cerebrospinal fluid (CSF), reaching the cortical brain layer [5]. Finally, the back scattered light is recorded
by the detector pair. By applying modified beer-lambert law (MBBL), the method can be used to quantify
chromophore relative concentrations [6]. The method requires selection of at least two wavelengths from the
different sides of the isobestic point of the chromophores of interest. Commonly the concentration changes of
oxygenated-hemoglobin (HbO) and deoxygenated-hemoglobin (HbR) are monitored, as the cortical changes
are related to the brain metabolism caused by neural activity [5]. However, the changes in water (H2O) can be
detected in NIR region as well by selecting wavelength accordingly. The measurement of neurohydrodynamics
have been demonstrated recently in the assessment of glymphatic system by fNIRS [7].
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fNIRS has been used in multiple aging studies showing evidence for the use of measurement method in the
brain aging assessment. In FC studies fNIRS has been used successfully to confirm the finding of increased
brain region co-operation, assumed to be due to brain’s adaptation to the structural changes. [8] Furthermore,
Nguyen et al. found evidence of age-related decreased FC detected during verbal fluency task, although
evidence of age-related changes during oddball and resting state was not found. [9]

Arterial stiffness has been associated with aging and is one of the leading risk factors for hypertension [10].
As younger subject’s arteries are more compliant, the mechanical stress to the brain caused by pulsatility is
reduced in comparison to older adults with stiffer arteries, causing damage to the brain’s microvasculature.
The arterial stiffness can be detected from the changed pulse shape form, and the distinguishing of younger
and older adults has been shown to be successful by fNIRS by using pulse shape parameters. [11] Additionally,
fNIRS has been used with MRI to show association between aging related cortical thinning and regional
pulsatility. [12]

fNIRS has been used widely to study aging related changes in prefrontal cortex (PFC) activation, which is
involved in the executive function. The results have shown age related differences in the PFC activation [13–
16]. Furthermore, fNIRS has been used to characterize differences between younger and older adults, and mild
cognitive-impairment (MCI) and AD groups [17,18], and to show age-related differences in within-session
trainability of hemodynamic response. [19]

The results of the previous findings suggest potential for the use of fNIRS in the study of aging. To investi-
gate this further, the use of single channel resting state fNIRS to detect aging caused differences in healthy
adults is studied by utilizing machine learning (ML) methods in an age group classification task. In addition
to traditional analysis of HbO, HbR and total hemoglobin (HbT) changes, the effects of relative H2O con-
centration changes and raw fNIRS signals are used. Multiple features based on the latest fNIRS, EEG and
functional magnetic resonance imaging (fMRI) studies are applied. The results presented are based on the
research conducted for the master’s thesis of Martti Ilvesmäki [20].

2 | EXPERIMENTAL

2.1 | fNIRS measurements and data acquisition

The data collection followed the guidelines established by the Declaration of Helsinki and the study was
approved by the regional Ethical Committee of Northern Ostrobothnia Hospital District in Oulu University
Hospital. All participants of the study signed informed consent letters before the measurements. The data
was collected with hospital multi-modal MRI compatible frequency coded fNIRS utilizing high power light-
emitting diodes (LED) coupled to optical fibres, with modifiable wavelength selection [21,22].

Total of 56 healthy controls participated in the study. The participants restrained from the use of alcohol 12
hours prior the measurements. With the exception of one individual, the participants were non-smoking. Data
from single optode with 3 cm source detector (SD) separation distance, placed on the left side of the forehead
corresponding to the Fp1 of the 10-20 system of the international federation for EEG electrode placement,
was used with sampling frequency of 800 Hz. The subjects were in a supine position in resting state during
the measurement, which lasted for approximately 5.5 – 10 minutes in total. After visual inspection, the data
of six subjects was discarded, as the data of four subjects had gross movement artefacts and for two subjects
the length of the measurement was insufficient. The final dataset consisted of 50 subjects with mean age of
42.3 ± 15.2 and age range of 23 - 67 (22F, 28M). The signal lengths were unified to the length 5.5 minutes
by selecting signal of corresponding length from the start of the measurement. It is noteworthy, that the
chronological and biological age of the brain may differ as pathologies, such as schizophrenia, traumatic brain
injury (TBI) and AD, have been shown to affect the aging trajectory of the brain [23–25]. Thus, although
the subjects in the study were considered as healthy controls and thus the chronological age is assumed to
be similar to the subject’s brain age, the true brain age is not known. Therefore, a potential undiagnosed
pathology could affect the results of the study.

The used wavelengths of 690 nm, 830 nm and 980 nm were selected due to the absorption being dominated

3
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by HbR, HbO and H2O respectively in the corresponding wavelength. Additionally, wavelength of 810 nm
was used, which is close to the isobestic point of the hemoglobin.

2.2 | Signal processing and feature extraction

All the signal processing, machine learning and data-analysis methods were implemented by using MATLAB
version R2022b. Figure 1 illustrates the signal processing methods used, from signal acquisition until feature
extraction.

FIGURE 1 Feature extraction pipeline. The four-wavelength fNIRS data is collected from the subjects and
several pre-processing methods are applied before extracting the features.

Total of 209 features were extracted from fNIRS and fNIRS derived chromophore relative concentration
signals [20]. The differential path length factor (DPF) used in MBBL was 5.97 and the extinction coefficients
were based on the work of Cope [26]. The summary of the features is shown in Table 1. Some of the features
have been described in the latest fNIRS, EEG and fMRI NDD studies while some are common features, such
as signal standard deviation and gender of the subject. The frequency bandwidths of respiratory (0.1 - 0.6
Hz), cardiac (0.6 - 5 Hz) and full (0.008 - 5 Hz) were utilized when extracting fNIRS features. In addition
to noise attenuation, the bandwidth specific features are assumed to contain information related to different
physiological events and could contain more predictive power in the brain aging assessment.

Spectral entropy, fractional amplitude of physiological fluctuations (fAPF) and relative power derived features
have been used in fNIRS and EEG studies related to aging and AD research [18,27–29]. Furthermore, pulse
shape derived from fNIRS has been used to distinguish AD subjects from healthy controls [11]. Thus, the
features were selected as they are assumed to have potential predictive power in the age group classification
task. In addition, the features of differential phase transfer entropy (dPhaseTE) [30,31], sample entropy
(sampEn) [32,33], and correlation between HbT and H2O [34] were utilized. Unique feature of envelope-signal
spectra correlation (ESSC) was also used. The feature is calculated by computing the correlation between
the power spectral density (PSD) of the signal and its envelope. The feature describes the relationship
between the spectral power of the original signal and its low frequency component.

TABLE 1 List of all features extracted from the fNIRS and derived relative chromophore concentration
signals used in the study.
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Feature name
Number of features
per subject Frequency bands fNIRS signals

HbT vs. H2O
correlation

3 Full, cardiac, resp* Raw, conc**

dPhaseTE 4 x 3 x 2*** Full, cardiac, resp Conc
ESSC 8 x 3 Full, cardiac, resp Raw, conc
fAPF 8 x 2 Cardiac, resp Raw, conc
Gender 1 - -
Pulse Shape of 830nm
(mean, min, max, std,
iqr)

5 Cardiac 830 nm

Relative power (min,
mean, 95th quantile,
std)

8 x 2 x 4 Cardiac, resp Raw, conc

Sample entropy 8 x 3 Full, cardiac, resp Raw, conc
Spectral entropy 8 x 3 Full, cardiac, resp Raw, conc
Standard deviation 8 x 3 Full, cardiac, resp Raw, conc

* Respiratory bandwidth, ** Relative concentration of the chromophores, *** dPTE features computed for
two directions, e.g., HbO - Water and Water - HbO.

2.3 | Machine learning methods

Random forest ensemble and support vector machines (SVM) with linear, polynomial and gaussian ker-
nels were selected as learning algorithms. The feature selection for SVM learners was implemented by using
minimum redundancy maximum relevance (MRMR) algorithm by MATLAB’s fscmrmr function. The hyper-
parameter optimization was conducted by using Bayesian optimization with MATLAB’s function bayesopt
with 60 iterations.

Due to relatively small sample size used in the study, each test utilized nested cross-validation (CV) to
provide robust and unbiased performance estimate [35]. The nested CV protocol is illustrated in Figure
2. The outer loop consisted of stratified Monte Carlo cross-validation (MCCV) or K-fold CV depending
on the test, while the inner loop used leave-one-out cross-validation (LOOCV). The inner loop contained
hyperparameter tuning for each model, including hyperparameters for the feature selection, which in the
case of MRMR was number of selected features based on MRMR feature ranking. For all SVM learners box
constraint was tuned with default search space, while for polynomial SVM the polynomial order was tuned
using search space of [2,3], and for gaussian SVM the kernel scale was tuned using default search space.
For random forest, the tuned hyperparameters were minimum leaf size and number of predictors to sample
with default search space, and number of trees with [5, 1000] search space. The overall CV performance
was recorded by using balanced accuracy (bacc). When analysing the results, the bacc is evaluated either as
poor (bacc [?] 60 %), moderate (< 60 % < bacc [?] 70 %), good (70 % < bacc [?] 80 %) or excellent (bacc
> 80 %).

2.3.1 | Classification to age groups with pre-defined age groups

The first classification test was conducted by dividing the data into four pre-defined age groups. The age
thresholds for each group were selected by aiming for approximately equal sized groups, while still containing
wide age distribution. The age group division is illustrated in Figure 3. Stratified MCCV with 20-80 % test-
train-split and 1000 iterations was used for the outer CV.

5



P
os

te
d

on
15

N
ov

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

70
00

40
63

.3
27

19
67

1/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

6



P
os

te
d

on
15

N
ov

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

70
00

40
63

.3
27

19
67

1/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

FIGURE 2 Nested cross-validation protocol used in the study. The inner loop (light blue) is used for the
model selection, while in the outer loop selected models are trained based on the tuned hyperparameters.
The procedure is repeated N times based on the outer loop CV method, resulting in the output (green) of
estimated performance. For the outer loop, MCCV was used with pre-defined age groups classification and K-
fold CV in the age threshold tests. The inner loop model selection included feature selection hyperparameters
selection for the MRMR algorithm used by SVM learners.

FIGURE 3 Age group division. The bars represent number of subjects in each age group, while the colours
illustrate the within-class gender distribution.

2.3.2 | Classification to age groups with variable age group thresholds

The effect of varying the age group thresholds was further analysed. Age grid of 26 to 63 was used to evaluate
different thresholds. Instead of using all the ages between minimum and maximum in the age grid, only the
ages appearing in the data were considered as part of the grid. As a result, the best corresponding thresholds
were found for each classifier based on the achieved balanced accuracy. For each threshold, stratified K-fold
CV was used with K=5. Figure 4 illustrates the age threshold finding process for each test.

In the age threshold test 1, all the data was used and split into two age groups of young and old adults
using the aforementioned age grid. For the test 2, two age thresholds were used and the in-between data was
excluded from the ML pipeline, while the beyond threshold subjects were sorted in to young and old adult
groups. Test 3 used similar method as test 2, but the in-between data was used as a third rejection class.
The goal of the tests 2 and 3 was to identify how the exclusion or inclusion of the in-between groups affects
the classifiers performance.

7
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FIGURE 4 Illustration of the age group threshold search protocol for different age threshold tests. The
test 1 was used to find a single threshold for dividing data into two classes, while the tests 2 and 3 utilized
two thresholds for either excluding the data or creating a third rejection class.

3 | RESULTS AND DISCUSSION

8
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3.1 | Classification with pre-defined age groups

Table 2 illustrates the results of the classification to pre-defined age groups. The classification between all
four groups shows moderate results with all classifiers reaching bacc between 66 – 67 %. Interestingly, the
highest performance is reached in the classification task of groups A vs. D, where the age difference between
the groups is the largest. The best performing model confusion matrices for the previously mentioned tasks
are shown in the Figure 6. Furthermore, the performance in binary classification task of younger groups A,
B, C vs. the oldest group D can be seen to decline linearly as the age gap between groups decreases as shown
in the Figure 5. The result indicates that distinguishing the younger groups from the oldest group is better
when the age gap between the groups is higher. On the other hand, the binary classification results between
the groups A, B and C show poor performance, suggesting similarity between the groups. The majority of
B and C classifications is done to the group A, which is likely affected by the class imbalance, group A being
the largest. With more balanced class sizes, more equal proportion of miss-classified samples between groups
A, B and C would be expected in the case of suspected homogenous samples. Overall, the results suggest no
great difference between the younger groups A, B and C in this study setup, while the age-related differences
become more distinct with the oldest age group.

TABLE 2 . The classifiers performance for the age group classification test with pre-defined age groups.
The results include balanced accuracy and 95 % confidence intervals inside the brackets. Polynomial SVM
in A vs. D age group classification task achieved the highest performance (highlighted in bold).

Task Linear SVM
Polynomial
SVM Gaussian SVM Random Forest

A vs. B vs. C vs.
D

67.05 % (66.67 –
67.43)

66.58 % (66.21 –
66.94)

66.38 % (66.05 –
66.70)

66.09 % (65.75 –
66.43)

A vs. D 77.23 % (76.02 –
78.45)

78.98 % (77.80 –
80.15)

73.68 % (72.44 –
74.91)

73.46 % (72.33 –
74.58)

B vs. D 64.23 % (62.87 -
65.58)

63.15 % (61.78 -
64.52)

62.63 % (61.25 -
64.00)

69.33 % (67.97 -
70.68)

C vs. D 54.30 % (53.01 -
55.59)

52.35 % (51.15 -
53.55)

54.68 % (53.45 -
55.90)

57.90 % (56.59 -
59.20)

B vs. C 40.08 % (38.90 -
41.25)

41.50 % (40.29 -
42.71)

41.68 % (40.41 -
42.94)

44.50 % (43.11 -
45.89)

A vs. C 45.76 % (44.93 -
46.58)

53.49 % (52.23 -
54.75)

50.04 % (49.23 -
50.86)

46.03 % (45.15 -
46.92)

A vs. B 46.24 % (45.41 -
47.07)

45.86 % (44.87 -
46.85)

47.79 % (47.21 -
48.37)

46.25 % (45.23 -
47.27)

9
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FIGURE 5 The best performing models for the classification to pre-defined age groups A, B, C and D. The
chart illustrates the performance with low and high age gap between the groups.

(A)
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(B)

FIGURE 6 The best performing model normalized confusion matrices for the classification to pre-defined
age groups for the tasks A vs. B vs. C vs. D (chart A) and A vs. D (chart B).

3.2 | Classification with variable age group thresholds

Table 3 shows the results of the age threshold tests for each classifier. The performance in the age threshold
test 1, classification of the subjects to young and old groups using different age thresholds, achieved moderate
to good performance (bacc: 63.44 – 71.05 %). Three of the classifiers found similar best age threshold (39
– 41), while the overall best performing model of linear SVM performed best with an age threshold of 56.
However, it is noteworthy that there is a clear uneven distribution of subjects when using the suggested age
threshold of 56 (N_young: 36, N_old: 14). The class imbalance is similar to one observed in classification
to pre-defined age groups but pronounced more strongly. On the other hand, it can be observed that the
second-best performing classifier of Gaussian SVM reached the highest performance with an age threshold
of 42, where the achieved performance can be considered moderate with more balanced classes (N_young:
27, N_old: 23). The found best age threshold of 56 matches the threshold used for group D when using
pre-defined age groups. It is visible from Figure 6 A that in the most cases subjects B and C are classified to
group A. The result indicates that with the current dataset the differences in the study population seem to
be most pronounced with the threshold of 56. Interestingly, the threshold was in agreement with the class
distribution in Figure 3A.

In the age threshold test 2, where two age thresholds were selected, and the in-between subjects were excluded
from the ML loop, the results show good to excellent performance with all the classifiers (bacc: 79.09 – 81.50
%). The lower threshold varies between 27 to 37, while the upper threshold was between 57 to 62. The
performance of the age threshold test 3 with rejection class can be considered good with all the classifiers
(micro averaged bacc: 72 – 74.68 %). Polynomial and Gaussian SVM, and random forest classifiers performed
best with the same age thresholds (44 – 62), while linear SVM used different range for the rejection class (27
– 57). As visible in Figure 7 confusion matrix of the best performing model polynomial SVM, most of the
predictions were done in favour of the biggest group of the young subjects, as noticed as well in the previous
tests. The closer examination of class sizes showed that the biggest class had approximately three times more

11
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subjects in comparison to the other two groups (N_young: 30, N_rejection: 9 , N_old: 11 ). The uneven
class distribution can result in case where when the classifier is in doubt it will favour the majority class.
The more balanced case was found with linear SVM model with similar performance as seen in Figure 7 (D),
where the age thresholds for rejection class of 27 – 57 yielded more balanced class distribution (N_young:
14, N_old: 12, N_rejection: 24), although still favouring one class over the others in the predictions.

The results of the age threshold test 2 and 3 present two interesting observations. Firstly, the classification
performance is higher when the subjects in-between the young and old age group are excluded from the
ML loop. Secondly, the upper age threshold is fairly constant (57, 62), while the lower age threshold has
more variation (27, 33, 37, 44). The variation in the age threshold between the classifiers is expected, as the
different classifiers perform differently in the tasks. The between tests variation with younger threshold with
same classifiers could be explained by the effect caused by homogeneity in the data of the younger subjects,
which is further supported by the results of the classification task using pre-defined age groups. These
findings suggest a difference in the rate of aging between the subjects, and that the age-related differences
are more distinctly pronounced as the aging process has progressed further.

TABLE 3 The performance of the classifiers in the age threshold test. The results consist of balanced
accuracy of K-fold (K=5) cross-validation with the selected age thresholds. The results of the best performing
models are bolded.

Test Linear SVM
Polynomial
SVM Gaussian SVM Random Forest

Test 1 71.05 %, th*: 56 66.51 %, th: 41 67.37 %, th: 42 63.44 %, th: 39
Test 2 81.37 %, ths: 37 -

57
81.50 %, ths: 33 -
62

79.09 %, ths: 33 -
62

80.13 %, ths: 27 -
62

Test 3 72.00 %, ths: 27 -
57

74.68 %, ths: 44 -
62

73.33 %, ths: 44 -
62

72.00 %, ths. 44 -
62

*age threshold

(A)
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(B)

(C)
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(D)

FIGURE 7 Normalized confusion matrices for the best performing models in the age threshold tests 1 (A),
2 (B) and 3 (C). Due to notable class imbalance with the age threshold 3 with the best performing model,
the confusion matrix for the best linear SVM model shown additionally (D).

4 | CONCLUSION

The two key findings of the study are 1) fNIRS has potential to classify young and old adults to corresponding
age groups with good performance, and 2) the inclusion and exclusion of the subjects in the young, in-
between and old age groups affects the classification performance significantly, suggesting different aging rate
within these three groups, i.e., young, in-between, and old groups. As the wavelengths used in our fNIRS
device are sensitive to hemoglobin and water dynamics, the noticed changes are potentially related to the
cerebrovascular and neurohydrodynamic events. However, it is not clear whether water or hemoglobin change
caused effects are more significant. Furthermore, the fNIRS was measured from Fp1, and thus the detected
changes are only related to the frontal lobe activity and to the hemodynamic and neurohydrodynamic
differences in the brain. The effect of superficial layers in fNIRS study of brain aging would be of interest to
study more in detail in the future, by utilizing short SD pair in addition to the long SD pair.

Several factors accelerating and decelerating brain aging process have been identified in the literature [2]. The
existence of these factors could explain the observed changes in classification performance, when including
the subjects in the in-between age groups. Although the study population was considered healthy, the brain
aging related accelerative and decelerative factors information, such as alcohol consumption habits and
amount of physical activity per week, were not considered in this study. The analysis of these factors would
be intriguing, as they may delay or expedite the brain aging process. Furthermore, inclusion of individuals of
age over 70 would be of interest as it has been suggested that brain aging accelerates significantly afterwards
[36].

Another intriguing prospect is to use fNIRS in the aging study related to sleep. Recently it was found that
the brain’s glymphatic system has been found to be more active during the sleep [37] and the aging has
been suggested to affect its function negatively [38]. As the system consists of CSF waste clearance, the
use of fNIRS to measure the brain pulsations, which are one of the drivers of the glymphatic system [39],
and CSF dynamics with water sensitive fNIRS setup could provide potential for gaining further insight into
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the function of the system in humans, and the effects caused by aging. Furthermore, the EEG of sleep has
been successfully utilized in the brain age prediction task. [28] As EEG measured neural activity and fNIRS
measured hemodynamic response are connected by neurovascular coupling effect, it could be of interest to
study if age-related differences become more pronounced during sleep.

The key limitation of our study is the used relatively small sample size, as in general the use of large datasets
increases the statistical power in pattern recognition, [35] and therefore the used datasets in the brain age
studies are usually of large size [40]. It would be of great interest in the future to conduct fNIRS brain
aging studies with large, well age distributed, sample population to confirm our findings. Additionally, use
of multi-channel fNIRS could give boarded picture on the global effects of the aging on brain. Although
the used multi-modal measurement setup included different brain measurement modalities, such as magnetic
encephalography (MREG) and EEG [21], in this study we focused on the analysis of fNIRS and brain aging
specifically due to its novelty in the context. Thus, another area for future exploration in the fNIRS brain
aging studies is to analyse combination of brain measurement modalities data, such as fNIRS combined with
EEG or MREG. The analysis of different modalities combination would enhance the information content and
provide a comparison of the methods performance in the brain aging context. However, although suffering
from the lack of data, our study protocol utilized the best practices for ML research with limited data
by utilizing nested cross-validation framework, with feature and model selection conducted within the inner
loop, for estimating unbiased performance of the models [35]. Additionally, we utilized multiple fNIRS signal
features, introduced previously in the study of brain by different measurement modalities. The findings of
our study demonstrate the high potential for the use of fNIRS in the study of brain aging.
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