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Abstract

An accurate spatial and temporal representation of rainfall is essential for hydrological assessments and water resources man-
agement. Rainfall is monitored in India’s mountainous Western Ghats region via in-situ rainfall gauging stations maintained
by the Indian Meteorological Department (IMD). However, the network is sparse, and significant periods of data are missing.
Furthermore, the IMD gridded rainfall dataset is known to underestimate the depth of rainfall at the high altitudes within
this region. In this study, rainfall estimated by the IMD grids and from remote sensing using the CHIRPS (0.25- and 0.05-
degree), MSWEP and PERSIANN datasets are compared to the IMD in-situ gauged rainfall within the Western Ghats using
a point-to-pixel analysis.

The GWAVA model is utilised to determine the effect of the selected rainfall input datasets on representing wider water resources.

It was found that the average ensemble provided the best representation of the in-situ gauged and catchment rainfall and a

better representation than the IMD grids. It remains critical for water resources management to ensure that in-situ rainfall

gauging networks are maintained. In-situ data sources of high confidence remain important for the continuous development

and ground-truthing of different rainfall datasets.
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Key Points: 11 

 The spatial scale of the rainfall dataset does not necessarily affect the performance in 12 

the high-altitude regions of the Upper Cauvery Catchment. 13 

 The rainfall in the Upper Cauvery Catchment does not have a distinct correlation to 14 

the altitude but correlates strongly to the aspect of the mountains. 15 

 None of the individual remotely sensed datasets tested could be utilised with 16 

confidence in the Upper Cauvery Catchment. 17 

Abstract  18 

An accurate spatial and temporal representation of rainfall is essential for hydrological 19 

assessments and water resources management. Rainfall is monitored in India's mountainous 20 

Western Ghats region via in-situ rainfall gauging stations maintained by the Indian 21 

Meteorological Department (IMD). However, the network is sparse, and significant periods of 22 

data are missing. Furthermore, the IMD gridded rainfall dataset is known to underestimate the 23 

depth of rainfall at the high altitudes within this region. In this study, rainfall estimated by the 24 

IMD grids and from remote sensing using the CHIRPS (0.25- and 0.05- degree), MSWEP and 25 

PERSIANN datasets are compared to the IMD in-situ gauged rainfall within the Western 26 

Ghats using a point-to-pixel analysis.  27 

The GWAVA model is utilised to determine the effect of the selected rainfall input datasets 28 

on representing wider water resources. It was found that the average ensemble provided the 29 

best representation of the in-situ gauged and catchment rainfall and a better representation 30 

than the IMD grids. It remains critical for water resources management to ensure that in-situ 31 
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rainfall gauging networks are maintained. In-situ data sources of high confidence remain 32 

important for the continuous development and ground-truthing of different rainfall datasets. 33 

1. Introduction 34 

Knowledge of the spatial and temporal distribution of rainfall is essential for hydro-climatic 35 

studies. However, many regions are subject to highly variable rainfall, and those vulnerable to 36 

climate extremes are among the most data sparse (Wambura, 2020). Many catchments, 37 

particularly in the developing world, lack sufficient rainfall records due to sparsely distributed 38 

and/or poorly maintained meteorological stations (Wilby & Yu, 2013). The development of 39 

remotely sensed technologies and methodologies to combine satellite estimates with in-situ 40 

observation data has facilitated the production of more reliable large-scale climate datasets 41 

(Hong et al., 2019). These datasets are often spatially gridded and temporally complete on a 42 

regional or global scale. However, these datasets contain large uncertainties and regional bias, 43 

thus posing concern and hesitation in utilising them (Nashwan, 2020).  44 

Hydrological models are driven by available rainfall data, and their performance is thus 45 

directly linked with the quality of these data (Wagener et al., 2001). Rain gauge networks are 46 

the most trusted means for accurate point rainfall measurement. However, sparse rain gauge 47 

networks in remote areas and mountainous terrain lead to erroneous rainfall estimates when 48 

averaged over a region (Liang et al., 2020). Additionally, monsoonal rainfall is specifically 49 

challenging to represent as the timing of the monsoon is not consistent year-on-year, and the 50 

rainfall tends to be intense for long periods. An expanding selection of large-scale gridded 51 

rainfall datasets, both from remote sensing, reanalysis or interpolation of in-situ observations, 52 

are becoming available (Le Coz & van de Giesen, 2020). These datasets are proposed to be of 53 

value to overcome the absence of in-situ observations and provide an alternative for 54 

estimating catchment rainfall. 55 

Southern India experiences a monsoonal rainfall pattern (Sen Roy et al., 2009) with reports of 56 

significant weakening of the monsoon in recent years (Joseph & Simon, 2005; Kulkarni, 57 

2012; Dixit et al., 2014; Kumar et al., 2020; Swapna et al., 2022). The southwest monsoon 58 

generally brings rainfall between June and October, and the northeast monsoon in November 59 

and December. In addition to the monsoon strength, timing and duration, topographic factors 60 

considerably influence the distribution and concentration of rainfall across the region (Bauer 61 

& Morrison, 2008). The estimation of catchment rainfall is complicated by the complex 62 

topography of the Western Ghats (Malik et al., 2012), the large spatial and temporal 63 
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variability of the annual monsoons (Daly, 2006) and the conversion of a sparse rain gauge 64 

network and proxy measurements (cloud top temperature, raindrop reflectivity, solar energy, 65 

brightness temperature, microwave emission, etc.) into quantitative rainfall estimates 66 

(Ghimire et al., 2018; Hong et al., 2019). The seasonal nature of rainfall and the resulting 67 

streamflow generation within the region has resulted in infrastructural projects being at the 68 

forefront of water management planning over the last century (Chowdhury, 2010). The Upper 69 

Cauvery Catchment region, located in the Western Ghats, acts as the water tower of the 70 

greater catchment.  71 

The Western Ghats act as a barrier to the southwest monsoon clouds and influence the 72 

distribution of rainfall in the region. The undulating landscape, slope and aspect of these 73 

mountains to the monsoonal winds pose many challenges to the scientific community in 74 

understanding the spatial and temporal distribution of rainfall (Venkatesh et al., 2021). Along 75 

the southwestern and western coasts, the Mean Annual Rainfall (MAR) can be as high as 76 

6000 mm due to the orographic effects of the Western Ghats. In contrast, in the rain shadow 77 

on the eastern side of the Western Ghats, the rainfall is markedly reduced to a low of 300 mm 78 

(Chidambaram et al., 2018). A delayed or weakened monsoon significantly influences the 79 

rainfall in the higher latitudes of the country. Both the steepness and aspect of the mountains 80 

in this region directly affect the occurrence and location of rainfall. The steep slopes of the 81 

Western Ghats in Maharashtra and Kerala result in a strong orographic effect and drier 82 

conditions on the leeward side of the range (Meunier et al., 2015).  83 

The scarce rain gauge data in the Western Ghats region has been a major impediment to 84 

scientific studies, limiting the understanding of the regional weather system (Venkatesh et al., 85 

2021). The major rivers of southern India originate in this mountain range, and the livelihoods 86 

of people in this region depend on the water available (Reddy et al., 2021). Many major dams 87 

and water transfers are constructed within this region to provide water for domestic, 88 

industrial, and agricultural needs (Rajesh et al., 2016). Any changes in the rainfall pattern 89 

result in variations in water availability and directly impacts the livelihoods of the people and 90 

economy of the region. Rain gauge data are the primary source of historical rainfall data (Sun 91 

et al., 2018). Consequently, due to the sparse gauge network over the Western Ghats (and the 92 

Indian mainland), the IMD has made a significant effort to convert the available station data 93 

to a regular space-time grid (Pai et al., 2014). These 0.25-degree daily rainfall grids created 94 

by the IMD are the accepted rainfall dataset for India within the scientific community and are 95 
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considered the rainfall standard across environmental, industrial, and operational companies 96 

within India (Singh et al., 2021; Buri et al., 2022).  97 

An accurate rainfall representation in India is essential for understanding the hydrological 98 

responses during the monsoon rainfall season. Satellite-derived rainfall datasets have 99 

succeeded in depicting region-specific rainfall patterns across climatologically different parts 100 

of India. Most of the published studies utilising remotely sensed data have taken place across 101 

India or in small sub-catchments near the Himalayas. The remotely sensed data are generally 102 

compared to the IMD rainfall grids and, in some cases, to the IMD gauge data. These studies 103 

have concluded that the remotely sensed data sets struggle to estimate orographic rainfall, 104 

particularly in the Western Ghats and the Himalayan foothills (Palazzi et al., 2013; Prakash et 105 

al., 2015; Shah & Mishra, 2016). Therefore, the performance of new remotely sensed datasets 106 

which have not been applied in the region needs to be assessed.  107 

In instances where ‘off-the-shelf’ remotely sensed datasets do not represent the point rainfall 108 

nor the simulated catchment streamflow to an acceptable standard, it is common practice to 109 

utilise available in-situ rain gauge data to perform a bias-correction (Guo & Liu, 2016). This 110 

technique has proven effective globally (Luo et al., 2020); however, it falls short in regions 111 

where in-situ rain gauge data are not available or accessible, or there is high uncertainty in the 112 

gauged measurements (Kimani et al., 2018). A probable solution is utilising an average 113 

ensemble of the selected remotely sensed rainfall datasets in a similar capacity to that which is 114 

common practice in the application of global climate model (GCM) data (Noor et al., 2019; 115 

Rickards et al., 2020).  116 

This study aims to provide insight into the suitability of selected remotely sensed rainfall 117 

datasets and improve the estimation of catchment rainfall by improving the fundamental 118 

understanding of rainfall in the Upper Cauvery Catchment. 119 

a) Evaluating remotely sensed rainfall datasets not previously applied at a catchment 120 

scale in the Upper Cauvery Catchment and assessing the performance of various ‘off-121 

the-shelf’ remotely sensed datasets against in-situ rain gauge data. 122 

b) Identifying the best-performing rainfall dataset, including the IMD and remotely 123 

sensed datasets. 124 

c) Determine whether the spatial resolution of a rainfall dataset improves the 125 

performance in the Upper Cauvery Catchment. 126 
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d) Ascertain whether an ‘off-the-shelf’ remotely sensed rainfall dataset is suitable for 127 

hydrological modelling within the Upper Cauvery Catchment without regional bias 128 

correction. 129 

e) Determining whether an ‘off-the-shelf’ remotely sensed dataset could improve the 130 

hydrological simulations within a complex topographical region compared to the IMD 131 

gridded dataset.  132 

f) Establish whether an ensemble could more accurately represent the catchment rainfall 133 

and the simulated streamflow than the IMD gridded rainfall data. 134 

2. Materials and Methods 135 

The performance of the widely used IMD (Pai et al., 2014) gridded rainfall and selected remote sensing 136 

(RS) datasets not previously used in the region will be compared to the available in-situ observations. 137 

Hydrological simulations will be utilised to determine the effects of various rainfall data on water 138 

resource representation.  139 

2.1. Catchment Description 140 

The Cauvery Catchment (81,000 km
2
) is situated in southern India (Figure 1). The diverse 141 

terrain and strong west-to-east rainfall gradient (6000 mm in the upper reaches to 300 mm on 142 

the eastern boundary) result in regionally variable surface and groundwater availability 143 

(Meunier et al., 2015) and, depending on local demand patterns, is a critical and widely 144 

limiting factor for agriculture (Madhusoodhanan et al., 2016), with much of the irrigated 145 

agriculture dependent on groundwater abstraction from millions of wells. The catchment is 146 

primarily underlain by hard-rock aquifers (Collins et al., 2020). Although predominantly rural 147 

(Sreelash et al., 2020), parts of the catchment have experienced considerable urban and 148 

economic growth over recent years (Gupta & Horan, 2022).  149 

The surface water in the catchment has been affected for centuries by human influences, 150 

which have impacted the hydrological functioning of the catchment (Gupta & van der Zaag, 151 

2008). In addition to the significant anthropogenic influence within the catchment, there are 152 

ongoing inter-state water-sharing disputes. Water disputes in the Cauvery Catchment differ 153 

from other inter-state water disputes, such as in the Krishna, Godavari and Narmada 154 

Catchments. These tend to form around the untapped potential of water resources, whereas in 155 

the Cauvery Catchment, the disputes surround the reallocation of existing water resources 156 

(Janakarajan, 2016) between the federal states of Karnataka and Tamil Nadu (Sharma et al., 157 
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2020). As the water-sharing agreement in the Cauvery is legally founded, the estimation and 158 

distribution of water resources throughout the catchment must be accurately understood.  159 

The Upper Cauvery Catchment drains an area of 10 619 km
2
 in the north-western region of 160 

the Cauvery Catchment (Figure 1) and constitutes 21% of the total catchment area but 161 

generates 82% of the total streamflow (Horan et al., 2021a). The upper reaches of the 162 

Cauvery River lie within the Western Ghats (Figure 1: Inset 1). The Upper Cauvery 163 

Catchment drains into the Krisharaja Sagar (KRS) dam, where it is stored for domestic and 164 

agricultural use.  The Western Ghats act as a critical headwater to the larger catchment and a 165 

barrier to the southwest monsoon (Chidambaram et al., 2018). In the area of the Western 166 

Ghats, the soils tend to be very deep, valley bottoms are covered in dense forests, and 167 

mountain slopes are predominately grassland (Pattabaik et al., 2013). As shown in Figure 1, 168 

the Upper Cauvery Catchment consists of four gauged sub-catchments (Saklesphur, 169 

Thimmanahali, Kudige and KM Vadi). The Upper Cauvery will be modelled at a 0.125-170 

degree resolution for the period 1985-2013 due to data availability and to correspond with the 171 

pilot study (Horan et al., 2021a). 172 
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Figure 1 Inset 1: the location of the Western Ghats within India; Inset 2: the location of the 173 

Cauvery Catchment within India; Main map: Cauvery Catchment sub-catchment boundaries, 174 

modelling grid and the location of streamflow gauges used for hydrological model calibration. 175 

2.2. Rainfall Data 176 

2.2.1. In-situ Rain Gauge Data 177 

The IMD provided daily in-situ rain gauge data for 21 gauges in the Upper Cauvery 178 

Catchment (Figure 2; Table 5 in the Appendix). The data records were inconsistent between 179 

gauging stations, and thus a period of 1985 to 2013 was selected as the majority of the gauges 180 

had data available for this period. There were, however, significant gaps within the remaining 181 

data. In this study, no effort was made to infill these gaps as the gauges were not deemed 182 

close enough to each other, and due to the complex topography, no meaningful relationships 183 

could be drawn. The available data was compared to the gridded datasets using a point-to-184 

pixel analysis.  185 

Inset 1 

Inset 2 
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Figure 2 The location of rain gauges and elevation (left) and the demarcation of the Western 186 

Ghats within the Upper Cauvery Catchment and windward and leeward positioned gauges 187 

(right) within the Upper Cauvery Catchment. 188 

2.2.2 Gridded Rainfall Data 189 

Several remotely sensed rainfall datasets were considered for this study (Table 6 in the 190 

Appendix). As summarised in Table 1, only four remotely sensed rainfall datasets met all five 191 

of the following criteria, at the time of publication, and thus were selected for this study.  192 

1. Not been explicitly applied within the Upper Cauvery Catchment 193 

2. A spatial resolution of not more than 0.25 degree (IMD grid size) 194 

3. Temporal coverage between 1985 and 2013 (period of available observed rainfall 195 

and streamflow data) 196 

4. If a reanalysis dataset, it did not make use of the IMD gridded rainfall data within 197 

the compilation 198 

5. The datasets must have undergone a degree of bias correction with gauged rainfall 199 

within the dataset production methodology 200 

 201 

Table 1 The rainfall datasets utilised in this study, including the methodology, spatial and 202 

temporal coverage and resolution, their application in India and reference source.  203 

Dataset Methodology 
Spatial 

coverage 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Application 

in India 

Application 

in Western 
Reference 
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i) IMD 204 

The IMD has developed a daily rainfall dataset at a 0.25-degree grid size over the Indian 205 

mainland for the period from 1901- to 2013 based on a network of 6 955 rain gauge stations 206 

(Rajeevan & Bhate, 2009; Pai et al., 2014). The IMD gridded rainfall dataset uses these 207 

gauges and the simplest form of inverse distance weighted (IDW) interpolation (Shepard, 208 

1968) to estimate a spatial representation of rainfall. Spatial interpolation uses gauging 209 

stations with known values to estimate rainfall at points without available data (Li & Heap, 210 

2008). In the IDW method, the rain gauging points are weighted such that the influence of one 211 

gauge relative to another declines with distance from the point of unknown rainfall. 212 

Weighting is assigned to gauging points using a weighting coefficient that controls the 213 

weighting influence—the greater the weighting coefficient, the less effect the gauge will have. 214 

The quality of the interpolation can decrease if the distribution of gauging stations is uneven. 215 

The maximum and minimum values in the interpolated surface can only occur at sample 216 

gauging points. To speed up the computation, only rainfall data from a few of the nearest 217 

neighbour stations (minimum of 1 station and a maximum of 4 stations) within a radial 218 

distance of 1.5-degrees (166 km
2
) around the grid point was used in the IDW interpolation. In 219 

the mountainous regions of India, there is a low density of rain gauge stations (approximately 220 

1 station for every 460 km
2
) and highly variable rainfall. Thus, the spatial variability of 221 

Ghats 

Indian 

Meteorological 

Department (IMD) 

Gauges India 1901-2014 0.25 Daily   
Pai et al., 

2014 

Climate Hazards 

Group InfraRed 

Rainfall with Station 

data (CHIRPS) 

Infrared 

Gauge 
50°N - 50°S 1981- NRT 0.25° Daily   

Funk et al., 

2015 

CHIRPS v2.0 
Infrared 

Gauge 
Global 1981 -NRT 0.05° Daily   

Funk et al., 

2015 

Multi-Source 

Weighted-Ensemble 

Rainfall (MSWEP) 

v2.0 

Infrared 

Microwave 

Gauges 

Global 1979- NRT 0.1° 3 hour   
Beck et al., 

2017 

PERSIANN- 

Climate Data 

Record (CDR) 

Infrared 

Gauge 
60°N - 60°S 1983-2016 0.25° 6 hour   

Ashouri et 

al., 2015 
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rainfall may not be captured adequately using the IDW methodology. In addition, the 222 

maximum rainfall can occur only at gauging points; the rainfall in ungauged areas may be 223 

systematically underestimated, especially in the Western Ghats, where the rainfall varies from 224 

600 mm to 5000 mm within 50–100 km.  225 

The IMD gridded daily rainfall data were obtained from the IMD in New Delhi. The data was 226 

provided at a 0.25-degree scale in comma-separated values format for the peninsula region of 227 

India. Using the coordinates of the in-situ rain gauges, the relevant grids were identified, and 228 

the data were extracted using an R statistical software script. The 0.25-degree data were 229 

resampled to the 0.125- degree modelling grids, whereby the finer grids retained the value of 230 

the 0.25-degree grid cell they overlay.  231 

ii) CHIRPS 0.25- and 0.05-degree 232 

The Climate Hazards Group Infrared Rainfall with Stations (CHIRPS) dataset is available at a 233 

spatial resolution of 0.25- and 0.05- degrees across a latitude band of 50ºS–50ºN from 1981 to 234 

the present (Funk et al., 2015). CHIRPS utilises high-resolution infrared Cold Cloud Duration 235 

(CCD) observations interpolated with a global 0.05° monthly rainfall archive, Climate 236 

Hazards Rainfall Climatology (CHPclim), and historical station data from several public data 237 

streams and private archives. Monthly rainfall estimates are produced at a 0.25° scale using 238 

the CCD observations and TRMM 3B42 rainfall data. These are downscaled to 0.05º. The 239 

0.25° and 0.05° datasets are corrected using the long-term means and CHPClim data. The 240 

corrected datasets are blended with available station data to produce the published datasets. 241 

Station data is obtained from Global Historical Climatology Network (GHCN), Global 242 

Summary of the Day (GSOD), Global Telecommunications System (GTS), Southern African 243 

Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) and 244 

national meteorological agencies in Central and South America and sub-Saharan Africa (Funk 245 

et al., 2015). 246 

The 0.05- and 0.025-degree daily rainfall data were downloaded using the in-built chirps R 247 

package (https://cran.r-project.org/web/packages/chirps/index.html). The data was provided at 248 

a 0.05-and 0.025- degree scale in NetCDF format. Using the coordinates of the in-situ rain 249 

gauges, the relevant data were identified and extracted using an R statistical software script. 250 

Furthermore, the 0.05- degree data was clipped and aggregated to the 0.125-degree modelling 251 

grid using R statistical software. Each 0.125-degree grid was assigned the daily mean of the 252 

CHIRPS grids that it fell within. The 0.25-degree data was disaggregated to the 0.125- degree 253 

https://cran.r-project.org/web/packages/chirps/index.html
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modelling grids, whereby the finer grids retained the value of the 0.25-degree grid cell they 254 

overlay. The 0.125-degree datasets were output as a comma-separated values file. 255 

iii) MSWEP 256 

Multi-Source Weighted Ensemble Rainfall (MSWEP) is a global rainfall dataset available 257 

from 1979–2015 at a temporal resolution of three hours and a spatial resolution of 0.25°. The 258 

dataset is derived from several data sources, including 13 762 rain gauges, satellites, and 259 

atmospheric reanalysis models. The long-term mean is derived from the CHPclim dataset, 260 

corrected for orographic effects, and then downscaled to a monthly timestep using multiple 261 

satellite rainfall datasets. The monthly rainfall is then downscaled to a daily resolution using 262 

the CPC Unified rainfall gauged dataset and the area weighting technique. Available three-263 

hourly satellite rainfall estimates are utilised to further downscale the daily resolution rainfall 264 

to three-hour MSWEP data. MSWEP undergoes a long-term bias correction using both 265 

rainfall (CHPclim and PRISM) and streamflow data (GAGES-II and GRDC) (Beck et al., 266 

2017). 267 

MSWEP daily rainfall data were obtained from the GloH2O 268 

(http://www.gloh2o.org/mswep/). The data was provided at a 0.1-degree scale in NetCDF 269 

format. Using the coordinates of the in-situ rain gauges, the relevant data were identified and 270 

extracted using an R script. Furthermore, using R statistical software, the data was clipped and 271 

aggregated to the 0.125-degree modelling grid. Each 0.125-degree grid was assigned the daily 272 

mean of the MSWEP grids that it fell within. The 0.125-degree dataset was output as a 273 

comma-separated values file. 274 

iv) PERSIANN-CDR 275 

The Rainfall Estimation from Remotely Sensed Information using Artificial Neural 276 

Networks-Climate Data Record (PERSIANN-CDR) is available from 1983 to the present at a 277 

daily 0.25° resolution. The dataset covers between 60°N and 60°S. PERSIANN-CDR uses a 278 

modified PERSIANN algorithm that inputs infrared imagery from GEO satellites into an 279 

ANN model and includes gauge measurements from the contiguous United States (CONUS) 280 

to estimate global surface rainfall rates from satellite-based infrared measurements (Ashouri 281 

et al., 2015). PERSIANN-CDR uses the National Centres for Environmental Prediction 282 

(NCEP) Stage IV hourly rainfall to train the ANN model. Bias correction is undertaken on a 283 

monthly scale using the Global Rainfall Climatology Project (GPCP) monthly 2.5º rainfall 284 

data (Nguyen et al., 2018).  285 

http://www.gloh2o.org/mswep/
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PERSIANN daily rainfall data were obtained from the National Centers for Environmental 286 

Information (https://www.ncei.noaa.gov/datasets/climate-data-records/   rainfall-287 

persiann). The data was provided at a 0.25-degree scale in NetCDF format. Using the 288 

coordinates of the in-situ rain gauges, the relevant data were identified and extracted using an 289 

R script. Furthermore, using R statistical software, the data was clipped, and the 0.25-degree 290 

data were resampled to the 0.125- degree modelling grids, whereby the finer grids retained the 291 

value of the 0.25-degree grid cell they overlay. The 0.125-degree dataset was output as a 292 

comma-separated values file. 293 

v) Ensemble 294 

An ensemble uses the variation of input data, analysis, and methodologies of its component 295 

members and tends to be less prone to systematic biases and errors. An ensemble rainfall 296 

combines multiple rainfall datasets to create a single dataset. In regions where in-situ rainfall 297 

gauge measurements may not be available, an ensemble of selected remotely sensed rainfall 298 

datasets may provide a better and more consistent representation of the rainfall than the 299 

individual datasets. An ensemble can be applied in rainfall studies to reduce errors with an 300 

optimal bias (Baker & Ellison, 2008). Although most published studies utilise an ensemble 301 

when applying future GCM predictions, an example of a published study (Cornes et al., 2018) 302 

has used the concept to improve estimates of historical rainfall. Cornes et al. (2018) found 303 

that utilising an ensemble of gridded rainfall datasets improved uncertainty estimates 304 

compared to individual datasets across Europe.  305 

An average ensemble was determined utilising the 0.125-degree re-gridded CHIRPS 0.05- 306 

and 0.25- degree datasets, MSWEP dataset and PERSIANN dataset from 1985-2013. The 307 

daily rainfall for each 0.125-degree grid was averaged with equal weighting to produce a 308 

single daily time series for each grid (Equation 5.1).  309 

�̅� =  
∑ 𝑥

𝑛
 (5.1) 310 

where �̅� is the mean, x is the values, and n is the number of x values in the dataset. 311 

A median ensemble was determined utilising the median of the 0.125-degree re-gridded 312 

CHIRPS 0.05- and 0.25- degree datasets, MSWEP dataset and PERSIANN dataset from 313 

1985-2013.  314 

https://www.ncei.noaa.gov/products/climate-data-records/precipitation-persiann
https://www.ncei.noaa.gov/products/climate-data-records/precipitation-persiann
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Four weighted ensembles were determined using the 0.125-degree resampled CHIRPS 0.25- 315 

and 0.05- degree, MSWEP and PERSIANN datasets from 1985-2013.  316 

𝐶25 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
2𝑥𝐶25 + 𝑥𝐶05 + 𝑥𝑀 + 𝑥𝑃 

5
 

 
(5.2) 

𝐶05 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑥𝐶25 + 2𝑥𝐶05 + 𝑥𝑀 + 𝑥𝑃 

5
 

 
(5.3) 

𝑀 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑥𝐶25 + 𝑥𝐶05 +  2𝑥𝑀 +  𝑥𝑃 

5
 

 
(5.4) 

𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑥𝐶25 + 𝑥𝐶05 + 𝑥𝑀 +  2𝑥𝑃 

5
 

 
(5.5) 

Where x is the value in the CHIRPS 0.25-degree (C25), CHIRPS 0.05-degree (C05), MSWEP 317 

(M) and PERSIANN (P) datasets. 318 

For each of the ensembles, using R statistical software and the coordinates of the in-situ rain 319 

gauges, the relevant data were identified and extracted for a point-to-pixel evaluation. The 320 

average ensemble was consolidated into a comma-separated values file for input to GWAVA. 321 

2.3 Model Selection 322 

Several hydrological modelling studies have been carried out in the headwater sub-catchments 323 

of the Cauvery. These include using the auto-regressive moving average time series (ARIMA) 324 

model (Maheswaran & Khosa, 2012), an artificial neural network (ANN) model (Maheswaran 325 

& Khosa, 2012; Patel & Ramachandran, 2015), a support vector regression (SVR) model 326 

(Patel & Ramachandran, 2015), the Water Evaluation And Planning (WEAP) model (Bhave 327 

et al., 2018), GWAVA (Horan et al., 2021a), the Soil and Water Assessment Tool (SWAT) 328 

(Kumar & Nandagiri, 2018; Horan et al., 2021a; Wable et al., 2021) and the Variable 329 

Infiltration Capacity (VIC) model (Gowri et al., 2021; Horan et al., 2021a).  330 

The above-listed model applications within this region have not been highly successful in 331 

representing the sub-catchments; however, they provide useful scientific lessons and the 332 

identification of various shortfalls. The applications by Maheswaran and Khosa (2012), Patel 333 

and Ramachandran (2015), Bhave et al. (2018), Horan et al. (2021a, b, c), and Gowri et al. 334 
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(2021) utilised the IMD 0.25-degree daily rainfall grids (Pai et al., 2014) as the source of 335 

rainfall data. Bhave et al. (2018) and Horan et al. (2021a) noted that a limitation of their work 336 

was the restricted availability of some specific input data, particularly observed rainfall. 337 

Kumar and Nandagiri (2018) and Wable et al. (2021) utilised the data from ten and sixteen 338 

rain gauges for simulations in the headwater sub-catchments using the SWAT model, 339 

respectively produced significantly better results than the studies carried out using the IMD 340 

gridded rainfall data. The ability of the SWAT model to simulate daily streamflow was 341 

reasonably good, with better low-flow than high-flow simulations. Both Kumar and Nandagiri 342 

(2018) and Wable et al. (2021) point to rainfall estimation in complex topography as a large 343 

source of uncertainty within the modelling exercise. 344 

This study used an improved version of the GWAVA model (Meigh et al., 1999; Horan et al., 345 

2021c). GWAVA is a large-scale gridded water resource model that accounts for natural 346 

hydrological processes (soils, land-use, and lakes), using a conceptual rainfall-runoff model 347 

and anthropogenic stresses (groundwater abstraction, irrigation, domestic and industrial 348 

demands, dam storage, and water transfers) via a demand-driven routine (Meigh et al., 1999).  349 

The model can be run at a daily or monthly time scale across modelled areas greater than 350 

1000 km
2
 and is adaptable to the data availability of the region. GWAVA was developed 351 

primarily for use in large, data-scarce regions.  352 

The low-data requirement of the GWAVA model, with published applications in southern 353 

Africa (Meigh et al., 1999), West Africa (Meigh & Tate, 2002; Meigh et al., 2005; 354 

Rameshwaran et al., 2017; Rickards et al., 2019), South America (Ekstrand et al., 2008), 355 

Europe (Dumont et al., 2012; Johnson et al., 2015; Williams et al., 2015), China (Lui et al., 356 

2015) and India (Rickards et al., 2020) and a successful pilot study within the Upper Cauvery 357 

Catchment (Horan et al., 2021a), makes it suitable for application in southern India. The 358 

GWAVA model has been updated to better represent small-scale runoff harvesting 359 

interventions (Horan et al., 2021b), groundwater abstraction, artificial recharge, and regulated 360 

dam releases (Horan et al., 2021c). These updates are based largely on field data, the 361 

principles of the AMBHAS-1D (Tomer et al., 2012) groundwater model and the Hanasaki 362 

dam routine (Hanasaki et al., 2006).  363 
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GWAVA simulates the local runoff from each grid cell using a lumped conceptual, 364 

Probability Distributed rainfall-runoff Model (PDM) (Moore, 1985).  The PDM is used to 365 

simulate the spatial variations in soil moisture by means of a probability distribution (Moore, 366 

2007). The PDM utilises a ‘bucket’ approach, allocating the rainfall amongst various 367 

‘buckets’ to determine the partitioning of water into the components of the water balance 368 

(UKCEH, 2020). Figure 3 illustrates the model configuration. 369 

Figure 3 Schematic of the rainfall-runoff model, including the configuration of the probability 370 

distributed model (PDM) (UKCEH, 2020).  371 
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2.4. Model Application 372 

2.4.1. Input Data 373 

Input data were collected from several sources and extracted from global and regional 374 

datasets. The sources and details of the data used in this modelling exercise are summarised in 375 

Table 7 in the Appendix. 376 

2.4.2. Model Setup 377 

The Upper Cauvery Catchment was modelled using a gridded configuration with a spatial 378 

resolution of 0.125 degrees (Figure 1) using the GWAVA 5.1 model (Horan et al., 2021c) 379 

forced by various rainfall input datasets: 380 

a) IMD daily rainfall gridded data 381 

b) 0.25- degree CHIRPS daily rainfall data 382 

c) 0.05- degree CHIRPS daily rainfall data 383 

d) 0.1- degree MWESP daily rainfall data 384 

e) 0.25- degree PERSIANN daily rainfall data 385 

f) 0.125-degree ensemble rainfall data 386 

The domestic, irrigation, industrial and livestock demand, large-scale water transfers, 387 

hydropower dams, irrigation dams, and agriculture within the irrigation and rural areas were 388 

included. 389 

2.4.3. Model Calibration 390 

Five streamflow gauges were used to calibrate the GWAVA model in the Upper Cauvery 391 

Catchment using the IMD gridded rainfall dataset (Figure 1). It was then assumed that these 392 

calibration parameters would be reasonable for the remotely sensed rainfall datasets. The 393 

simulated streamflow was calibrated against the observed streamflow using the SIMPLEX 394 

auto-calibration routine. This calibration routine utilises five parameters; (i) a surface routing 395 

parameter, (ii) a groundwater routing parameter, (iii) a Probability Distributed Model (PDM) 396 

parameter that describes spatial variation in soil moisture capacity, (iv) groundwater 397 

initializing depth parameter, and (v) a multiplier to adjust rooting depths. The calibration 398 

gauges were selected based on the completeness and temporal coverage of the data and the 399 

size of the sub-catchment. The observed streamflow data were deemed sufficient when it had 400 

at least five consecutive years of data available from 1981 until 2010. 401 
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2.4.4. Evaluation 402 

Due to the high variability of rainfall and streamflow in the Upper Cauvery Catchment, the 403 

Kling-Gupta Efficiency (KGE) was used to determine the ability of the rainfall dataset and 404 

GWAVA to represent the temporal characteristics of the rainfall and streamflow against the 405 

observed data. The Root Mean Squared Error (RMSE) was used to determine the accuracy of 406 

the rainfall datasets compared to the observed values. The bias was used to evaluate the 407 

ability of the rainfall datasets and GWAVA to estimate the total volume of streamflow across 408 

the modelling period.  409 

i) Kling-Gupta Efficiency (KGE) 410 

The KGE (Gupta et al., 2009) is based on correlation, variability bias and mean bias and is 411 

calculated (Equation 5.3) as: 412 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (
𝜎𝑠

𝜎𝑜
− 1)

2
+ (

𝜇𝑠

𝜇𝑜
− 1)

2
 (5.3) 413 

where r is the correlation coefficient between the monthly simulated and observed 414 

data, σo is the standard deviation of monthly observation data, σs is the standard deviation of 415 

the monthly simulated data, μo is the mean of monthly observation data, and μs is the mean of 416 

monthly simulated data. 417 

The KGE indicates the overall performance of the model. The metric allows some 418 

perceived shortcomings with the Nash-Sutcliffe Efficiency (NSE) metric to be overcome and 419 

has become increasingly popular for evaluating hydrological model skill. A KGE of one 420 

indicates perfect agreement between simulations and observations. However, there are many 421 

opinions about where the differentiation of ‘good’ and ‘poor’ model performance thresholds 422 

lie within the KGE scale. Negative KGE values do not always imply that the model performs 423 

worse than the mean flow benchmark. For this study, and to compare model performance, a 424 

KGE score of less than 0.2 was deemed poor, between 0.2 and 0.6 as fair and above 0.6 as 425 

good.  426 
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ii) Root Mean Squared Error 427 

The root-mean-square error (RMSE) is a measure of accuracy and a frequently used measure 428 

of the differences between the simulated and observed values (Equation 5.4). The RMSE 429 

represents the square root of the second sample moment of the differences between predicted 430 

and observed values or the quadratic mean of these differences.  431 

𝑅𝑀𝑆𝐸 =  √
∑(𝑦𝑠−𝑦𝑜)2

𝑛
 (5.4) 432 

 where yo is the monthly observed data value, ys is the monthly simulated data value, 433 

and n is the number of samples. 434 

iii) Bias 435 

The bias is the average tendency of the simulated data to over-or underestimate the observed 436 

data (Equation 5.5). The optimal value for the bias is zero. Positive values indicate a model 437 

underestimation, and negative values indicate an overestimation. When assessing a model’s 438 

ability to simulate streamflow, the bias indicates the ability of the model to predict the overall 439 

streamflow volume across the modelling period. A bias of between -10 and 10% is considered 440 

acceptable.  441 

𝐵𝑖𝑎𝑠 =
∑ 𝑦𝑜− 𝑦𝑠

∑ 𝑦𝑜
× 100 (5.5) 442 

where yo is the monthly observation data, and ys is the monthly simulated data.  443 

The performance of each rainfall dataset and the streamflow generated by each rainfall 444 

dataset are ranked from best to worst performing and given a score from one to five. The best 445 

performing was assigned a one and the worst a five. The performance was evaluated across 446 

the KGE, RMSE and bias statistics within each sub-catchment. Each rainfall dataset was 447 

ranked across the individual sub-catchments and the whole Upper Cauvery Catchment to 448 

determine the spatial performance across the region and whether a dataset performs better 449 

than the IMD grids in the Upper Cauvery Catchment.   450 
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3. Results 451 

3.1. Performance of the Rainfall Estimated by the Selected Datasets 452 

Compared to the monthly observed rainfall values in Figure 4, the graphs pertaining to the 453 

IMD grids, CHIRPS and MSWEP illustrate a notable scatter above and below the 1:1 line, 454 

provide a good fit at lower magnitude events and underestimate at higher magnitude events. 455 

PERSIANN overestimates the rainfall depth during lower magnitude events but significantly 456 

underestimates the rainfall depth at mid-to-high magnitude rainfall events. The IMD grids 457 

present the highest R
2
 value of the individual rainfall datasets.  458 

Six ensemble techniques were investigated for use in the Upper Cauvery Catchment. The 459 

various methodologies provide similar results regarding the depth of rainfall across events of 460 

varying magnitude. As expected, the ensembles produce similar results that fit well to the 1:1 461 

line at lower magnitude events. The clustering around the 1:1 line is more pronounced in the 462 

ensembles than in the individual datasets. At high-magnitude events, like individual datasets, 463 

the ensembles underestimate the rainfall depth. The degree to which PERSIANN 464 

underestimates the high-magnitude events affects the ensembles at these magnitudes. The 465 

average ensemble presents a higher R
2 
value than the IMD grids.  466 

Using the KGE, RMSE and bias statistics, all the ensembles performed more accurately than 467 

the individual rainfall datasets, as shown in Table 2. Although the median, CHIRPS, MSWEP 468 

and PERSIANN weighted ensembles produced good KGE scores, the bias was higher than 469 

the average ensemble.  470 

As evident from Table 2, the various ensemble methodologies produced the most accurate 471 

overall representation (KGE) of the observed rainfall with the lowest margin of error 472 

(RMSE), followed by IMD and CHIRPS 0.25-degree, CHIRPS 0.05-degree, PERSIANN and 473 

MSWEP. PERSIANN and MSWEP, however, provide the best representation of the overall 474 

depth of rainfall across the Upper Cauvery Catchment, followed by the average ensemble, 475 

CHIRPS 0.05- degree, CHIRPS 0.25-degree and IMD. The average ensemble provided the 476 

best performance of the ensemble methodologies and all the rainfall datasets utilised (Table 477 

2). 478 
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 479 

Figure 4 The monthly in-situ observed rainfall against the monthly rainfall from the gridded 480 

rainfall datasets (left) and the various ensembles (right) 481 

 482 
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Table 2 The average KGE, RMSE and bias value (V) when utilising the various rainfall datasets and ensemble techniques across the Upper Cauvery 483 

Catchment compared to the monthly observed values. A score (S) is assigned from the best-performing dataset from 1(best) to 11 and these are 484 

summed to indicate the overall best-performing dataset.  485 

 486 

Metric IMD CHIRPS 25 CHIRPS 05 MSWEP PERSIANN 
Average 

ensemble 

Median 

ensemble 

CHIRPS 

0.25-degree 

weighted 

ensemble 

CHIRPS 

0.05-degree 

weighted 

ensemble 

MSWEP 

weighted 

ensemble 

PERSIANN 

weighted 

ensemble 

 V S V S V S V S V S V S V S V S V S V S V S 

KGE 0.54 7 0.45 8 0.4 9 0.13 10 0.21 11 0.74 1 0.72 2 0.69 5 0.7 4 0.71 3 0.64 6 

Bias -20.4 11 12.5 10 9.6 9 1.9 2 0.4 1 3.5 3 7.6 5 8.5 6 9.3 8 9.1 7 4.9 4 

RMSE 129.3 5 148.9 8 152.4 9 161.7 10 204.1 11 120.4 1 127.3 3 129.4 6 129.3 4 124.1 2 134.6 7 

Score 23 26 27 22 23 5 10 17 16 12 17 
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As shown in Figure 5, the central tendency of the data from across the year is similar between 487 

datasets. The rainfall distribution presents a negative skewness, with the median shifted 488 

towards the lower quartile. Considering the nature of rainfall in this region, this is expected as 489 

there are a high proportion of days without rainfall. The overall ability of the remotely sensed 490 

datasets to represent the distribution of rainfall is fairly accurate when considering the 10
th

 491 

and 90
th

 percentiles, the medians and the interquartile ranges (Table 8 in the Appendix).  492 

During the monsoon (June-September), the data demonstrate a wider variability of data from 493 

the median and a relatively large interquartile range (Figure 5; Table 8 in the Appendix) is 494 

presumably associated with the variable timing of the onset and the strength of the monsoon. 495 

Although the data still demonstrates a positive skewness, it is not as prominent as when 496 

considering the rainfall across the year. The ‘drizzle day’ nature of remotely sensed datasets is 497 

evident in the representation of the 10
th

 percentile. ‘Drizzle day’ nature is caused by the 498 

remotely sensed data consisting of spatial means rather than point estimates, which can result 499 

in a smaller number of no-rain days when spatial estimates are compared to observed gauge 500 

data. The observed and IMD datasets present the 10
th

 percentile of zero, whilst the remotely 501 

sensed datasets vary between 10-45mm. The ability of the remotely sensed datasets to 502 

represent the distribution of rainfall for the monsoon season is more varied. The median and 503 

interquartile range values of the remotely sensed datasets are greater than that of the observed 504 

and IMD (Table 8 in the Appendix). The IMD data represents the lower distribution but not, 505 

the higher distribution well. PERSIANN presents a small interquartile range suggesting that 506 

the rainfall values are clustered around the median and do not represent the high or low 507 

quartiles well. The average and median ensembles provide the closest representation of the 508 

10
th

 and 90
th

 percentiles and the interquartile range of observed rainfall, especially in the 509 

monsoon season. (Figure 5; Table 8 in the Appendix). Considering the 10
th

 and 90
th

 510 

percentiles, the interquartile range and the R
2
 value, the average ensemble was selected as the 511 

most accurate and will be used. 512 
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Figure 5 The range of average monthly rainfall produced by each rainfall dataset across the 513 

period of 1985 until 2013 and within the monsoon season. The whiskers represent the 10
th

 and 514 

90
th

 percentiles, the line within the box represents the median and the ‘X’ represents the 515 

average. 516 

Figure 6 illustrates that the estimation of rainfall by large-scale remotely sensed datasets 517 

within the Upper Cauvery Catchment is variable. The IMD grids underestimate the rainfall 518 

systematically across the Upper Cauvery Catchment, and the underestimation is particularly 519 

prevalent within the rain shadow.  520 
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521 

Figure 6 Average monthly rainfall bias (%) from 1985- 2013 between the rainfall datasets 522 

(IMD grids, CHIRPS 0.25-and 0.05- degree, MSWEP, PERSIANN and the average 523 

ensemble) and the station gauge data. The windward gauges are denoted as a circle and the 524 

leeward gauges as a triangle. 525 

At lower altitudes, the CHIRPS datasets overestimate the rainfall but underestimate it at 526 

higher altitudes (Figure 6; Figure 7). In the rainshadow, CHIRPS demonstrates a decrease in 527 

rainfall with altitude (Figure 7). The performance of the CHIRPS datasets is not dependent on 528 

the spatial scale (Figure 2; Figure 5 and Figure 6). The results at both 0.05- and 0.25-degree 529 

datasets are similar and, therefore, reflect the methodology rather than the scale at which they 530 

are published. Although CHIRPS is published daily, regression slopes and rainfall anomalies 531 

are produced at a pentadal (five-year) resolution (Funk et al., 2015). Within the Upper 532 

Cauvery Catchment, inter- and intra- annual rainfall and monsoonal conditions vary year on 533 

year; therefore, a pentadal methodology is unlikely to fully capture the extreme rainfall. 534 

Furthermore, the gauge correction is undertaken at a 1.5-degree scale (Funk et al., 2015). Due 535 
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to the high rainfall variability and topography in this mountainous region and a sparse rain 536 

gauge network (Venkatesh et al., 2021), it is probable that although gauge correction has 537 

occurred, it is not at a resolution fine enough to be effective. 538 

Figure 7 The mean monthly rainfall from 1985 – 2013 provided by each rainfall dataset (IMD 539 

grids, CHIRPS 0.25-and 0.05- degree, MSWEP, PERSIANN and the average ensemble) 540 

compared with the observed values across the elevation of the windward slope (top) and in the 541 

rain shadow (bottom) across the Upper Cauvery Catchment. 542 
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MSWEP overestimates the mean rainfall, particularly in the rainshadow (Figure 7). In 543 

agreement with the results reported by Prakash et al. (2019) and Bhattacharyya et al. (2022) 544 

across the Western Ghats, in the Upper Cauvery Catchment, MSWEP overestimates the 545 

rainfall in the rain shadow and underestimates the rainfall on the windward slopes compared 546 

to the in-situ gauge data (Figure 6; Figure 7). Furthermore, similar to Prakash et al. (2019) but 547 

in contradiction to the results of Liu et al. (2019) in Tibet, MSWEP overestimates the rainfall 548 

compared with the in-situ gauge data (Figure 6). Considering MSWEP is derived from 549 

multiple satellite sources and published at a 0.1-degree resolution, it is surprising that the 550 

performance of this dataset was not better in this region. MSWEP is generated through a 551 

complex multi-step process, and the long-term mean is corrected for orographic influence but 552 

not gauge under-catch. The underestimation of the rainfall on the windward slope could be 553 

explained by the lack of consideration for gauge under-catch, specifically in this high altitude 554 

and intense rainfall region.  However, inverse-distance weighting is utilised via gauges to 555 

correct the monthly merged dataset. Inverse-distance weighting is not the most suitable 556 

methodology for gauge correction in this region as the gauging network is sparse (Section 557 

2.2.2.). 558 

On the leeward slope, PERSIANN demonstrates a decrease in rainfall with altitude (Figure 7). 559 

Similar to the results reported by Prakash et al. (2019), the PERSIANN rainfall was 560 

underestimated on the windward slopes and overestimated on the leeward slopes compared to 561 

the IMD grids (Figure 6; Figure 7). As in Sharannya et al. (2020), the rainfall was 562 

underestimated in the windward slope compared to the IMD grids. Sharannya et al. (2020) 563 

estimated a 10% underestimation on the windward slopes throughout the Western Ghats, 564 

whereas this study has shown an underestimation of between 25% and 50% compared to the 565 

IMD grids. In agreement with the work of Bhardwaj et al. (2017) in the Himalayas and 566 

Faridzad et al. (2018) in the high-elevation regions of the United States of America, 567 

PERSIANN consistently underestimated station rainfall depths within the Upper Cauvery 568 

Catchment (Figure 6). The coarse-scale gauge correction performed in the generation of this 569 

dataset may not capture the complex topography and subsequent variation in rainfall 570 

When applied to the Upper Cauvery Catchment, the average ensemble provides a better point-571 

to-pixel representation of the rainfall in the high-altitude windward regions but not in the rain 572 

shadow compared to the IMD grids (Figure 6; Figure 7). The IMD grids would be expected to 573 

perform better at the gauging points as they are generated from the IMD in-situ gauged data 574 

(Section 2.2.2.). However, in high-altitude areas, the IDW technique is known not to capture 575 
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the variation in intense rainfall well (Lynch, 2003; Naoumi & Tsanis, 2004; Mair & Fares, 576 

2011; Pingale et al.,2014). In the rain shadow, where the rainfall is less intense and variable, 577 

the IMD grids represent the rainfall more accurately.  578 

In the Upper Cauvery Catchment, using CHIRPS 0.25- and 0.05- degree, MSWEP and 579 

PERSIANN datasets, the average ensemble improved the representation of monthly rainfall 580 

(Table 2; Figure 6). The ability of the average ensemble to improve the representation of 581 

catchment rainfall and simulated streamflow provides a strong case for this technique, 582 

specifically in high-altitude regions with no or low in-situ rainfall availability. 583 

It is evident in Figure 8 that the largest root mean squared error occurs within the monsoon 584 

season, June to August, across all the rainfall datasets. PERSIANN has the greatest RMSE, 585 

followed by CHIRPS, MSWEP, IMD grids, and the ensemble. The monthly bias of the IMD 586 

data is least throughout the year, whereas MSWEP overestimates whilst CHIRPS and 587 

PERSIANN underestimates in the dry months of January and February. All the satellite-588 

derived datasets overestimate the rainfall during the pre-monsoon season (April and May). 589 

During the monsoon season (June to September), CHIRPS and MSWEP overestimate the 590 

rainfall, while IMD and PERSIANN provide a good representation of the volume of rainfall. 591 

The ensemble provides the most accurate representation of the rainfall depth across the year 592 

(Figure 8). During the dry season, the performance of CHIRPS and MSWEP reduces. IMD 593 

has a consistently good KGE score across the year. Despite the good bias of the PERSIANN 594 

and the ensemble estimates, the KGE score between December and March is poor (Figure 8) 595 
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 596 

Figure 8 a) Kling-Gupta Efficiency (KGE), b) Bias in percentage and c) Root mean squared error (RMSE) of the rainfall datasets compared with the 597 

observed monthly rainfall from 1985 until 2013.  598 
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3.2. Performance of Streamflow Simulated Using the Selected Rainfall Datasets 599 

The GWAVA model was calibrated using the observed streamflow at five gauging points 600 

using the IMD gridded rainfall. The results of the calibration are provided in Table 3. The 601 

results provided compare the GWAVA streamflow simulations using the IMD rainfall grids 602 

compared to the observed streamflow. 603 

The monthly streamflow KGE statistics illustrate that the model was calibrated to an 604 

acceptable standard (Table 3). However, the streamflow is substantially underestimated at the 605 

Saklesphur, KM Vadi, Kudige and KRS Catchments (Figure 9). The sub-catchments with the 606 

largest rainfall RMSE produce the highest streamflow RMSE except in the case of Kudige. 607 

Thimmanahali Catchment, where the rainfall depth estimation is the most accurate, produces 608 

the most accurate simulation of the observed streamflow.  609 

Table 3 The monthly streamflow statistics (KGE, RMSE and bias) of each calibration sub-610 

catchment in the Upper Cauvery Catchment. 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

As shown in Table 4, the ensemble produces the most accurate representation of streamflow 619 

across the Upper Cauvery Catchment, followed by IMD, PERSIANN, CHIRPS 0.25-degree, 620 

MSWEP and then CHIRPS 0.05-degree. At the Saklesphur catchment CHIRPS 0.25-degree 621 

provides the most accurate simulation of streamflow, IMD at Thimmanahali and Kudige, 622 

MSWEP at KM Vadi and PERSIANN at KRS.  623 

Sub- catchment Monthly KGE Monthly RMSE Bias (%) 

Saklesphur 0.55 40.7 -46.4 

Thimmanahali 0.84 9.2 1.6 

KMVadi 0.25 19.5 -33.6 

Kudige 0.48 15.8 -32.3 

KRS 0.47 25.6 -54.9 
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The accuracy of the simulated streamflow using the selected rainfall input is highly variable 624 

(Table 4; Figure 9) between the different datasets. As for the rainfall (Table 2), the ensemble 625 

provided the best KGE and RMSE scores across the Upper Cauvery Catchment, followed by 626 

the IMD grids. Regarding streamflow, PERSIANN outperforms CHIRPS and MSWEP. 627 

PERSIANN provides the lowest bias, followed by CHIRPS 0.25-degree, the ensemble, IMD, 628 

MSWEP and CHIRPS 0.05-degree (Table 4). 629 

Table 4 Average KGE, RMSE and bias of simulated streamflow across the Upper Cauvery 630 

Catchment generated by the selected datasets 631 

Metric IMD 
CHIRPS 

25 

CHIRPS 

05 
MSWEP 

PERSIAN

N 
Ensemble 

KGE 0.46 0.13 -0.37 -0.18 0.23 0.50 

Bias -35.06 26.12 83.21 61.15 5.52 28.21 

RMSE 103.98 123.82 128.06 138.30 131.93 62.37 

In the monsoon season, the simulated streamflow produced using CHIRPS and MSWEP 632 

rainfall inputs was significantly overestimated compared to the observed streamflow, whereas 633 

PERSIANN and IMD underestimated the streamflow (Figure 10). The ensemble tends to 634 

overestimate the simulated streamflow during the monsoon season but provides a better 635 

representation than the individual remotely sensed dataset and the IMD grids. In the dry 636 

season, all the datasets tend to produce streamflow that underestimate compared to the 637 

observed. Of the remotely sensed datasets, PERSIANN produces simulated streamflow that 638 

best represents the observed data at KRS (Figure 9; Figure 10).  639 

 640 
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Figure 9 The monthly a) Kling-Gupta Efficiency (KGE) b) Bias in percentage and c) Root mean squared error (RMSE) of the simulated 641 

streamflow produced using the selected rainfall datasets (IMD, CHIRPS 0.25- and 0.05- degree, MSWEP, PERSIANN and the ensemble) 642 

compared with the observed streamflow. 643 

 644 
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Figure 10 The monthly average streamflow in MCM at KRS simulated using the IMD, 645 

CHIRPS 0.25- and 0.05-- degree, MSWEP, PERSIANN and an ensemble rainfall dataset 646 

superimposed with the monthly average observed streamflow. 647 

The monthly average streamflow at the entrance to KRS is of significance as approximately 648 

82% of the total catchment streamflow is recorded at this point. Successfully simulating the 649 

temporal trend and the volume of streamflow at KRS is critical aspect to understanding and 650 

accurately representing the water resources of the greater catchment. The streamflow during 651 

the monsoon season reflects the rainfall performance across June to October, with CHIRPS, 652 

MSWEP and the ensemble overestimating, and PERSIANN and the IMD grids 653 

underestimating the volume of both streamflow and rainfall (Figure 10). However, the bias in 654 

streamflow during the monsoon season exceeds the rainfall bias of each rainfall input. The 655 

overestimation of rainfall likely causes this during the pre-monsoon period, which 656 

overestimates the filling of engineered water storage structures and groundwater stores. This 657 

results in an overestimation of the lagged baseflow contribution during the monsoon season, 658 

further increasing the over estimation of total streamflow during this period.  659 

During the dry season, the variation in bias and KGE of the rainfall is not reflected in the 660 

streamflow (Figure 10). This could be caused by the high number of engineered water storage 661 

structures in the catchment and the intensive groundwater pumping that limits baseflow into 662 

the main channels that tend to nullify any variation of rainfall bias in the dry months between 663 

the rainfall sources. The significant underestimation of rainfall by PERSIANN from 664 
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December to March will affect the volume of water for groundwater recharge during this 665 

period. This results in an underestimated peak flow during the monsoon season, despite the 666 

overestimated rainfall in March to May, as the lagged baseflow component will be 667 

significantly underestimated.  668 

4. Discussion 669 

The Western Ghats region northwest of the catchment is a known area of uncertainty for the 670 

IMD rainfall data (Pai et al., 2014). Each 0.25-degree grid cell contains numerous terrain and 671 

gradient increments, and the grid cells span the catchment boundary. This results in an 672 

inaccurate representation of the total rainfall and distribution and the distribution of minimum 673 

and maximum temperature in this region of the catchment (Yeggina et al., 2020). Several 674 

studies have reported that conventional spatial interpolation techniques, such as the inverse 675 

distance weighting utilised to derive the IMD grid, do not fully account for both 676 

climatological and spatial-statistical properties of rainfall fields at high altitudes (Prudhomme 677 

& Reed, 1999; Guan et al., 2005; Vogel et al., 2015). Despite the well-reported 678 

underestimation of rainfall in high-altitude regions (Raman et al., 2013; Tawde & Singh, 679 

2015; Bharti et al., 2016; Dahri et al., 2016; Bhardwaj et al., 2017; Li et al., 2018; Horan et 680 

al., 2021a,b,c), the IMD grids have proven to provide one of the most accurate representations 681 

of rainfall across the Upper Cauvery Catchment (Table 2). Along with the findings of this 682 

study, where the IMD grids outperformed CHIRPS, MSWEP and PERSIANN-CDR, 683 

Bhardwaj et al. (2017), Yeggina et al. (2020) and Reddy et al. (2022) found that the IMD 684 

grids provided better performance than PERSIANN-CDR, TMPA-3B42 and TRMM 3B43 685 

and MERRA within the Western Ghats.  686 

Rainfall across the study region was found to be highly variable (Figure 7; Table 5 in the 687 

Appendix), supporting the findings of Sharannya et al. (2018), Wagener et al. (2015) and 688 

Varikoden et al. (2019). Despite all the remotely sensed datasets integrating in-situ gauged 689 

data into their methodologies, there were disparities between the rainfall provided by these 690 

remotely sensed datasets and the in-situ gauged data provided by the IMD for the Upper 691 

Cauvery Catchment. In the Upper Cauvery Catchment, all the datasets tend to underestimate 692 

the average rainfall at higher altitudes and overestimate the rainfall in the rain shadow (Figure 693 

7; Figure 8). Previous studies by Prakash et al. (2014) and Shah and Mishra (2016) indicated 694 

that the CHIRPS datasets underestimate the rainfall on the windward slope compared to the 695 

IMD grids. This study found that the CHIRPS datasets tend to underestimate the total volume 696 
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of rainfall in the high-altitude regions and on the windward slopes, supporting previous 697 

studies. Similar results were presented by Saeidizand et al. (2018) in Iran and Divya and 698 

Shetty (2020) across the Western Ghats. In these studies, and similar to this study, CHIRPS 699 

did not accurately represent the rainfall in the high-altitude regions and produced an 700 

overestimation of rainfall in the lower-lying regions of the Zagros (Iran) and Western Ghats 701 

mountains. Contrary to the conclusions of Huffman et al. (2007), Huffman et al. (2010), 702 

Terzago et al. (2018) and Lengfeld et al. (2020), the finer scale rainfall datasets, i.e. CHIRPS 703 

0.05-degree and MSWEP did not perform better than the coarser scale datasets in this region 704 

of complex topography. This might be because both datasets are produced at a coarser scale, 705 

downscaled through various methods, and are gauge-corrected using the same limited number 706 

of available rainfall gauges as the coarse-scale datasets.  707 

It was found that the rainfall in the region does not simply increase with altitude as occurs in 708 

other mountainous regions of the world (Fowler et al., 1988; Al-Ahmadi & Al-Ahmadi, 2013; 709 

Morris et al., 2016) or decrease in the high altitudes as Singh and Mal (2014) reported in the 710 

Himalayas. In the Upper Cauvery Catchment, there does not seem to be a straightforward 711 

correlation between altitude and rainfall (Figure 7). The orographic effect on the rainfall was 712 

more evident in the Upper Cauvery Catchment (Figure 6; Figure 7), with the Western Ghats 713 

forcing the upward movements of moisture-filled air resulting in increased rainfall on the 714 

windward slope and less rainfall on the leeward (rains shadow) slope (Arora et al., 2006; 715 

Chang et al., 2014; Morris et al., 2016). 716 

Several methodologies of building an ensemble of remotely sensed datasets were tested. All 717 

the ensembles tested outperformed the individual rainfall datasets. The ensemble representing 718 

the average of the remotely sensed datasets was the best-performing ensemble. Average 719 

ensembles can be effectively utilised to reduce uncertainties (Hughes, 2016). Utilising an 720 

ensemble allows for the weaknesses in one technique and/or dataset to be shadowed or 721 

compensated by the strength of others. The average ensemble accounts for the skill of each 722 

technique, maximises the available input data and provides an estimate of the range of 723 

possible outcomes. Ensembles can have higher predictive accuracy and successfully represent 724 

non-linear interactions. An ensemble can reduce the noise, bias and variance of simulations 725 

and potentially create a more in-depth understanding of the data. However, ensemble 726 

modelling results can suffer from a lack of interpretability and depend on the ensemble 727 

members' prediction accuracy. In areas with perhaps more availability of in-situ rainfall data, 728 

more complex techniques such as machine learning (Zhang et al., 2021), Google Earth Engine 729 
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(Banerjee et al., 2020) and big data merging (Hu et al., 2019) could be utilised to improve the 730 

representation of rainfall. In the case of the Upper Cauvery Catchment, these techniques 731 

would not have been feasible, nor would a regional bias correction, due to the sparse and 732 

missing in-situ rainfall data. The average ensemble of the chosen datasets provided a more 733 

accurate representation of the rainfall than the IMD gridded and the individually remotely 734 

sensed datasets. However, it remains critical to ensure that in-situ rainfall gauging networks 735 

are maintained and expanded as in-situ data sources of high confidence remain important for 736 

the continuous development and ground-truthing of different rainfall datasets.  737 

In agreement with the findings of Sylla et al. (2013), Beck et al. (2017) and Dembélé et al. 738 

(2020), it was illustrated that there is no single rainfall dataset which provides the best 739 

representation of rainfall and streamflow across the five sub-catchments.  Also, the large-scale 740 

performance for rainfall datasets is not always valid for sub-catchments in the same 741 

catchment. The average ensemble rainfall dataset also provided the most accurate simulation 742 

streamflow and, therefore, can be assumed to have accounted for the catchment rainfall most 743 

appropriately. A significant challenge in large-scale hydrological modelling is quantifying and 744 

managing the uncertainty in climate forcing and evaluation data (e.g. streamflow). Although 745 

the model was calibrated to a satisfactory standard using the observed streamflow, at some 746 

gauging points in the catchment, there is low confidence in the observed streamflow data 747 

(Srinivas & Srinivasan, 2005). Eye-witness accounts and some literature (Srinivasan et al., 748 

2015) report the drying out of streams in the Upper Cauvery Catchment in the dry season, 749 

which is not reflected in the observed data. Furthermore, the model structure can exaggerate 750 

the over-and underestimation of streamflow in both dry and wet periods. The model structure 751 

allocates water to the evaporative component first, and thus, the evaporative processes are 752 

favoured in times of water stress, and streamflow is favoured in the wet season. This can 753 

result in a further underestimation of streamflow when the rainfall is underestimated and an 754 

overestimation of streamflow when the rainfall is overestimated.  755 

5. Conclusion 756 

CHIRPS 0.25- and 0.05- degree MWSEP and PERSIANN-CDR rainfall data were applied at 757 

a catchment scale in the Upper Cauvery Catchment for the first time alongside the IMD 0.25-758 

degree gridded and an ensemble rainfall. The ‘off-the-shelf’ remotely sensed rainfall datasets 759 

provided a high variation in performance against the in-situ rain gauge data. The IMD grids 760 

provided the most accurate representation of rainfall of the individual datasets, despite 761 

underestimating the rainfall depths at high altitudes; however, the ensembles, notably the 762 
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average ensemble, provided the overall best estimates. The following conclusions were drawn 763 

from this study: 764 

a) The ensemble rainfall, notably the average ensemble, produced the most accurate 765 

representation of the rainfall, followed by IMD, CHIRPS 0.05-and 0.25-degree, 766 

MSWEP and then PERSIANN.  767 

b) The spatial scale of the rainfall dataset does not necessarily affect the performance in 768 

the high-altitude regions of the Upper Cauvery Catchment. 769 

c) The rainfall in the Upper Cauvery Catchment does not have a distinct correlation to 770 

the altitude but correlates strongly to the aspect of the mountains. 771 

d) None of the individual remotely sensed datasets tested could be utilised with 772 

confidence in the Upper Cauvery Catchment. 773 

e) The average ensemble and IMD rainfall data produced the most accurate simulation of 774 

the observed streamflow across the sub-catchments of the Upper Cauvery, followed by 775 

PERSIANN, CHIRPS 0.25-degree, MSWEP and then CHIRPS 0.05-degree.  776 

f) PERSIANN and the average ensemble provided the most accurate simulation of 777 

observed streamflow at KRS.  778 

This study evaluated the performance of remotely sensed rainfall datasets not applied in the 779 

Upper Cauvery Catchment previously, proposed an ensemble approach to improve rainfall 780 

estimations and applied multiple rainfall estimations within the GWAVA water resources 781 

model. 782 
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Appendix 1262 

Table 5 Analysis of the available in-situ rainfall data within the Upper Cauvery 1263 

Gauging 

station 

X co-

ord 

Y co-

ord 

Start 

Date 

End 

Date 

Missing 

days 

Total 

Days 

Missing 

% 
Mean 

Standar

d Dev 
Total 

Alur 12.97 75.98 01/1979 12/2013 315 12784 2.00 4.33 12.69 44082.7 

Ammathy 12.23 75.85 01/1979 11/2013 615 12753 5.00 5.84 16.46 60267.0 

Arkalgud 12.77 76.05 01/1979 12/2013 92 12784 1.00 2.38 7.70 25212.9 

Belur 13.17 75.85 01/1979 12/2013 158 12784 1.00 2.36 8.12 24952.7 

Bhagamandala 12.38 75.52 01/1979 12/2013 2103 12784 16.00 15.27 33.89 131053 

Chickmagalur 13.33 75.77 01/1981 12/2009 1826 10592 17.00 2.45 8.10 18361.4 

Dubari 12.37 75.92 01/1979 12/2009 614 11323 5.00 2.73 8.17 24915.0 

Hassan 13 76.1 01/1979 12/2013 370 12784 3.00 2.01 7.84 22621.2 

Holenarsipur 12.78 76.23 01/1979 12/2013 1166 12784 9.00 2.20 7.55 21042.9 

Hunsur 12.3 76.28 /01/1981 12/2013 2203 12022 18.00 2.12 7.90 18547.4 

Krishnarajnagar 12.67 76.48 01/1979 12/2013 731 12784 6.00 2.16 7.77 21320.6 

Mudigere 13.13 75.63 01/1979 12/2013 909 12784 7.00 6.11 17.02 62511.9 

Periyapatna 12.33 76.1 01/1979 12/2013 975 12784 8.00 2.31 7.24 23449.4 

Ponnampet 12.15 75.93 01/1979 12/2013 785 12784 6.00 5.52 16.57 57831.4 

Sakaleshpur 12.95 75.78 01/1989 12/2013 3537 9131 39.00 5.90 15.21 34359.2 

Sanivarsanthe 12.82 75.9 01/1979 12/2013 1281 12753 10.00 4.78 12.90 49779.3 

Somwarpet 12.6 75.85 01/1981 12/2013 6493 12053 54.00 5.69 15.55 25319.6 

Srimangala 12.02 75.98 01/1979 12/2013 827 12753 6.00 6.96 21.41 74981.2 

Suntikoppa 12.45 75.83 01/1979 12/2013 859 12753 7.00 3.96 10.43 41480.8 

Thittimatti 12.22 76 01/1979 12/2013 1678 12753 13.00 4.11 12.26 42207.0 

Virajpet 12.18 75.8 01/1979 12/2013 402 12784 3.00 6.09 16.29 66006.8 
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Table 6 Non-exhaustive list of spatial and temporal considerations of available satellite rainfall products  1265 

Dataset Methodology 
Spatial 

coverage 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Application 

in India 

Application 

in WGs 
Reference 

Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS) 

Infrared 

Gauge 
50°N - 50°S 1981- NRT 0.25° Daily   Funk et al., 2015 

CHIRPS v2.0 
Infrared 

Gauge 
Global 1981 -NRT 0.05° Daily   Funk et al., 2015 

CICS High-Resolution Optimally Interpolated 

Microwave Precipitation from Satellites 

(CHOMPS) 

Microwave Global 1998-2007 0.25° Daily   Joseph et al., 2009 

CPC MORPHing technique (CMORPH) v1.0 Microwave 60°N - 60°S 1998- NRT 0.25° 3 hour   Joyce et al., 2004 

European Re-analysis (ERA)-Interim Reanalysis Global 1979- 2017 0.75° 3 hour   Dee et al., 2011 

European Re-analysis (ERA) 5 Reanalysis Global 1979-NRT 0.14° Hourly   Haiden et al., 2021 

Global Precipitation Climatology Project (GPCP)- 

1DD v2.1 

Microwave 

Infrared 

Gauge 

Global 1996-2015 1° Daily   Huffman et al., 2009 

Gridded Satellite (GridSat) v1.0 
Microwave 

Infrared 
50°N - 50°S 1983-2016 0.01° 3 hour   Knapp & Wilkins, 2018 
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  1269 

Dataset Methodology 
Spatial 

coverage 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Application 

in India 

Application 

in WGs 
Reference 

Global Satellite Mapping of Precipitation (GSMaP) v6 
Microwave 

Infrared 
60°N - 60°S 2000- NRT 0.01° Hourly   Ushio et al., 2009 

Integrated Multi-satellitE Retrievals for GPM (IMERG) Microwave 60°N - 60°S 2014-NRT 0.1° ½ hour   Huffman et al., 2020 

JRA-55 Reanalysis Global 1959 - NRT 0.56° 3 hour   Kobayashi et al., 2015 

Multi-Source Weighted-Ensemble Precipitation 

(MSWEP) v2.0 

Infrared 

Microwave 

Gauges 

Global 1979- NRT 0.1° 3 hour   Beck et al., 2017 

National Centers for Environmental Prediction- Climate 

Forecast System Reanalysis (NCEP-CFSR) 
Reanalysis Global 1979-2010 0.31° Hourly   Saha et al., 2010 

Precipitation Estimation from Remotely Sensed 

Information Using Artificial Neural Networks 

(PERSIANN) 

Infrared 60°N - 60°S 2000-NRT 0.25° Hourly   Sorooshian et al., 2000 

PERSIANN- Cloud Classification System (CCS) Infrared 60°N - 60°S 2003-NRT 0.04° Hourly   Hong et al., 2004 

PERSIANN- Climate Data Record (CDR) 
Infrared 

Gauge 
60°N - 60°S 1983-2016 0.25° 6 hour   Ashouri et al., 2015 
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 1271 

Dataset Methodology 
Spatial 

coverage 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Application 

in India 

Application 

in WGs 
Reference 

Precipitation Estimation from Remotely Sensed 

Information Using Artificial Neural Networks 

(PERSIANN) 

Infrared 60°N - 60°S 2000-NRT 0.25° Hourly   Sorooshian et al., 2000 

Global Meteorological Forcing Dataset for land surface 

modelling (PGF) 

Gauge, 

Reanalysis 
Global 1948-2012 0.25° 3 hour   Sheffield et al., 2006 

Rainfall Estimates on a Gridded Network (REGEN) Gauge Global 1950 - 2016 1° Daily   Contractor et al., 2020 

Soil Moisture to Rain -Advanced SCATterometer 

(SM2RAIN- ASCAT) 

Microwave 

Infrared 
Global 2007-2021 0.5° Daily   Ciabatta et al., 2018 

Multi-satellite Precipitation Analysis (TMPA) 3B42RT 

v7 
Microwave 50°N - 50°S 2000-NRT 0.25° 3 hour   Huffman et al., 2007 

Tropical Rainfall Measuring Mission (TRMM)-3B42 v7 
Microwave 

Gauge 
50°N - 50°S 1997- 2019 0.25° 3 hour   Huffman et al., 2010 

WFDEI-CRU Reanalysis Global 1979-2015 0.5° 3 hour   Weedon et al., 2014 
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Table 7 The spatial and temporal resolutions, periods and sources of the input data used in the setup of GWAVA in the Cauvery Catchment 1274 

Input Data 
Spatial 

Resolution 

Temporal 

Resolution 

Time 

Period 
Source 

Maximum 

temperature 
0.25 degree Daily 

1951-

2016 
Indian Meteorological Department (Pai et al., 2012) 

Minimum 

Temperature 
0.25 degree Daily 

1951-

2016 
Indian Meteorological Department (Pai et al., 2012) 

Streamflow gauged data 
Catchment 

Daily 
1971-

2014 
India-WRIS 

Dam 

Characteristics 

Catchment 
 2018 India-WRIS 

Dam inflow and outflow 

data 

Catchment 
Monthly 

1974-

2017 
India-WRIS 

Dam storage Catchment Daily 200-2010 India-WRIS 

Water transfers Catchment Annual 2008 Ashoka Trust for Research in Ecology and the Environment 

Tanks Catchment  2019 Waterbodies dataset (ATREE) 

Check Dams Karnataka   
2006-

2012 

Structural Investment Report, Watershed Development 

Department 

Farm Bunds Karnataka  
2006-

2012 

Structural Investment Report, Watershed Development 

Department 

Groundwater 

levels 
District Monthly 

1990-

2017 
Central Ground Water Board, India 

Elevation 0.003 degree  2000 
NASA Shuttle Radar Mission Global 1 arc second V003 (NASA 

Jet Propulsion Laboratory, 2013) 

Geology Asia   United States Geological Survey 

Specific yield India   Central Ground Water Board, India 

Soil type 0.008 degree  
1971-

1981 
Harmonized World Soil Database v1.2 (Fischer et al., 2008) 

Soil properties Global  2010 Table 2- Allen et al. (2010)  

Input Data Spatial Temporal Time Source 
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Resolution Resolution Period 

Land Cover 

Land Use 
0.001 degree  2005 

Decadal land use and land cover across India 2005 (Roy et al., 

2016) 

Crops Taluk*  2000 National Remote Sensing Centre (NRSC) 

Total and Rural 

Population 
Village  2001 

Census of India 2001 

(http://sedac.ciesin.columbia.edu/data/set/india-india-village-

level-geospatial-socio-econ-1991-2001) 

Livestock 0.05 degree  2005 CGIR Livestock of the World v2 (Robinson et al., 2014) 

Conveyance losses Village  2011 

Household & Irrigation Census 2011- Town and Village 

directory 

(https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx 

Return flow Village  2011 

Household & Irrigation Census 2011- Town and Village 

directory 

(https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) 

Irrigation 

efficiency 
Continental  1986 Irrigation and Drainage Paper (FAO) No 1 

Surface-water fraction Village  2011 

Household & Irrigation Census 2011- Town and Village 

directory 

(https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) 

Industrial 

demand 
Karnataka  

Currently 

unknown 

Industrial Plot Information System- Karnataka Industrial Area 

Development Board 

(https://http://164.100.133.168/kiadbgisportal/) 

Livestock 

demand 
India  2006 CGIR Livestock of the World v2 (Robinson et al., 2014) 

Domestic demand Village  2001 

Household & Irrigation Census 2011- Town and Village 

directory 

(https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) 
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Table 8 Statistical analysis of the distribution of rainfall values produced by each rainfall 1276 

dataset during the whole year as well as the monsoon season.  1277 

Dataset 

Whole year Monsoon Season 

10th 

Percentil

e 

90th 

Percentil

e 

Interquartil

e Range 

10th 

Percentil

e 

90th 

Percentil

e 

Interquartil

e Range 

Gauge 0.0 346.1 146.8 40.0 589.7 230.5 

IMD 0.0 272.1 134 45.5 436.2 167.1 

CHIRPS 25 1.1 404.0 185.9 86.8 624.0 256.4 

CHIRPS 05 0.0 420.8 196.2 88.1 652.1 265.4 

MSWEP 0.9 409.9 192.2 65.6 627.8 273.5 

PERSIAN

N 
0.5 275.4 180.7 108.6 347.3 117.4 

Average 

Ensemble 
1.0 349.6 184.2 92.3 544.2 215.1 

Median 

Ensemble 
1.6 370.8 193.8 94.8 552.7 194.6 

CHIRPS 25 

Weighted 

Ensemble 

1.9 370.0 195.9 98.5 534.2 203.5 

CHIRPS 05 

Weighted 

Ensemble 

1.5 377.9 196.2 94.4 528.8 205.3 

MSWEP 

Weighted 

Ensemble 

1.8 373.8 196.1 104.5 468.5 170.9 
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