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Abstract

The present study focuses on heat transfer in ventilated caves for which the airflow is driven by the temperature contrast

between the cave and the external atmosphere. We use a numerical model that couples the convective heat transfer due to

the airflow in a single karst conduit with the conductive heat transfer in the rock mass. Assuming dry air and a simplified

geometry, we investigate the propagation of thermal perturbations inside the karst massif. We perform a parametric study to

identify general trends regarding the effect of the air flowrate and conduit size on the amplitude and spatial extent of thermal

perturbations. Numerical results support the partition of a cave into three regions: (1) a short (few meters) diffusive region,

where heat mainly propagates from the external atmosphere by conduction in the rock mass; (2) a convective region where

heat is mainly transported by the air flow; (3) a deep karst region characterized by quasi-constant temperatures throughout

the year. An estimation of the length of the convective region is proposed and compared to field data from a mine tunnel and

two caves. Our results provide first estimates to identify climate sensitive regions for speleothem science and/or ecosystemic

studies.
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Key Points: 15 

 A numerical model was developed to investigate the heat transfer inside ventilated caves 16 

driven by chimney effect. 17 

 External thermal perturbations comprise main modes of frequencies including yearly 18 

average temperature, yearly and daily fluctuations.   19 

 Air mass flow rate and conduit size are important values for determining the convection 20 

length inside the cave. 21 
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Abstract 23 

The present study focuses on heat transfer in ventilated caves for which the airflow is driven by 24 

the temperature contrast between the cave and the external atmosphere. We use a numerical 25 

model that couples the convective heat transfer due to the airflow in a single karst conduit with 26 

the conductive heat transfer in the rock mass. Assuming dry air and a simplified geometry, we 27 

investigate the propagation of thermal perturbations inside the karst massif. We perform a 28 

parametric study to identify general trends regarding the effect of the air flowrate and conduit 29 

size on the amplitude and spatial extent of thermal perturbations. Numerical results support the 30 

partition of a cave into three regions: (1) a short (few meters) diffusive region, where heat mainly 31 

propagates from the external atmosphere by conduction in the rock mass; (2) a convective region 32 

where heat is mainly transported by the air flow; (3) a deep karst region characterized by quasi-33 

constant temperatures throughout the year. An estimation of the length of the convective region 34 

is proposed and compared to field data from a mine tunnel and two caves. Our results provide 35 

first estimates to identify climate sensitive regions for speleothem science and/or ecosystemic 36 

studies.   37 

 38 

Plain Language Summary 39 

Most ventilated caves are under chimney effect with the airflow driving force controlled by the 40 

density difference between inside and outside the cave. Different frequencies can be seen in the 41 

external atmosphere temperature but some of them are more significant than others due to their 42 

higher amplitude like the yearly average temperature, yearly and daily amplitude of fluctuations. 43 

Not only do these thermal fluctuations extend along the cave passages but they also propagate 44 

into the surrounding rock within a certain distance. We found this thermal impact depends on the 45 

air mass flow rate and conduit size. The convective heat flux is the main cause for the thermal 46 

response in ventilated caves. Our results are important for quantitative paleoclimate 47 

interpretations of cave records.       48 

  49 

1 Introduction 50 

The Understanding heat transfer in karst systems is a key issue for underground biota (Mammola 51 

et al., 2019), preservation of cave art (Bourges et al., 2014),
 
speleothem growth rates (Spötl et al., 52 

2005)(Banner et al., 2007), or paleoclimate reconstruction (Borsato et al., 2016)(Casteel and 53 

Banner, 2015)(Domínguez-Villar et al., n.d.). However, heat transfer in karst results from an 54 

intricate coupling between several mechanisms, including heat conduction in the rock mass 55 

(Quindos et al., 1987), convection due to water or air flow in caves (Cropley, 1965), or radiative 56 

transfer between cave walls (Guerrier et al., 2019). Latent heat exchanges are also present 57 

because of evaporation and condensation on cave walls (Dreybrodt et al., 2005) or ice formation 58 

and permafrost (Luetscher et al., 2008). A key issue for the understanding of heat transfer in 59 

karst is to determine the processes that dominate in a given configuration, and those that can be 60 

neglected. 61 

The simplest heat transfer model of a vadose karst assumes 1D conduction heat transfer in a rock 62 

mass of infinite depth with periodic temperature fluctuations at the ground surface. This model 63 

predicts that the depth corresponding to 99% attenuation of the temperature fluctuations at the 64 

ground surface is a few tens of centimeters for the daily fluctuations and approximately 10 m for 65 
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the annual fluctuations. Quindos and co-workers (Villar et al., 1983)(Quindos et al., 1987) 66 

measured the monthly mean temperatures in Altamira Cave during a year. They found that the 67 

periodic 1D conduction model correctly predicts the amplitude and the phase shift of the annual 68 

fluctuations at the cave roof whose depth varied from 3.5 m to 17.5 m. The amplitudes measured 69 

at the floors were close to those measured at the corresponding roofs. The phase shifts were 70 

slightly larger at the floors but not as large as predicted by the 1D conduction model. The authors 71 

attributed this effect to radiative transfer between roofs and floors. Domínguez-Villar et al (2023) 72 

and Salmon et al (2023) estimated the thermal diffusivity of the bedrock by fitting the 1D 73 

periodic model to temperatures measured at the roof of a weakly ventilated cave. They explained 74 

the dispersion of the results by rock heterogeneity. 75 

It has long been known that, in large cave systems, the convective transport of heat by air 76 

currents and streams can propagate thermal perturbations over much larger distances than 77 

predicted by a pure conduction model. Cropley (1965) found that temperature measurements 78 

performed in two caves in West Virginia supported the definition of three zones: zone I 79 

immediately adjacent to the cave entrance, where the cave temperature follows the surface 80 

temperature fluctuations; zone II where the cave temperature is driven by streams and air 81 

currents; zone III where the temperature is approximately constant and close to the annual mean 82 

temperature at the surface. Areas where the amplitude of temperature fluctuations was lower than 83 

1°F (ca. 0.56°C) around the annual mean temperature were located at more than 1500 m from 84 

the cave entrances. This long distance was mainly due to cold water carried into the caves by 85 

winter water recharge. Luetscher and Jeannin (2004) defined the heterothermic vadose zone as 86 

the surficial part of a karst massif showing seasonal inversions of the temperature gradient, in 87 

contrast with the homothermic vadose zone characterized by a temperature gradient close to the 88 

lapse rate of humid air (ca. 0.5°C 100 m
-1

). These authors estimated the depth of the 89 

heterothermic zone at about 100 m in most cases.  90 

Considerable work has been undertaken to simulate heat transfer by forced convection due to 91 

water flow in the vadose and phreatic zones of karst (Gong et al., 2019) (Long and Gilcrease, 92 

2009)
 
(Sinokrot and Stefan, 1993). Covington et al (2011) showed that the relative significance 93 

of different heat fluxes including convection and conduction are timescale dependent. 94 

Conduction through the rock surrounding a conduit determines heat flux at times of the order of 95 

weeks and longer. Coupling convection in water with conduction in rock is thus necessary to get 96 

a realistic model valid at all time scales. 97 

The airflow also induces significant convective heat transfer. In closed caves with little or no 98 

ventilation, heat transfer between the cave and the external atmosphere is mainly due to 99 

conduction in the rock mass. In shallow caves (depth of the order of 10 m), depth variations all 100 

along the cave modify the damping and phase shift of the thermal fluctuations, inducing 101 

temperature gradients inside the cave, which generate turbulent free convection (Qaddah et al., 102 

2022) and radiative heat transfer (Qaddah et al., 2023). These heat transfer mechanisms 103 

contribute in turn to the homogenization of the wall temperature and the deformation of the 104 

temperature field in the rock matrix around the cave (Guerrier et al., 2019). 105 

The situation is different when a network of karst conduits has at least two entrances at different 106 

elevations. In this configuration, several mechanisms can contribute to the production of airflow 107 

through the cave, resulting in significant convective heat transfer between the cave and the 108 

external atmosphere. Potential driving forces are  barometric fluctuations (Gomell et al., 2021), 109 

dynamic pressure effect due to external winds (Kukuljan et al., 2021), diphasic flow due to water 110 
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circulation (Atkinson, 1977), or the buoyancy due to the density contrast between the inside and 111 

the outside of the cave (Gabrovšek, 2023). The latter mechanism is likely the most significant in 112 

most cases. The air density depends on moisture content, CO2 concentration and temperature. In 113 

temperate climates, temperature fluctuations are the main cause of density variations 114 

(Gabrovšek, 2023). Therefore, the flow direction is upward (resp., downward) when the 115 

temperature inside the cave is hotter (resp., colder) than the external atmosphere. In winter, inlets 116 

and outlets are thus located at lower and upper entrances, respectively, and the opposite in 117 

summer. Due to this seasonal asymmetry, the annual mean temperature is shifted to colder values 118 

at lower entrances and warmer values at upper entrances. In alpine ice caves, where this 119 

ventilation pattern represents the normal unless the cave is clogged with sediments, these thermal 120 

anomalies usually extend over a few hundred meters from the cave entrances (Luetscher et al., 121 

2008).  122 

Wigley and Brown (1971) calculated the temperature and moisture content profiles in the air as a 123 

function of the distance from the entrance. They used a 1D model based on the energy and water 124 

mass conservation in the airflow. The convective heat transfer coefficient between the air and the 125 

wall was estimated using an empirical correlation valid for forced convection in smooth pipes. 126 

The model assumes prescribed uniform wall temperature, a major simplification that allows to 127 

obtain simple closed-form expressions for the temperature and moisture profiles. However, this 128 

approach implicitly assumes that the heat flux through the cave wall is convection-limited, and 129 

that the rock mass does not play any role. Lismonde (2002) pointed out that the airflow modifies 130 

the rock temperature, which in turn changes the air temperature profile in the cave. This author 131 

developed a model to predict heat transfer in a straight inclined duct of constant diameter 132 

included in a rock massif. The model coupled 1D radial conduction in the rock mass with 133 

convective transfer in the gas, using a sinusoidal function of time as inlet temperature. The 134 

airflow rate was predicted by considering the interaction between the temperature field in the gas 135 

and the airflow through the buoyancy term in the momentum balance equation of the gas. This 136 

model reproduced qualitatively some field observations, e.g. the hysteresis of the flow rate or the 137 

thermal anomaly in the entrance areas. Gabrovšek (2023) used a similar model to investigate by 138 

numerical simulations the effect of conduit shape on the airflow pattern in ventilated caves.  139 

The present study focuses on the numerical simulation of heat transfer in ventilated caves for 140 

which the airflow is driven by the temperature contrast between the cave and the external 141 

atmosphere. We use a numerical model close to that already developed by Lismonde (2002) or 142 

Gabrovšek (2023), and we apply it to the simplest possible configuration in order to identify 143 

general trends common to most ventilated caves. The convective heat transfer due to dry airflow 144 

in a single horizontal karst conduit of constant diameter is coupled with the conductive heat 145 

transfer in the impermeable rock mass. We detail in section 2 the governing equations and the 146 

related physical assumptions. The method of resolution is briefly outlined in section 3 and 147 

detailed in supplemental materials. The parameters used to characterize thermal perturbations are 148 

defined in section 4. In section 5, a parametric study investigates the effect of the flowrate and 149 

conduit size on the amplitude and spatial extent of the thermal perturbations. A simple 150 

expression of the cave length with significant perturbations is proposed. It is compared in section 151 

6 with field data from a mine tunnel and two caves. A general discussion is included in section 7. 152 

 153 
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2 Model definition 154 

2.1 Cave geometry and computational domain 155 

We consider the idealized ventilated cave displayed in Figure 1, located in a rock massif of 156 

infinite extent in both vertical directions. The cave consists of a vertical conduit connected by 157 

two horizontal conduits to two entrances at different elevations. The rock mass is assumed 158 

impermeable. The horizontal conduits are supposed long enough for the vertical conduit to be 159 

fully included in the homothermic area where the temperature gradient reduces to the adiabatic 160 

lapse rate. The aeraulic and thermal problems are uncoupled in this simplified configuration, 161 

since the temperature field in the horizontal conduits have no effect on buoyancy. The air 162 

flowrate thus only depends on the temperature contrast between the temperature in the vertical 163 

conduit, independent of time, and the temperature of the atmosphere outside the cave, a known 164 

function of time.  165 

Another source of simplification is that the thermal problems in the regions of upper and lower 166 

entrances are uncoupled. They can thus be treated separately. We arbitrarily focus on the upper 167 

entrance, but all the results can be easily translated to a lower entrance (the only difference is that 168 

the air flows through the upper entrance inward during summer and outward during winter, and 169 

vice-versa through the lower entrance).  170 

The computational domain is a cylinder of length Ldom and outer radius Rdom displayed in red in 171 

Figure 1. It contains a conduit of same axis and length and constant radius 𝑅 ≪ 𝑅𝑑𝑜𝑚, inside 172 

which the air circulates. The length Ldom and outer radius Rdom are set so that the computational 173 

domain includes the whole thermal perturbation induced in the rock mass by the airflow. 174 

Practically, in a given configuration, Ldom and Rdom are increased until they no longer influence 175 

the results.  176 

 
Figure 1: Cave geometry (the computational domain is displayed in red). The rock massif is assumed infinite in 

both vertical directions.  

 177 

 178 
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2.2 Atmosphere temperature and mass flow rate 179 

For the sake of simplification, only the annual fluctuation of the atmosphere temperature 𝑇𝑎𝑡𝑚 180 

are considered. It is thus assumed that 𝑇𝑎𝑡𝑚(𝑡) follows the simple law: 181 

Tatm(t) = Tm + ΔTy 𝑠𝑖𝑛 (2π
t

τy
) (1) 

where 𝑇𝑚 and Δ𝑇𝑦 are the annual mean temperature (AMT) and the amplitude of the annual 182 

temperature fluctuation (ATF), respectively, in the external atmosphere at the elevation of the 183 

upper entrance. The corresponding period is 𝜏𝑦 = 1 year. 184 

The air mass flow rate m is deduced from the momentum balance applied to the air inside the 185 

cave. Assuming negligible inertia, the balance between friction and buoyancy yields (Lismonde, 186 

2002): 187 

 188 

K ṁ |ṁ | = −(ρ̅atm − ρ̅m)gH , (2) 

 189 

where H is the length of the vertical conduit and g the gravitational acceleration. The cave 190 

aeraulic resistance K can be assumed constant in the turbulent regime. 𝜌̅𝑎𝑡𝑚 and 𝜌̅𝑚 are the 191 

densities of the air outside the cave and inside the homothermic zone, respectively, averaged 192 

over the cave height. Assuming that: (1) the difference of densities depends only on the 193 

temperature drop between the external atmosphere and the homothermic zone, (2) the 194 

temperature field in the vertical conduit follows the AMT in the external atmosphere, we get 195 

after linearization:  196 

 197 

ρ̅atm(t) − ρ̅m = −
Ma Patm

Rg Tm
2

 (Tatm(t) − Tm) 
(3) 

 198 

where Patm is the atmospheric pressure, Ma the molar mass of air and Rg the ideal gas constant. 199 

Eqs. (2) and (3) show that the air flowrate is proportional to the square root of the temperature 200 

drop (𝑇𝑎𝑡𝑚 − 𝑇𝑚). Injecting Eqs. (1) and (3) in Eq. (2) yields 201 

ṁ(t) = S Δṁ √|𝑠𝑖𝑛 (
2π

τy
t)| (4) 

where S=-1 for 𝑇𝑎𝑡𝑚 < 𝑇𝑚 (wintertime, upward flow) and S=+1 for 𝑇𝑎𝑡𝑚 > 𝑇𝑚 (summertime, 202 

downward flow). The positive constant 𝛥𝑚̇ is the amplitude of the annual fluctuation of the flow 203 

rate. It is an input of the model.   204 

2.3 Governing equations 205 

The air temperature verifies the energy balance 206 

ṁ cp,a

∂Ta

∂x
= φwP (5) 

where 𝑐𝑝,𝑎 is the air heat capacity at constant pressure, Ta is the mixing temperature of the air 207 

inside the conduit, x the distance from the external rock surface, P the conduit perimeter 208 

(𝑃 = 2𝜋𝑅 for a circular cross-section) and 𝜑𝑤 the conductive flux at the conduit wall, positive 209 

when going from the rock to the air. Equation (5) is a balance between the energy advected by 210 

the air flow (LHS) and the conduction flux at the conduit wall (RHS). The air thermal inertia has 211 
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been neglected compared to advection (quasi-steady approximation). Equation (5) requires a 212 

single boundary condition at the conduit inlet located at x=0 for downward flow (S=+1) or at 213 

x=Ldom for upward flow (S=-1). We thus impose the boundary condition 214 

Ta(x = 0, t) = Tatm(t) for S=+1     or   Ta(x = Ldom, t) = Tm   for S=-1        (6) 

The conductive flux 𝜑𝑤 is required to solve Eq. (5). The conduction equation must therefore be 215 

solved in the impermeable rock matrix around the cave. The transient 2D axisymmetric 216 

conduction equation reads 217 

1

r

∂

∂r
(r

∂Tr

∂r
) +

∂2Tr

∂x2
=

1

αr

∂Tr

∂t
 (7) 

where 𝑇𝑟(𝑥, 𝑟, 𝑡) is the rock temperature, r the rock thermal diffusivity, and r the distance from 218 

the cave axis. The boundary conditions are as follows. The atmosphere temperature is imposed 219 

on the external rock surface: 220 

𝑇𝑟(𝑥 = 0, 𝑟, 𝑡) = 𝑇𝑎𝑡𝑚(𝑡)  for  𝑅 < 𝑟 < 𝑅𝑑𝑜𝑚 (8) 

The boundary at r=Rdom can be supposed adiabatic because the temperature field only depends 221 

on x far from the cave (i.e., for a large value of Rdom), and the radial component of the 222 

temperature gradient is thus close to zero. The boundary condition at x=Ldom is also adiabatic, 223 

because this boundary is located in the homothermic zone. We get 224 
𝜕𝑇𝑟

𝜕𝑟
(𝑥, 𝑅𝑑𝑜𝑚, 𝑡) = 0  for  0 < 𝑥 < 𝐿𝑑𝑜𝑚  and  

𝜕𝑇𝑟

𝜕𝑥
(𝐿𝑑𝑜𝑚, 𝑟, 𝑡) = 0  for 𝑅 < 𝑟 < 𝑅𝑑𝑜𝑚 (9) 

The last boundary condition is at the conduit wall. It is given by the Newton’s law and the heat 225 

flux continuity at the conduit wall:  226 

φw = λr  
∂Tr

∂r
(x, R, t)  =  hth(t)(Tr(x, R, t) − Ta(x, t))  (10) 

where 𝜆𝑟 is the rock thermal conductivity, 𝑇𝑟(𝑥, 𝑅, 𝑡) = 𝑇𝑤(𝑥, 𝑡) is the temperature of the 227 

conduit wall and ℎ𝑡ℎ the heat transfer coefficient. The latter is time-dependent since it depends 228 

on the air flowrate 𝑚̇(𝑡). All the conditions at the boundaries of the rock domain are displayed in 229 

Figure 2. No initial condition is required because we are looking for the periodic regime, i.e., the 230 

solution asymptotically reached by the model at infinite time.  231 

2.4 Determination of the heat transfer coefficient 232 

The heat transfer coefficient ℎ𝑡ℎ in Eq. (10) is a key parameter. The estimation of ℎ𝑡ℎ must 233 

therefore be performed with great care to get a reliable model. Assuming forced convection in 234 

conduits, Wigley and Brown (1971) and Gabrovšek (2023) used a correlation close to the 235 

Colburn correlation (Bergman et al., 2017), valid for fully developed turbulent flow in smooth 236 

pipes. Lismonde (2002) pointed out that a cave cannot be considered as a smooth pipe, and 237 

multiplied by two the numerical prefactor of the Colburn correlation to account for the effect of 238 

wall roughness. Covington et al (2011) used the Gnielinski correlation (Bergman et al., 2017), 239 

which explicitly considers the effect of wall roughness.  240 
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Figure 2: rock domain with the boundary conditions of the heat conduction equation (7). 

 

 241 

However, it is unlikely that a cave can be considered as a rough pipe. Indeed, caves can have 242 

complicated shapes, ranging from sub-circular conduits with several meters in diameter to 243 

complex cave passages associated with the collapse of the host-rock. A succession of bends, 244 

conduit contractions or enlargements, or obstacles of any kind are expected to increase the 245 

transfer of heat between the air and the wall. Indeed, all of these singularities not only increase 246 

the heat exchange surface between the wall and the fluid, but also enhance the heat transfer 247 

coefficient by generating secondary flows and by increasing the turbulence level. It is well 248 

known that heat exchanger performance can be improved by the insertion of twisted tapes, 249 

longitudinal fins or helical ribs inside the tubes (Bergman et al., 2017) (e.g., spirally corrugated 250 

tubes can increase the heat transfer coefficient by a factor 3 (Promthaisong et al., 2016)(Pethkool 251 

et al., 2011)). However, although empirical correlations exist to predict heat transfer coefficient 252 

for a wide range of well-defined geometries used in heat exchangers, no correlation is available 253 

for the irregular and tortuous geometries commonly encountered in caves.  254 

To get around this difficulty, two distinct cases will be considered. In the first case (case A in the 255 

following), correlations for forced convection and fully developed flow in pipes will be used to 256 

estimate the heat transfer coefficient. This approach is expected to give a lower bound of the heat 257 

transfer coefficient, and thus a lower bound of the heat flux at the conduit wall. In the second 258 

case (case B in the following), a higher bound of the wall heat flux will be obtained assuming 259 

infinite heat transfer coefficient. Reality must lie between these two limiting cases.  260 

 261 

 Case A: forced convection and fully developed flow. 262 

The Nusselt number  𝑁𝑢 =
ℎ𝑡ℎ 𝐷ℎ

𝑘𝑎
 used for the estimation of ℎ𝑡ℎ is displayed in Figure 3 as a 263 

function of the Reynolds number 𝑅𝑒𝑡 =
𝑉(𝑡) 𝐷ℎ

𝜈𝑎
, for three values of the relative roughness ( ), (ka 264 

and νa are the conductivity and the kinematic viscosity of the air, V is the mean air velocity at 265 

time t, Dh=4A/P, is the hydraulic diameter with A and P the section and the perimeter of the 266 

conduit, the relative roughness is the ratio of the roughness over Dh). Nu is computed as 267 

follows: 268 

Nu = 𝑚𝑎𝑥(NuL, NuT)   (11) 

where 𝑁𝑢𝐿 = 3.66  is the Nusselt number in the laminar regime (independent of the roughness) 269 

and 𝑁𝑢𝑇 is given by the Gnielinski correlation (Bergman et al., 2017):  270 
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NuT =
(

fd

8 ) (Ret − 1000) Pr

1 + 12.7 (
fd

8 )
0.5

 (Pr2/3 − 1)

 (12) 

where Pr is the air Prandtl number (Pr=0.71). df  is the Darcy friction factor which depends on 271 

the Reynolds number and the wall relative roughness . df  was estimated using the Haaland 272 

correlation (Haaland, 1983): 273 

1

√fd

= −1.8 𝑙𝑜𝑔 [(
ε

3.7
)

1.11

+
6.9

Ret
] (13) 

All the simulations were done using 𝜀 = 0.01 as a lower bound of the relative roughness in a 274 

cave (red curve in Figure 3).  275 

 
Figure 3:  Nusselt number as a function of the Reynolds number (Prandtl number: Pr=0.71). The red curve 

was used for the simulations of case A.  

 276 

Case B: Infinite heat transfer coefficient 277 

In this case, the conduit wall temperature is equal to the bulk air temperature and Eq.(10) thus 278 

reduces to  279 

 280 

φw = λr  
∂Tr

∂r
(x, R, t)   and   Tr(x, R, t) = Ta(x, t) (14) 

 281 

2.5 Physical properties 282 

All the physical properties are gathered in Table 1. They are assumed constant and estimated at 283 

the temperature Tm= 12°C.  284 
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 285 

Table 1 : Thermophysical properties (estimated at temperature Tm=285 K = 12°C and atmospheric pressure286 

101325refp Pa ). 287 

properties value Reference 

Conduit relative roughness 𝜀 = 0.01 (see section 2.4) 

Rock density 

3
2320r

kg

m
 

 

(Covington et al., 2011) 

Rock heat capacity 
, 810p r

J
c

kg K


 

(Covington et al., 2011) 

Rock thermal conductivity 
1.656

.
r

W
k

m K


 

(Guerrier et al., 2019) 

Rock thermal diffusivity 
2

7

,

8.81 10r

r

r p r

k m

c s




  

 

- 

Air dynamic viscosity 51.77 10 .a Pa s  
 

(Bergman et al., 2017) 

Air density 
3

1.23a

kg

m
 

 

(Bergman et al., 2017) 

Air kinematic viscosity 𝜈𝑎 =
𝜇𝑎

𝜌𝑎
= 1.43 × 10−5 𝑚2/𝑠 

- 

Air thermal conductivity 
𝑘𝑎 = 0.0251 

𝑊

𝑚. 𝐾
 

(Bergman et al., 2017) 

Air Prandtl number 𝑃𝑟 =
𝜈𝑎

𝛼𝑎
= 0.71 

- 

Molar mass of air 
28.97a

g
M

mol


 

- 

Ideal gas constant 
8.314g

J
R

mol K


 

- 

 288 

2.6 Dimensionless equations 289 

We define the dimensionless temperatures 𝜃𝑎 = (𝑇𝑎 − 𝑇𝑚)/𝛥𝑇𝑦 and 𝜃𝑟 = (𝑇𝑟 − 𝑇𝑚)/𝛥𝑇𝑦 in the 290 

air and the rock, respectively. The dimensionless temperature 0 thus corresponds to the external 291 

annual mean temperature and 1 is the amplitude of the external annual fluctuations. We take the 292 

period 𝜏𝑦 = 1 year as the unit of time and the diffusion length 𝐿𝑑𝑖𝑓 = √𝛼𝑟𝜏𝑦 ≈ 5.3 m as the unit 293 

of length. The dimensionless atmospheric temperature 𝜃𝑎𝑡𝑚 and air flowrate 𝜇 are deduced from 294 

Eqs.(1) and (4): 295 

θatm(t̃) = sin(2πt̃)            (15) and μ(t̃) =
ṁ(t)

Δṁ
= S√|sin(2πt̃)|         (16) 

The dimensionless counterparts of Eqs. (5)-(10) read 296 

μ(t̃) Re 
∂θa

∂x̃
= (4

kr

ka
Pr−1) φ̃w , (17) 

θa(x̃ = 0, t) = 𝑠𝑖𝑛(2π t̃)   for S=+1     or   θa(x̃ = L̃dom, t̃) = 0   for S=-1, (18) 

1

r̃

∂

∂r̃
(r̃

∂θr

∂r̃
) +

∂2θr

∂x̃2 =
∂θr

∂t̃
 , (19) 
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θr(x̃ = 0, r̃, t̃) = 𝑠𝑖𝑛(2π t̃)  for  R̃ < r̃ < R̃dom , (20) 

∂θr

∂r̃
(x̃, R̃dom, t̃) = 0 for 0 < x̃ < L̃dom and 

∂θr

∂x̃
(L̃dom, r̃, t̃) = 0 for R̃ < r̃ < R̃dom, (21) 

φ̃w =
∂θr

∂r̃
(x̃, R̃, t̃)  =  η(t̃) Bi (θr(x̃, R̃, t̃) − θa(x̃, t̃)), (22) 

where the tilde (~) indicates dimensionless time or lengths. 𝜂(𝑡̃) =
  ℎ𝑡ℎ(𝑡)

𝐻𝑡ℎ
 is the heat transfer 297 

coefficient scaled by 𝐻𝑡ℎ, its maximum value reached for 𝑚̇ = 𝛥𝑚̇. The Reynolds number 298 

𝑅𝑒 =
4 𝛥𝑚̇

𝑃𝜇𝑎
 (with μa the air dynamic viscosity) and the Biot number 𝐵𝑖 =

𝐻𝑡ℎ  √𝛼𝑟𝜏𝑦

 𝑘𝑟
 are based on 299 

the maximum values 𝛥𝑚̇ and 𝐻𝑡ℎ, respectively. 𝜇(𝑡̃)𝑅𝑒 and 𝜂(𝑡̃)𝐵𝑖 are the Reynolds and Biot 300 

numbers at a given time 𝑡̃. In a given configuration, 𝑅̃𝑑𝑜𝑚 and 𝐿̃𝑑𝑜𝑚 that define the size of the 301 

computational domain are increased until they do not modify the results, as stated in section 2.1.  302 

With the constant physical properties defined in Table 1, a configuration is well-defined if only 303 

two dimensionless numbers are known: the dimensionless conduit radius 𝑅̃ and the Reynolds 304 

number Re. In case A, i.e., when fully developed forced convection is assumed for the estimation 305 

of the heat transfer coefficient, the Biot number in Eq. (22) is related to the Nusselt number by 306 

the simple relation 𝜂(𝑡̃)𝐵𝑖 =
𝑁𝑢

𝑅̃
 (

𝑘𝑎

2 𝑘𝑟
), where Nu depends on 𝑅𝑒𝑡̃ = 𝜇(𝑡̃)𝑅𝑒 through Eqs.(11)-307 

(12). In case B, the Biot number is infinite, i.e., 𝜂(𝑡̃)𝐵𝑖 → ∞. Eq. (22) thus reduces to 308 

φ̃w =
∂θr

∂r̃
(x̃, R̃, t̃)       𝑎𝑛𝑑      θr(x̃, R̃, t̃) = θa(x̃, t̃) (23) 

3 Method of resolution 309 

We are looking for the periodic solution of the mathematical model defined in section 2.6. The 310 

periodic regime could be obtained by time integration starting from an arbitrary initial condition, 311 

after simulating a number of cycles large enough to get a good approximation of the solution at 312 

infinite time. However, the slow convergence of this method can generate large computational 313 

times. We thus prefer to use another method, based on Fourier series. All time-varying variables, 314 

including the temperatures in the rock and in the air, are approximated by truncated Fourier 315 

series and inserted in the mathematical model of section 2.6. This yields a set of coupled partial 316 

differential equations (PDE), which does not include the time. The numerical resolution by the 317 

Galerkin method of this set of PDE gives the spatial distribution of the amplitude and phase of 318 

the Fourier modes. The temporal evolution of the dependent variables is then recovered from 319 

Fourier series. This method is detailed in supplemental material. The validation by comparison 320 

with a standard time integration method is presented in the same appendix. All the numerical 321 

simulations were performed with the commercial software Comsol Multiphysics, version 6.1. 322 

4 Characterization of the thermal perturbation 323 

 324 

Figure 4 displays the wall and air temperatures inside the cave at different distances from the 325 

entrance, for case A with 𝑅̃ = 0.189 and 𝑅𝑒 = 1.8 × 105. Figure 4-left shows the amplitude of 326 

the Fourier modes that stems directly from the numerical simulation. The mode k refers to the 327 

dimensionless period 1/k. The amplitudes of the modes k=0 and k=1 are thus the annual mean 328 
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temperature (AMT) and the amplitude of the annual temperature fluctuation (ATF), respectively. 329 

The modes k=2, k=3, and so on, refer to the periods 6 months, 4 months, etc. Although the 330 

external temperature imposed at 𝑥̃ = 0 contains the single mode k=1 (since it reduces to the 331 

simple sine function of Eq.θatm(t̃) = sin(2πt̃)            (15)), the coupling between modes due to 332 

convection results in the existence of other modes than k=1 in cave temperatures (modes k=0 to 333 

18 were considered in the simulations, see supplemental material). Figure 4-right displays the 334 

periodic time series built from the Fourier series. The amplitude of the temperature fluctuations 335 

decreases when the distance from the entrance increases, as expected. The hot thermal anomaly 336 

expected at the vicinity of an upper entrance is also observed.  Indeed, for 𝑥̃ = 10 to 10
3
, the 337 

dimensionless temperature is positive throughout the year, which means that it is always higher 338 

than the external AMT, even in winter.  339 

 340 

 
Figure 4. Wall and air temperatures at different distances 𝑥̃ from the entrance. Left: amplitude of the Fourier 

modes, right: time series. Case A with  𝑅̃=0.189 and Re=1.8×105. 

 341 

Figure 5-left displays the temperature profiles in the air and at the cave wall, at different times of 342 

the year. Following an approach similar to that of Cropley (1965), we split the cave into three 343 

zones. 344 

1- A first zone, from 𝑥̃ = 0 to 𝑥̃ ≈ 1 (the diffusion length), where the cave temperature 345 

follows the fluctuations of the external temperature. More precisely, the sign of the 346 

temperature gradient changes in summer and winter (see the inset in Fig.5-left). This 347 

first zone is dominated by the temperature fluctuations of the external wall, 348 

propagating inside the rock mass by heat conduction. It will be called diffusive region 349 

in the following. 350 

2- A second zone characterized by a positive dimensionless temperature and reduced but 351 

significant fluctuations. In the specific case of Figure 5-left, it approximately extends 352 

from 𝑥̃ ≈ 1 to 103. In this zone, heat diffusion from the external wall is negligible 353 

compared to convection. It will be called convective region in the following. Because 354 

of the seasonal flow reversals, the inlet temperature of the air flow is 1 in summer 355 

(inward flow) and 0 in winter (outward flow, coming from the deep karst). As a 356 

consequence, this zone does not “feel” the negative winter temperatures. This results 357 

in: (1) a shift of the AMT to positive values, the so-called thermal anomaly, (2) a 358 

reduction of the amplitude of the fluctuations, because the temperature oscillates 359 

between 0 and 1 whereas the external temperature fluctuates between -1 and 1. 360 
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3- A third zone, called deep karst in the following, where the dimensionless temperature 361 

is approximately constant and close to zero (the external AMT). 362 

These three regions appear clearly on the amplitude of the Fourier modes plotted in Figure 5-363 

right as a function of the distance from the entrance 𝑥̃. The amplitude of the mode k=1 (i.e. the 364 

ATF) decreases in two steps. It first drops down from 1 to 0.3 in the diffusive region (from 365 

𝑥̃ = 0 to 𝑥̃ ≈ 1), then slowly decreases in the convective region, over a distance much longer 366 

than 1 (of the order of 10
3
 in the specific case of Figure 5). The amplitude of the mode k=0 (i.e. 367 

the AMT) increases in the diffusive region, then reaches a quasi-plateau and slowly decreases in 368 

the convective region, over a distance of the same order as for the mode k=1. The modes such 369 

that 𝑘 ≳ 2 follow qualitatively the behavior of mode k=0, with a lower amplitude and a shorter 370 

attenuation length. In the following, we will focus on both modes with the highest amplitude, 371 

k=0 and k=1, as representative of the AMT (the thermal anomaly) and the ATF, respectively. 372 

 In all the simulations we did, the transition between the diffusive and convective regions always 373 

take place at a distance from the entrance of the order of 1, as expected. Conversely, the 374 

characteristics of the convective domain (amplitude of the thermal perturbation and its spatial 375 

extent) depend on the model parameters: the Reynolds number Re (containing the air flow rate) 376 

and the cave radius 𝑅̃. This dependence will be systematically investigated in the parametric 377 

study of the next section. In order to facilitate the interpretation of the results, we define a small 378 

number of relevant parameters characterizing the perturbation of the cave temperature field by 379 

the air flow. The magnitude of the perturbation is characterized by the AMT and the ATF at the 380 

beginning of the convective region, where the impact of convection is maximum, and the effect 381 

of thermal conduction from the external wall negligible. We define 𝛥𝜃𝑤 as the maximum 382 

amplitude of the mode k=1 in the convective region, for the wall temperature. Practically, it is 383 

evaluated at the change of slope noticed on the solid blue line in the inset of Figure 5-right.  384 

Similarly, 𝜃̅𝑤 is the maximum amplitude reached by the mode k=0 for the wall temperature 385 

(maximum of the red solid line in the inset of Figure 5-right). The corresponding amplitudes for 386 

the air temperature, 𝛥𝜃𝑎 and 𝜃̅𝑎, are estimated at the same location as 𝛥𝜃𝑤 and 𝜃̅𝑤, respectively. 387 

For example, in the specific case of Figure 5, we get 𝛥𝜃𝑤 ≈ 0.30 and 𝛥𝜃𝑎 ≈ 0.34 (maximum 388 

ATF), 𝜃̅𝑤 ≈ 0.42 and 𝜃̅𝑎 ≈ 0.44 (maximum AMT).  389 

 390 

 
Figure 5. Wall (solid lines) and air (dashed lines) temperatures as a function of the distance x̃ from the entrance. 

Left: temperature profiles at various times (Inset: zoom in the diffusive region), right: amplitude of the Fourier 

modes k=0 to 3 (Inset: log scale on the x̃-axis). Case A with R̃=0.189 and Re=1.8×105.  

 

 391 

 392 
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The four parameters 𝜃̅𝑤, 𝜃̅𝑎, 𝛥𝜃𝑤 and 𝛥𝜃𝑎 represent the maximum amplitudes of the perturbation 393 

in the convective region. These amplitudes decrease with the distance from the entrance, as the 394 

heat transported by the air flow is gradually dissipated by conduction in the rock mass. We 395 

arbitrarily assume that a Fourier mode has been damped when its amplitude has been divided by 396 

10. Figure 6-left shows the thermal perturbation in a rock massif with the black solid lines 397 

corresponding to an AMT equal to  𝜃̅𝑤/10 = 0.042. The rock domain thus defined can be 398 

characterized by the length 𝐿̃0 along the cave axis and the maximum width 𝑊̃0 along the radial 399 

direction. Similarly, the black solid lines in Figure 6-right correspond to an ATF equal to 𝛥𝜃𝑤/400 

10 = 0.030. The size of the corresponding domain is characterized by its length 𝐿̃1 and its 401 

width 𝑊̃1. The latter is taken close to the entrance, but out of the diffusive region. The lengths 𝐿̃0 402 

and 𝐿̃1 can also be estimated from the air temperature (length such that the amplitude of AMT 403 

and ATF in the air are equal to 𝜃̅𝑎/10 and 𝛥𝜃𝑎/10, respectively).  404 

 405 

 
Figure 6. Amplitude contour of the thermal perturbation in a symmetry plane of the rock massif. Left: mode k=0; 

the black solid lines correspond to the amplitude θ̅w/10 = 0.042 (n.b.: at the scale of the figure, the cave reduces 

to a line).  Right: mode k=1; the black solid lines correspond to the amplitude Δθ̅w/10 = 0.030  (n.b.: the top 

view focuses on the entrance region; the bottom view has been plotted with different scales on x̃ and r̃ to display 

the whole perturbed region).  Case A with R̃=0.189 and Re=1.8×105.  

 406 

 407 

5 Parametric study 408 

 409 

We first analyze in section 5.1 the effect of the airflow on the maximum thermal perturbation, at 410 

the beginning of the convective region. We then investigate in section 5.2 how the thermal 411 

perturbation decreases with the distance from the entrance. 412 

5.1 Amplitude of the thermal perturbation induced by the air flow 413 

Figure 7 displays the AMT (𝜃̅𝑤 and 𝜃̅𝑎) and the ATF (𝛥𝜃𝑤 and 𝛥𝜃𝑎) at the beginning of the 414 

convective region. Cases A and B yield close values of 𝜃̅𝑎, which is also little sensitive to the 415 

model parameters Re and 𝑅̃. Indeed, 𝜃̅𝑎 varies only from 0.25 to 0.6 when Re and 𝑅̃ are increased 416 
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by three and two orders of magnitude, respectively. With the exception of small conduits 417 

(𝑅̃ = 0.2) at small Reynolds number (𝑅𝑒 ≲ 3 × 103), a similar remark can be made on 𝛥𝜃𝑎. 418 

 419 

 420 

 
Figure 7: maximum thermal perturbation at the beginning of the convective region for cases A (Biot number 

estimated from forced convection correlations) and B (infinite Biot number). Top: maximum AMT (θ̅w and  θ̅a 

for the wall and the air, resp.). Bottom: maximum ATF (Δθw and Δθa for the wall and the air, resp.). The vertical 

dashed lines correspond to the limits of the laminar and turbulent regimes. 

 421 

The evolution of the wall temperature is more intricate. In case B, the assumption of infinite Biot 422 

number imposes 𝜃̅𝑤 =  𝜃̅𝑎 and 𝛥𝜃𝑤 = 𝛥𝜃𝑎 (since the air and wall temperatures are equal). 423 

Assuming that Case A provides a lower bound of the actual Biot number in a cave, Eq.(14) 424 

allows to estimate the consequences of an error in the determination of the Biot number on the 425 

estimation of the wall temperature at the beginning of the convective region. At high Reynolds 426 

number (𝑅𝑒 ≳ 3 × 105), no accurate estimation of the relation of the function Nu(Re) is required 427 

because the heat transfer is completely driven by heat conduction in the rock massif. Conversely, 428 

the relation Nu(Re) is a key information for convection-limited heat transfer at small Reynolds 429 

number (𝑅𝑒 ≲ 104). At intermediate Re, an accurate estimation of Nu is required to get the ATF 430 

of the wall in a cave with a large radius (𝑅̃ ≳ 1). 431 

 432 

5.2 Spatial extent of the thermal perturbation induced by the air flow 433 

The characteristic lengths 𝐿̃0 and 𝐿̃1 for the damping of the AMT and ATF along the cave axis 434 

are displayed in Figure 8. The values of 𝐿̃0 computed in case B (infinite Biot number) support 435 

the simple relation obtained from curve fitting: 436 

L̃0 ≈ 3.1 × 10−3 Re1.06 R̃0.61 (24) 
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In case A, estimating 𝐿̃0 from the air or the wall temperatures give the same results (the lengths 437 

required to get  𝜃̅𝑎 or  𝜃̅𝑤 divided by 10 are the same, even when  𝜃̅𝑎 and  𝜃̅𝑤 are different). At 438 

high Reynolds number, 𝐿̃0 estimated from case A follows Eq.(24) derived for case B, as 439 

expected when heat transfer is conduction-limited. When Re is decreased, using the forced 440 

convection correlations of case A reduces the heat flux at the cave wall compared to the infinite 441 

Biot number of case B, leading to larger values of 𝐿̃0 than predicted by Eq. (24).   442 

 443 

 

Figure 8: characteristic lengths 𝐿̃0 (left) and 𝐿̃1 (right) as a function of the Reynolds number Re for various 

radius 𝑅̃, computed from wall or gas temperatures. The dashed lines correspond to Eq.(24). Symbols: same 

legend as in Figure 7. 

 444 

𝐿̃1, the distance corresponding to the damping of the ATF, is nearly equal to 𝐿̃0, with the 445 

exception of slight differences at low Reynolds number for 𝑅̃=2 (see Figure 8-right). The length 446 

of the convective region (called convection length in the following) can thus be indifferently 447 

determined from the damping of the AMT or ATF, based on the wall or the air temperatures. A 448 

higher bound of the convection length is provided by case A, while case B provides a lower 449 

bound. We can see in Figure 8 that the uncertainty on the convection length increases when the 450 

Reynolds number Re is decreased and when the cave diameter 𝑅̃ is increased.  451 

The width 𝑊̃0 corresponding to the damping of the AMT in radial directions inside the rock mass 452 

is displayed in Figure 9. It is approximately proportional to 𝐿̃0 and an order of magnitude 453 

smaller.  454 

 455 
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Figure 9: width W̃0 corresponding to the damping of the AMT in the radial directions inside the rock mass 
 456 

 457 

6 Comparison with field data 458 

 459 

This section tests our model against the field data obtained from a mine and two caves with 460 

significant ventilation. More specifically, this comparison is aimed at establishing whether the 461 

model developed in section 2 is relevant to predict the right order of magnitude of the convection 462 

length. 463 

6.1 Baulmes mine (Switzerland) 464 

The Baulmes mine (46°47'33"N, 6°31'35"E, 655 m a.s.l.) is located in western Switzerland. This 465 

mine comprises a network of 11 sub horizontal levels with a cumulated length of about 17 km 466 

(Figure 10). The difference in elevation between the uppermost and lowest entrances is 90 m, 467 

ensuring a strong chimney effect. In the vertical section of this mine, most of the conduits are 468 

dead end as can be seen in Figure 10 (more information about Baulmes mines is found in ref 469 

(Bourret et al., 2007)). The temperature delivered by Mathod weather station (46°44'13"N, 470 

6°34'4"E, 435 m a.s.l., at 7 km SW from the study site) is used as an estimation of the external 471 

atmosphere temperature. A correction has been applied to account for the difference of elevation 472 

with the mine entrance, using the vertical thermal gradient -5.2°C/km (mean value from the 473 

network of swiss meteorological stations for the time range 1991-2020). The resulting external 474 

temperature is displayed in Figure 11 for one year from July 1
st
 2022 at 0h00 (this date is taken 475 

as time 𝑡 = 0 for all the data from Baulmes mine). The sampling period was 1 hour. The FFT of 476 

the external atmosphere temperature yielded 𝑇𝑚 = 10.4°C (after correction) and 𝛥𝑇𝑦 = 9.4°C for 477 

the external AMT and ATF, respectively. 478 

The 360 m long tunnel #10 is connected horizontally to the lower entrance with no connection to 479 

other branches. This is the zone of interest of study. It is indicated by the yellow shading in 480 

Figure 10. This conduit has a typical horseshoe cross section. The geometrical characteristics of 481 

this conduit, including the mean perimeter and cross section area, their standard deviation as well 482 

as its total length are summarized in Table 2. We instrumented this tunnel with seven 483 

temperature probes at different distances from the entrance. They are listed in Table 3. The first 484 
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six temperature probes are Reefnet (Sensus Ultra) with ±0.3 ℃ accuracy. The last one located at 485 

360 m from entrance is HOBO (u22-001) with ±0.2 ℃ accuracy. The temperature inside the 486 

conduit was recorded by these seven probes from February 3
rd

 2023 (𝑡 = 0.596 year) to July 7
th

 487 

2023 (𝑡 = 1.017 year). This time range is displayed by the horizontal arrow in Figure 11. The 488 

sampling period was 1 hour.  489 

 
Figure 10: map of Baulmes mine (vertical) 

 490 

 491 

Table 2: Geometrical characteristics of the instrumented conduit of Baulmes mine (length Lc, mean value and 492 

standard deviation of the perimeter P and the cross-section A). 493 

Lc (m) P (m) A (m
2
) 

Mean (n= 28) std Mean (n= 

28) 

std 

360 9.7 1.1 6.6 1.5 

 494 

Table 3: location of the seven temperature probes inside the instrumented conduit of Baulmes mine. x is the distance 495 

from the lower entrance. 496 

Probe #1 #2 #3 #4 #5 #6 #7 

x (m) 10 26 50 90 128 220 360 

x̃ = x/Ldif 1.9 4.9 9.4 17 24 42 68 

  497 

The air mass flow rate was measured sporadically with a manual hot wire anemometer (Testo425 498 

with an accuracy of 0.03 m/s ±5% of the measured value). The measurements were carried out at 499 

the four dates listed in Table 4 and displayed by vertical red bars in Figure 11. There are two 500 

dates in winter and two in summer. The mean flowrates in winter and summer are 2.4 kg/s and 501 

5.0 kg/s, respectively. In the following, we consider 𝛥𝑚̇ ~(2.4 + 5.0)/2 ~ 4 kg/s as a rough 502 

estimation of the annual amplitude of the air flowrate. With the mean conduit perimeter P=9.7 m 503 

from Table 2 and the air viscosity 𝜇𝑎 ≈ 1.77 × 10−5 Pa. s from Table 1, we get the order of 504 

magnitude of the Reynolds number 𝑅𝑒 =
4 𝛥𝑚̇

𝑃𝜇𝑎
~ 105. The airflow is thus in the turbulent regime 505 

most of the time. The conduit radius reads 𝑅 = 𝑃/(2 𝜋) ≈ 1.5 m  that yields the scaled value 506 

𝑅̃ = 𝑅/𝐿𝑑𝑖𝑓 ≈ 0.3. The conduit is thus close to the configuration displayed in Figure 4 and 507 

Figure 5 corresponding to 𝑅𝑒 = 1.8 × 105 and 𝑅̃ = 0.189. In this configuration, cases A and B 508 

yield approximately the same results. The heat transfer is thus limited by conduction in the rock 509 

rather than convection. Therefore, Eq.(24), for which conduction-limited heat transfer is 510 

assumed, is expected to provide a fair estimation of the convection length, and not only a lower 511 
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bound. We get 𝐿̃0 ≈ 𝐿̃1 ~ 3 × 102. The theory thus predicts a convection length significantly 512 

larger than the conduit length 𝐿̃𝑐 = 𝐿𝑐/𝐿𝑑𝑖𝑓 ≈ 68. 513 

 514 

 
Figure 11: external atmosphere temperature estimated at Baulmes mine (daily averaged data). The horizontal 

arrow displays the time range during which the temperature inside the cave was measured by the sensors listed in 

Table 3. The vertical red bars correspond to the dates of the air flowrate measurements listed in Table 4. The 

black dashed line displays the mode k=0 and k=1 of the external temperature. 

 515 

 516 

Table 4: air mass flow rate measured in winter and summer. 517 

 Winter (upward flow) Summer (downward flow) 

Date 02/02/2023 02/15/2023 06/06/2023 7/7/2023 

t̃ = t/τy 0.595 0.628 0.933 1.018 

ṁ (kg/s) 1.9 2.8 4.5 5.4 

 518 

The time series of the external atmosphere temperature and the temperatures inside the conduit 519 

have been plotted in Figure 12-left. The dimensionless temperatures inside the conduit are 520 

always negative (i.e., lower than the external AMT), even in summer. This is the cold thermal 521 

anomaly expected at a lower entrance.  522 

In the following, we assume that the temperature profiles 𝜃𝑤(𝑥̃) at time 𝑡̃ = 0.611 and 𝜃𝑠(𝑥̃) at 523 

time 𝑡̃ = 1.016 give an assessment of the coldest and hottest temperatures reached inside the 524 

conduit in winter and summer, respectively. These two time-periods are displayed by vertical 525 

bars in Figure 12-left, and the corresponding profiles are plotted in Figure 12-right (the 526 

temperature at x̃ = 0 is the external atmosphere temperature). In winter, the dimensionless 527 

temperature continuously increases from -1.6 at the inlet (𝑥̃ = 0) to -0.56 at the end of the 528 

conduit (𝑥̃ = 68). Spatial temperature variations are thus significant over the entire length of the 529 

conduit.  This suggests that the convection length should be larger than the conduit length. In 530 

summer, the reverse flow direction yields a different temperature profile. The temperature at the 531 

end of the conduit (𝑥̃ = 68) is -0.06, close to the external AMT. When getting closer to the 532 

entrance, the temperature decreases to -0.16 at the first probe (𝑥̃ = 1.9). The temperature then 533 

suddenly increases within the diffusive region, from -0.16 at the first probe (𝑥̃ = 1.9) to the 534 

positive value 0.78 at the entrance (𝑥̃ = 0). 535 

 536 
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Figure 12: temperatures in Baulmes conduit. Left: daily averaged temperatures as a function of time (the 

temperature at 𝑥̃ = 0 is the external atmosphere temperature measured at Mathod weather station). Right: 

temperature profiles 𝜃𝑠(𝑥̃) and 𝜃𝑤(𝑥̃) measured respectively in summer and winter, and amplitude of the annual 

variation 𝛥𝜃 = (𝜃𝑠 − 𝜃𝑤)/2.   

 537 

The difference 𝛥𝜃 = (𝜃𝑠 − 𝜃𝑤)/2 between summer and winter profiles yields an assessment of 538 

the amplitude of the ATF in the conduit. 𝛥𝜃 drops from 1.2 to 0.58 between the entrance (𝑥̃ = 0) 539 

and the first probe (𝑥̃ = 1.9). This sudden decrease takes place in the diffusive region. 𝛥𝜃 then 540 

smoothly decreases from 0.58 (first probe at 𝑥̃ = 1.9) to 0.25 at the end of the conduit (𝑥̃ = 68). 541 

Assuming that the first sensor yields the temperature at the beginning of the convective region, 542 

the amplitude of the temperature fluctuation is thus divided by approximately 2.3 in the 543 

convective domain of the conduit. This confirms that the conduit length is significantly shorter 544 

than the convection length, defined as the distance required to divide by 10 the ATF measured at 545 

the beginning of the convective region (see section 4).  546 

 547 

6.2 D7.1 Cave (Sieben Hengste, Switzerland) 548 

D7.1 cave is located in the Sieben Hengste karst area (46°45'5.76"N, 7°48'34.1994"E, 1750 m 549 

a.s.l). It is part of a large ventilated cave system (>160 km of cumulated length) subject to 550 

chimney effect. Field observations reveal a seasonal airflow consistent most of the time with an 551 

upper entrance of the cave system (i.e., air inflow during the summer season). The ingress of 552 

warm external air during summer is marked by some condensation within the first 20 m of the 553 

meander, drained as a streamlet at the base of the meander. Otherwise, the cave passage remains 554 

remarkably dry. Unexpectedly, temperature and flow rate measurements show periods of time in 555 

winter during which the cave sporadically behaves as a lower entrance, with cold air inflow. The 556 

explanation of these unexpected flow reversals is still being searched.  557 

External air temperatures displayed in Figure 13-left are provided by an automatic weather 558 

station located at 1850 m elevation (SLF), approximately 2 km SE of our study site (sampling 559 

period: 1 hour). The external atmosphere temperature was corrected from the elevation as in 560 

section 6.1. The FFT yielded 𝑇𝑚 = 5.0°C (after correction) and 𝛥𝑇𝑦 = 7.1°C for the external 561 

AMT and ATF, respectively. 562 

The ca. 100 m-long entrance meander of D7.1 Cave has a simple geometry with an average 563 

hydraulic diameter of ca. 1 m, despite local variations in the cross-section area and perimeter. 564 
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The perimeter 𝑃 ≈ 3 m and the scaled radius 𝑅̃ ≈ 0.1 will be considered in the calculations. The 565 

meander was instrumented for temperature and airflow measurements between 25/08/2021 and 566 

10/08/2022. Five temperature probes were installed along the main conduit at distances from the 567 

cave entrance listed in Table 5. Probes #1 to #4 are Reefnets Sensus Ultra with ±0.3 ℃ accuracy 568 

(sampling period: 30 min). Probe #5 is a HOBO U22-001 with ±0.2 ℃ accuracy (sampling 569 

period: 2 hours). It is located at the base of a 20 m shaft following the entrance meander. Time 570 

series from the five probes are displayed in Figure 13-right. 571 

 572 

Table 5: location of the five temperature probes inside the instrumented conduit of D Cave. x is the distance from 573 

the entrance. 574 

Probe #1 #2 #3 #4 #5 

x (m) 2 11 33 93 125 

x̃ = x/Ldif 0.38 2.1 6.2 18 24 

 575 

The cave airflow was measured using a low pressure drop flowmeter (Sensirion SFM 3000 with 576 

accuracy of 5% and 20% when velocity is higher and lower than 0.3 m/s, respectively; 50 m 577 

from cave entrance) and validated with independent flow measurements (CO2 gauging) on 578 

10/08/2022. The FFT of the air flow yields the order of magnitude 𝛥𝑚̇ ~ 0.1 kg/s rate (red 579 

dashed line in Figure 13-left), which results in 𝑅𝑒 ~ 7 × 103. The cave is thus most of the time 580 

in the transition between laminar and turbulent regimes. Eq.(24) yields the theoretical convection 581 

length 𝐿̃0 ≈ 𝐿̃1 ~ 10. It is important to note that this value must be considered as a lower bound 582 

of the convection length. Indeed, Eq.(24) stands for case B (infinite Biot number). At 𝑅𝑒 ~ 7 ×583 

103, case A (finite Biot number) yields a convection length significantly larger than case B (see 584 

Figure 8). 585 

 

Figure 13 : field data from D7.1 cave. Left: external temperature and mass flow rate; black and red dashed lines 

represent the modes k=0 and k=1 computed from the FFT of the external atmosphere temperature and the air flow 

rate, respectively. Right: external temperature and temperatures inside the cave. All the data are daily averaged. 

 586 

The AMT inside D7.1 Cave is displayed in Figure 15-left. It decreases to reach a negative quasi-587 

plateau in the range from -0.26 to -0.23 in between probes #3 (𝑥̃ = 6.2), and #5 (𝑥̃ = 24). This is 588 

not the behavior expected for an upper entrance, for which the AMT is supposed to be positive in 589 

the convective region before decreasing to zero at some distance from the entrance. Sporadic 590 

flow reversals in winter can contribute to this negative AMT (an instance of such an event can be 591 
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observed around time 𝑡̃ ≈ 0.33 in Figure 13-left and right). Moreover, the cave entrance is in a 592 

topographic low, resulting in local cold air trapping during winter. In addition, snow is likely to 593 

accumulate near the cave entrance. Both may induce local free convection cells in the entrance 594 

zone in winter resulting in the cooling of the cave below the external AMT.  595 

If we assess 𝐿̃0 from the distance over which the AMT significantly varies inside the cave, it 596 

would range between 𝑥̃ = 2.1 (probe #2) and 𝑥̃ = 6.2 (probe #3). This estimation is confirmed 597 

by the variation of the ATF with the distance from the entrance (Figure 15-right). The ATF at 598 

probe #1 (𝑥̃ = 0.38), located in the diffusive region, is close to 1. Then it decreases to 0.36 at 599 

probe #2 (𝑥̃ = 2.1), the first probe in the convective region, and drops down to 0.02 at probe #3 600 

(𝑥̃ = 6.2). The ATF being reduced by a factor larger than 10 between probes #2 and #3, 𝐿̃1 601 

should be in between these two probes. It is worthwhile to note that this estimation is consistent 602 

with the limit of condensation, which falls in between probes #2 and #3 (20 m corresponds 603 

to 𝑥̃ ≈ 4). The convection length of D7.1 Cave is thus in the range from 2.1 to 6.2.  604 

6.3 Bärenhöhle Cave (Austria) 605 

The cave is located in Vorarlberg, Austria (47°22'17''N, 9°52'52''E, 901 m asl.). The external 606 

atmosphere temperature is obtained from the weather station located at Saint Gallen 607 

(47°25'31.7094"N, 9°23'54.7008"E, 776 m a.s.l.), Switzerland about 37 km WNW of our study 608 

site (the closer Schopernau station (47°19' N, 10°1'E, 835 m a.s.l.; ZAMG 2012) is subject to 609 

thermal inversions during the winter season and thus considered as being less representative). 610 

The temperature measured at Saint Gallen has been corrected from the elevation as in section 611 

6.1. It is displayed in Figure 14-left. The FFT yielded 𝑇𝑚 = 8.7°C (after correction) and 𝛥𝑇𝑦 =612 

7.6°C for the external AMT and ATF, respectively. 613 

Chimney effect drives the airflow in the cave which behaves as a lower entrance (air inflow in 614 

winter). The difference in elevation between the lower and upper entrances is ca. 130 m for a 615 

conduit length along the main air passage approximating 240 m (Perkmann and Luetscher, 616 

2013). The average hydraulic diameter is assessed to about 1 m, so that 𝑃 ≈  3 m and 𝑅̃  ≈ 0.1. 617 

Air temperature was recorded at 1h interval using three HOBO (U22-001) temperature probes at 618 

distances from the entrance listed in Table 6. The corresponding time series are displayed in 619 

Figure 14-right.  620 

 621 

Table 6: location of the three temperature probes inside  Bärenhöhle. x is the distance from the lower entrance. 622 

Probe #1 #2 #3 

x (m) 5 85 120 

x̃ = x/Ldif 0.95 16 23 

 623 

Air flow was recorded between 16/04/2013 and 16/04/2014 at the lower entrance using a thermo-624 

anemometer calibrated to ±0.1 m/s. The FFT of the air flow rate (red dashed line in Figure 14-625 

left) yields the orders of magnitude 𝛥𝑚̇ ~ 0.6 kg/s and 𝑅𝑒 ~ 5 × 104. The cave is thus in the 626 

turbulent regime most of the time. In this configuration (𝑅̃  ≈ 0.1 and 𝑅𝑒 ~ 5 × 104), cases A 627 

and B predict approximately the same theoretical convection length (see Figure 8). Eq.(24) 628 

yields 𝐿̃0 ≈ 𝐿̃1 ~ 70. 629 

The AMT of Bärenhöhle Cave is displayed in Figure 15-left. Negative values are consistent with 630 

a lower entrance. The lowest AMT (-0.27) is measured at probe #2 (𝑥̃ = 16). It increases slightly 631 

between probe #2 and the last probe #3. The ATF displayed in Figure 15-right decreases over the 632 
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whole instrumented conduit, from 1 outside the cave to 0.11 at the last probe (𝑥̃ = 23). These 633 

two pieces of information suggest that the convection length should be longer than 23, the cave 634 

length.  635 

 636 

 

Figure 14: field data of Bärenhöhle Cave. Left: external temperature and mass flow rate; black and red dashed 

lines represent the modes k=0 and k=1 computed from the FFT of the external atmosphere temperature and the air 

flow rate, respectively. Right: external temperature and temperatures inside the cave. All the data are daily 

averaged. 

 637 

 

Figure 15: AMT (left) and ATF (right) in Sieben Hengste and Bärenhöhle Caves. 

 638 

7 Discusion 639 

 The main results from the three investigated sites are summarized in Table 7. For two sites 640 

(Baulmes mine and Bärenhöhle Cave), we do not observe any contradiction between the model 641 

and the field data since both yield a convection length larger than the instrumented conduct (a 642 

hundred meters for Bärenhöhle, a few hundreds of meters for Baulmes). In D7.1 Cave, the field 643 

data suggest a shorter convection length, in the range from 10 m to 30 m, whereas the theoretical 644 
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prediction yields a lower bound of 50 m. Although the theoretical order of magnitude is correct, 645 

the theory overestimates the convection length. In a cave with a small Reynolds number and a 646 

short convection length, local effects in the entrance region, not considered in the model, could 647 

overcome the effect of the mean flow generated by the chimney effect. In the case of D7.1 Cave, 648 

cold air ingress in winter might cool down the cave passage more than considered in the model, 649 

thus producing an actual shorter thermal length.  650 

 651 

Table 7 : Summary table of the three investigated sites (R: cave radius in meters,R̃: dimensionless cave radius; Δṁ: 652 

amplitude of the air flow rate in kg/s; Re: Reynolds number; L̃0 and  L̃1: dimensionless convection lengths deduced 653 

from the AMT and the ATF, respectively; L0 and  L1: same variables in meters.  654 

 Baulmes mine Sieben Hengste Cave Bärenhöhle Cave 

R 1.5 m 0.5 m 0.5 m 

R̃ 0.3 0.1 0.1 

Δṁ 4 kg/s 0.1 kg/s 0.6 kg/s 

Re 10
5
 7 × 103 5 × 104 

L̃0 ≈ L̃1 

Field 

data 
>68 [2.1 , 6.2] > 23 

Theory ~ 3 × 102 > 10 ~ 70 

L0 ≈ L1  

Field 

data 
> 360 m [10 m , 30 m] > 120 m 

Theory ~ 2 × 103 m > 50 m ~ 4 × 102 m 

 655 

Using a theoretical approach, we defined the characteristic lengths 𝐿̃0 and 𝐿̃1 from  the damping 656 

in the convective region of the AMT (mode k=0) and ATF (mode k=1), respectively. 𝐿̃0 and 𝐿̃1 657 

are close to each other, and same values are obtained regardless the wall or the air temperature is 658 

considered (see Figure 8). A single convection length is thus sufficient to characterize the extent 659 

of the AMT and the ATF along the cave axis. The case B (infinite Biot number) provides a lower 660 

bound of the convection length through the simple expression (24). If the Reynolds number is 661 

large enough (typically, if 𝑅𝑒 > 3 × 104 for a conduit with a radius of 1 m, see Figure 8), the 662 

approximation of infinite Biot number is valid and Eq. (24) is expected to give a right estimation 663 

of the convection length. Turning this relation into unscaled variables yields 664 

L0 ≈ L1 ≈ 4.0 × 102  
Δṁ1.06

R0.45
 

(25) 

where 𝐿0, 𝐿1 and R are in meters and 𝛥𝑚̇ in kg/s. Eq.(25) reveals that the convection length is 665 

approximately proportional to the amplitude of the flowrate annual fluctuations 𝛥𝑚̇ divided by 666 

the square root of the cave radius R. Ventilated conduits with R of the order of 1 m traversed by 667 

an airflow with 𝛥𝑚̇ ranging from 0.1 kg/s to 1 kg/s are commonly encountered in mines and 668 

caves (see the case studies of section 6). For such conduits, Eq.(25) yields a convection length 669 

along the conduit axis between a few tens and a few hundreds of meters. Thermal perturbations 670 

also propagate in the radial direction, i.e., along the directions perpendicular to the conduit. As 671 

expected, the amplitude of the annual fluctuations vanishes over the diffusion length, i.e., a few 672 

meters. Conversely, the thermal anomaly (defined as the shift of the annual mean temperature), 673 

propagates along distances of the order of L0/10 (see Figure 9), i.e., over distances of the order of 674 

a few meters to a few tens of meters. It is worthwhile to note that in some cases, the extent of the 675 

thermal perturbation might be much larger than mentioned above. Luetscher and Jeannin (2004) 676 

measured air flow rates around 10 kg/s in Hölloch Cave (Switzerland) and La Diau (France). 677 
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Recently, airflow rates around 40 kg/s were measured in Shpella Shtares Cave, in Albania 678 

(42.31766° N, 19.85403° E, 1427 m a.s.l, see Ref. (Pastore et al., 2019) for more details about 679 

this cave). Taking a couple of meters as a rough estimation of the conduit radius in Shpella 680 

Shtares, the thermal perturbation should extend over kilometers and hundreds of meters in the 681 

axial and radial directions, respectively.  682 

Assessing the thermal penetration length at different time-scales is fundamental to quantify bio-683 

geochemical processes in karst systems. Our study demonstrates that seasonal temperature 684 

fluctuations propagate from a few tens of meters up to several thousands of meters into a karst 685 

system, depending on ventilation rate and conduit geometry. By way of illustration, let us cite the 686 

large ice caves in Austria which host perennial ice formations over several hundreds of meters in 687 

the lower entrance zone of ventilated cave systems (e.g. Eisriesenwelt; (Obleitner and Spötl, 688 

2011)). However, it is the advent of speleothems as precisely and accurately dated paleoclimate 689 

archives which rises the significance of our study. Stalagmites and flowstones are commonly 690 

used to reconstruct climate fluctuations based on their isotope (oxygen and carbon) and trace 691 

element concentrations (Fairchild and Baker, 2012). In both cases, the proxy partitioning 692 

depends strongly on the cave temperature. While it is commonly assumed that the cave 693 

temperature at depth is constant, this is only true beyond the convection length which strongly 694 

depends on the time-scale of interest.  695 

Because the temperature-dependent oxygen isotope fractionation between water and calcite 696 

ranges between -0.18 and -0.21 ‰/°C  (Kim and O’Neil, 1997)(Tremaine et al., 2011), seasonal 697 

temperature changes >0.5°C represent a significant source of uncertainty in the speleothem-698 

proxy interpretation and it might be of interest to sample beyond the convective region. 699 

Meanwhile, it can be strategic to focus speleothem research on the convective region associated 700 

with decadal to millennial cycles, as this area will respond sensitively to outside climate changes 701 

without picking up short-term temperature fluctuations.  702 

 703 

8 Conclusion 704 

We developed a model coupling buoyancy-induced convection (chimney effect) in a single karst 705 

conduit with conduction in the rock mass. We used this model to investigate the propagation of 706 

thermal perturbations inside a karst massif. Assuming dry air and a simplified geometry, and 707 

reducing the time variations of the external temperature to the annual fluctuations, we performed 708 

a parametric study to identify general trends regarding the effect of the air flowrate and conduit 709 

size on the amplitude and relaxation length of the thermal perturbations induced by the air flow. 710 

The thermal anomaly (defined as a shift in the annual mean temperature) and the annual 711 

temperature fluctuations both propagate over the same distances from the entrance. We call this 712 

distance the convection length and we show that at high Reynolds number, it is approximately 713 

proportional to the air flow rate divided by the square root of the cave radius. The order of 714 

magnitude of the theoretical convection length seem to compare satisfactorily with field data 715 

obtained from a mine and two caves. Convection lengths of a few tens to a few hundreds of 716 

meters should be commonly encountered in ventilated caves. In extreme cases, it could go up to 717 

kilometers.  718 

More detailed comparisons between field data and a more elaborated model are currently under 719 

investigation. In this first approach, some effects have been neglected on purpose and the 720 

significance of condensation/evaporation, daily fluctuations, varying diameter will be further 721 

assessed. Moreover, many phenomena are still to be investigated and quantified. We can cite free 722 
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convection cells near cave entrances, barometric effects, multiple entrances, water inrush, among 723 

others. Our results nonetheless provide first estimates to identify climate sensitive regions for 724 

speleothem science and/or ecosystemic studies.  725 
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Introduction

Text S1 describes the method based on Fourier series to compute the time-periodic so-
lution of the mathematical model defined in section 2.6. The numerical validation of the
method is displayed in Text S2 (including Figs. S1 to S3). A brief comparison between
Fourier series (FS) and the resolution of the transient problem by time integration (TI)
is presented in Text S3 (including Figs. S4 to S6).

Text S1

The resolution by Fourier series requires a slight modification of the model defined in
section 2.6. Eq. (17) resulting from the air energy balance is of order 1 in space, so that
only 1 boundary condition must be imposed, the air temperature at the inlet. Since
the position of the inlet changes at each flow reversal, the boundary condition has to be
applied alternatively on each side of the conduct. This is possible when the problem is
solved by time integration, but difficult to implement with Fourier series. This difficulty
is overcome by adding a dispersion term in the air energy balance which turns to second
order in space, making it possible to apply Dirichlet boundary conditions on both sides
of the conduct whatever the flow direction. Eqs. (17-18) turn to:

µ(t̃)Re
∂θa
∂x̃

=

(
4
kr
ka
Pr−1

)
ϕ̃w +RePe−1 ∂

2θa
∂x̃2

, (S1)

θa(x̃ = 0, t̃) = sin(2πt̃) and θa(x̃ = L̃dom, t̃) = 0. (S2)

It is important to note that the new dispersion term in Eq. (S1) is a numerical trick
with no physical sense. If the Peclet number Pe is large enough, the addition of the
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dispersion term in Eq. (S1) does not significantly modify of the model output. An ex-
ception is the outlet region, where the dispersion term induces the air temperature to fit
the external temperature at the end of the conduct. This change in the air temperature
field takes place over a distance from the outlet of the order of Pe−1, which can be
arbitrarily small if Pe is large enough. The constant value Pe = 105 was set in all the
simulations. We checked on a few cases that imposing Pe = 106 did not change the
results.

In a second step, all the functions of time are approximated by truncated Fourier
series and inserted in the mathematical model. These functions of time include:

• Two model inputs: the reduced air flowrate µ(t̃) and heat transfer coefficient η(t̃).

• Two model outputs: the rock and air temperatures, respectively θw(x̃, r̃, t̃) and
θa(x̃, t̃).

We begin with the model inputs. The exact expression of µ(t̃) and η(t̃) are known a
priori (see section 2.6). Considering that µ(t̃) is an odd function of time and η(t̃) an
even function of time, their approximations by truncated Fourier series read:

µ(t̃) =

Nµ∑
k=1

µk sin(2πkt̃) and η(t̃) = η0 +

Nη∑
k=1

ηk cos(2πkt̃) , (S3)

where µk and ηk are real coefficients deduced from the exact expressions of µ(t̃) and
η(t̃), respectively. Nµ and Nη are the number of modes taken into account. Increasing
Nµ and Nη improves the accuracy of the approximated relations (S3), but requires more
computational resources.

We now focus on the model outputs. The temperatures fields in the rock
θr(x̃, r̃, t̃) and in the air θa(x̃, r̃, t̃) are approximated by the truncated Fourier series:

θr(x̃, r̃, t̃) = θr,0(x̃, r̃) +

Nθ∑
k=1

θr,k(x̃, r̃) cos
(
2πkt̃+ ϕr,k(x̃, r̃)

)
=

Nθ∑
k=−Nθ

Θr,k(x̃, r̃) exp(2πjkt̃) ,

(S4)

θa(x̃, t̃) = θa,0(x̃) +

Nθ∑
k=1

θa,k(x̃) cos
(
2πkt̃+ ϕa,k(x̃)

)
=

Nθ∑
k=−Nθ

Θa,k(x̃) exp(2πjkt̃) ,

(S5)

where the same number of modes Nθ is considered for the rock and air temperatures.
The complex coefficients Θr,k are such that Θr,−k is the conjugate of Θr,k. They are
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related to the real amplitudes (θr,k and θa,k) and phase shifts (ϕr,k and ϕa,k) through
the standard relations:

θr,0 = Θr,0 and θa,0 = Θa,0 , (S6)

θr,k = 2
√

Θr,kΘr,−k and θa,k = 2
√

Θa,kΘa,−k for k > 0 , (S7)

tanϕr,k = −j (Θr,k −Θr,−k)

Θr,k + Θr,−k
and tanϕa,k = −j (Θa,k −Θa,−k)

Θa,k + Θa,−k
for k > 0 . (S8)

Injecting Eqs. (S3-S5) in the mathematical model of section 2.6 yields the equations:

Re

2j

Nµ∑
m=1,3...

µm
(dΘa,k−m

dx̃
− dΘa,k+m

dx̃

)
=

(
4
kr
ka
Pr−1

)
Φ̃w,k +RePe−1 d2Θa,k

dx̃2
, (S9)

Θa,k(x̃ = 0) =
1

2j
for k = 1, Θa,k(x̃ = 0) = 0 for k 6= 1 , (S10)

Θa,k(x̃ = L̃dom) = 0, (S11)

2πjkΘr,k =
1

r̃

∂

∂r̃

(
r̃
∂Θr,k

∂r̃

)
+
∂2Θr,k

∂x̃2
, (S12)

Θr,k(0, r̃) =
1

2j
for k = 1, Θr,k(0, r̃) = 0 for k 6= 1 , (S13)

∂Θr,k

∂x̃
(x̃ = L̃dom, r̃) = 0 and

∂Θr,k

∂r̃
(x̃, r̃ = R̃dom) = 0 , (S14)

Case A : Φ̃w,k =
∂Θr,k

∂r̃
(x̃, R̃)

= Bi

Nη∑
n=0,2,...

ηn
2

[
Θr,k−n(x, R̃)−Θa,k−n(x̃) + Θr,k+n(x̃, R̃)−Θa,k+n(x̃)

]
,

(S15)

Case B : Φ̃w,k =
∂Θr,k

∂r̃
(x̃, R̃) and Θa,k(x̃) = Θr,k(x̃) , (S16)

where j =
√
−1 and k is an integer varying from 0 to Nθ. Eqs. (S9) and (S12) thus

define a set of 2(Nθ + 1) coupled partial differential equations (PDE) with boundary
conditions (S10-S11,S13-S16). This set of PDE, which does not include the time variable
t̃, is solved numerically by finite elements (Galerkin method with quadratic Lagrangian
elements, Comsol Multiphysics software). The resolution yields the complex coefficients
Θr,k(x̃, r̃) and Θa,k(x̃). The real amplitudes and phase shifts are deduced from relations
(S7-S8) and the temperatures as a function of time from relations (S4-S5).

3



Text S2

The choice of Nµ, Nη and Nθ results from a compromise between the accuracy of the
results on one hand, the difficulty of the implementation and the available computa-
tional resources on the other hand. The sensitivity of the simulation results to Nθ, Nµ

and Nη is investigated below for case A with R̃ = 0.2 and Re = 7.2× 105.

We first set Nη = 0 and Nµ = 1 and we investigate the effect of Nθ. Figs. S1 dis-
play the effect of Nθ on the time series of the wall temperature at x̃ = 10 and x̃ = 100.
The general shape of the curve is little modified for Nθ ≥ 6, but the description of
the rapid oscillations around t̃ ' 0.05 and t̃ ' 0.45 requires a larger number of modes.
The same approach is used to investigate the effect of Nη and Nµ. Figs. S2 show
that these parameters has little effect on the results for the selected configuration. In
all the simulations, we imposed Nθ = 18, Nη = 6 and Nµ = 7 which happened to
be a reasonable compromise between accuracy and complexity. We checked on a few
configurations that increasing the number of modes above the selected values did not
significantly changed the results.

In order to confirm its validity, the numerical solution based on Fourier series
was compared with the solution obtained by time integration (Galerkin method with
quadratic Lagrangian elements, time discretization using implicit Backward Differen-
tiation Formula, Comsol Multiphysics software). The TI simulation was done over 28
cycles (i.e., from time t̃ = 0 to t̃ = 28) taking as the initial condition the solution ob-
tained from Fourier series at t̃ = 0. The comparison between TI (last cycle, from time
t̃ = 27 to 28) and FS is displayed in Fig. S3. Small discrepancies are observed during
the rapid oscillations around times t ' 0.05 and t ' 0.45 for x̃ = 10 and x̃ = 100, but
the overall agreement is excellent.

Figure S1. Time evolution of the wall temperature at x̃ = 10 (a) and x̃ = 100 (b) for
Nη = 0, Nµ = 1 and different values of Nθ. Case A with R̃ = 0.2 and Re = 7.2× 105.
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Figure S2. Time evolution of the wall temperature at x̃ = 10 (a) and x̃ = 100 (b) for
Nθ = 18 and different values of Nη and Nµ. Case A with R̃ = 0.2 and Re = 7.2× 105.

Figure S3. Time evolution of the conduit wall temperature calculated using Fourier series
(FS) or time integration (TI), at different distances from the entrance x̃. FS solution at t̃ = 0
used as the initial condition of TI simulation. Case A with R̃ = 0.2 and Re = 7.2× 105.

Text S3

A standard approach, not used in this study, would consist in solving the time-dependent
problem by TI starting from an arbitrary initial condition (e.g., θr(x̃, r̃, t̃ = 0) =
θa(x̃, t̃ = 0) = 0). The time-dependent solution converges to the periodic regime at
infinite time. A good approximation can thus be obtained if the simulated time is long
enough. Figures (S4-S6) display the parameters defined in Section 4 calculated from
TI as a function of time or FS, for case A with R̃ = 0.189 and Re = 1.8 × 105. With
the exception of W̃1, TI results converge slowly to the periodic regime. Taking FS as a
reference, TI yields errors at time t̃ = 50 in the range from 10% to 30% for θ̄w, ∆θw, L̃0

and L̃1. These errors are acceptable if rough estimates are required. In contrast, TI un-
derestimates W̃0 by an order of magnitude. To get a correct estimate of this parameter
and improve the accuracy of others, TI would require to simulate a time of the order of
the diffusion time W̃ 2

0 ' 642 ∼ 4× 103, i.e. thousands of years. Such simulations would
require computational times hardly compatible with current computer resources.
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Figure S4. W̃0 (a) and W̃1 (b) estimated from Fourier series (FS) or time integration (TI).
Initial conditions in TI simulations set to zero. Case A with R̃ = 0.189 and Re = 1.8× 105.

Figure S5. AMT of the conduct wall (a), θ̄w (b) and L̃0 (c) estimated from Fourier series
(FS) or time integration (TI). Initial conditions in TI simulations set to zero. Case A with
R̃ = 0.189 and Re = 1.8× 105.

Figure S6. ATF of the conduct wall (a), ∆θw (b) and L̃1 (c) estimated from Fourier series
(FS) or time integration (TI). Initial conditions in TI simulations set to zero. Case A with
R̃ = 0.189 and Re = 1.8× 105.
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