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Abstract—Serverless computing has become a very popular
cloud-based solution for designing, testing and deploying the
applications as serverless functions. Serverless computing has be-
come a buzzword in both industry and academia as many large IT
giants have rolled out their own serverless platforms. Independent
design, deployment and auto scalability are its major features
with Function-as-a-Service (FaaS) as its popular implementation.
On the other hand, microservices are an emerging trend for
design of large enterprise applications as many companies like
Amazon, Uber and Spotify have already migrated their existing
applications to microservices style. However, with the advent of
serverless platforms, to design efficient applications with simpler
infrastructure management, reduced operational overhead and
cost factor, migrating microservices to serverless has become
inevitable. Additionally, existing studies report that serverless
platforms suffer from cold start latency. Therefore, in this paper,
a framework is proposed which has two phases: (i) an empirical
investigation to find out the impact of programming language
on the cold start of serverless functions and (ii) an approach for
migration of microservices to serverless platforms. The evaluation
results help us to identify the platform with low cold start latency
and also recommend the choice of programming language with
lower latency. After migrating the containerized microservices to
serverless, a comparison in terms of performance is conducted.
The applications designed as serverless functions exhibit better
response time and throughput compared to containerized mi-
croservices.

Index Terms—Serverless computing, microservices, cold start,
function-as-a-service, performance.

I. INTRODUCTION

Distributed systems have evolved rapidly from a monolithic
style of client-server applications to today’s trending serverless
architectures. The demand for quick design and deployment
of services with low downtime of the applications has made
the evolution of different architectural styles such as Service
Oriented Architecture (SOA), microservices and serverless
architectures [1]. SOA has been the most popular style for de-
signing large enterprise applications with the implementation
of web services. It has been one of the successful architectural
styles for designing internet based applications post the era of
internet. However, the tight coupling with Enterprise Service
Bus (ESB) and the services in SOA tending towards mono-
lithic in size led to the evolution of the new architectural style,
microservices [2]. Microservices definition clearly states that
every service should implement only one business goal, i.e.,
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every service should follow the Single Responsibility Principle
(SRP) [34]. The major benefit of microservices over SOA is
that the services are deployed in cloud containers instead of
traditional servers at the developer end. The cloud containers
are lightweight and they have the feature of auto scalability
based on the demand of user requests. Currently, microservices
is one of the trending styles of software design because of the
diverse benefits and advantages of cloud platforms.

On the other hand, serverless computing is an emerging
and potential cloud computing paradigm and it has gained
popularity in recent times for its constantly available servers
driving the web application behavior owing to its large in-
fluence in reducing costs of computing and storage space,
decreasing latency, improving scalability, and eliminating
server-side management [5]. The main intention behind the
concept of serverless computing is to completely abstract
away servers from the developers. The term serverless has
a misconception that the servers are not available which is
incorrect. The actual servers exist and all the development,
testing and deployment is performed by the developer but at
the cloud provider [55]. The complete infrastructure, hardware
and software configurations are taken by the provider and
the developer just needs to have good internet connection. In
this computing, developers merely need to write functions in
high-level languages such as Java, Python etc., define a few
simple attributes, then upload these functions to a serverless
platform. The resultant API or HTTP requests might then
be used to conduct their well-defined computing tasks [6],
[14]. In contrast to serverful computing models, developers
employing serverless do not need to worry about managing
infrastructure resources because platforms manage such things
on their behalf. The heart of serverless computing is the cloud
functions which are written by developers and invoked as units
of execution via the Internet [56]. Serverless computing may
also be seen from the perspective of developers as Function-
as-a-Service (FaaS), which enables developers to create and
execute their applications (or functions) without having to deal
with the complexity of creating and managing the underlying
infrastructure [57]. On the other hand, serverless service
providers always provide their clients Backend-as-a-Service
(BaaS), or application-dependent services, including Database
and Object Storage Service (OOS). Accordingly, from a broad
perspective, serverless computing is the merging of BaaS and
FaaS to provide clients with a single service model [8].

Despite of all these benefits of serverless computing, the
serverless functions suffer from a problem called cold start
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problem [59]. It refers to the initial startup time of the
functions or the containers after moving into idle state. If
there are no requests to the serverless functions, after a certain
time period, the functions are pushed into cold state. This is
one of the features of serverless with pay as you go pricing
model. Every provider has their own time limit for pushing
the functions into idle state. Whenever a new request comes
to the FaaS applications, it takes little more time to load all its
dependencies, runtime initialization, and other factors such as
code package size, programming language etc. have an impact
on the cold start. It has become a challenge for the clients
as the cold start time is very high for the FaaS applications.
Therefore, in this work, an empirical investigation to find out
whether programming language has any impact on the cold
start is also presented.

Generally, microservices are deployed in cloud containers
using the Docker software [22]. However, with the advent of
serverless platforms, it has become the alternative for deploy-
ment of microservices [9], [26]. In a recent study, it has been
found that the performance of microservices is better when
deployed in serverless platforms compared to containerized
microservices [21], [13]. Additionally, microservice architec-
tural style is a popular alternative for creating applications for
cloud since the updation, scaling and upgrading can be done
individually for each microservice. Considering these facts,
application development and cloud infrastructure management
were merged into what is today known as DevOps. However,
there is growing interest in using FaaS and serverless CaaS
technologies for refactoring microservices-based applications
because of the attention the serverless computing technology
has gained and its many benefits, including no infrastructure
management, a pay-per-use billing policy, and on-demand fine-
grained autoscaling [23].

Because of the significant advantages of serverless comput-
ing, it has earned positive attention in the industry. In a recent
survey, it is expected that the global industries will adopt
serverless platforms by 2025 [58]. There has been a transition
from microservices deployment in a containerized architecture
to a serverless architecture over time. Despite these advan-
tages, the time and money necessary to modify existing code
restricts the accessibility of these applications and impedes
attempts to develop serverless computing platforms [15]. Sup-
porting the migration of current applications to serverless
platforms will help developers while also broadening the scope
of serverless computing. Furthermore, there is no effective
algorithm for migrating microservices-based applications to
serverless automatically [16]. However, migrating systems to
serverless involves a number of challenges, including (i) not
understanding the impact of migration, (ii) not having enough
material on automated migration strategies [24], [27]. These
difficulties prompted us to research and develop approaches
for migrating Microservices-based applications to a serverless
architecture.

A. Contributions

To the best of our knowledge, this is one of the first attempts
to empirically assess the impact of programming languages on

cold start latency of serverless platforms and also, migrating
the existing microservices based applications to serverless
platform. To summarize, the following contributions are made
to achieve the proposed objective.

e An empirical investigation on whether choice of pro-
gramming language has any impact on cold start of the
serverless platforms.

o Identification of best programming language for server-
less platforms with low cold start latency.

e An approach to automatically migrate the containerized
microservices to serverless platform.

o Performance evaluation of containerized microservices
and serverless applications.

The remaining part of the paper is organized as follows:
Section II presents the preliminaries required for the proposed
framework. Section III discusses the related work in compar-
ison with the proposed framework and proposed approach is
presented in Section IV. The empirical investigation of cold
start in three different platforms is presented in Section V and
migration of microservices to serverless is presented in Section
VI. Section VII concludes the paper.

II. BACKGROUND

In this section, the preliminaries required to understand the
proposed framework are presented. Since, the primary aim of
this paper is about migrating microservices based applications
to serverless, both the architecture styles are presented along
with the cold start problem in serverless platforms.

A. Microservices Architecture

The term microservices was first coined by Lewis and
Fowler in the year 2014. The microservice architectural style
[37] is an approach to developing a single application as
a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an
HTTP resource API. Microservices are designed and deployed
independently with the principles of CI and CD. The mi-
croservices follow single responsibility principle which states
that every service in the application should perform only one
business task [38]. These services are deployed in cloud con-
tainers which have the inbuilt functionality of auto-scalability.
The messages are exchanged among the microservices using
advanced communication protocol such as HTTP/REST and
JSON. The microservices developer have the freedom to
choose any programming languages for designing microser-
vices as it supports polyglot feature [39]. The applications uses
API gateway for communication between services and each
service has a different data storage. Many tools are involved
in life cycle of microservices such as Docker for creating
container images and Kubernetes for deploying and monitoring
the microservices [60].

Because of these diverse benefits of microservices architec-
tural style, many large IT firms have migrated their existing
applications to this style and lot of research is going on in
migrating existing monolithic and SOA based applications to
microservices style [40]. From the literature, it is very clear
that microservices is better than existing solutions in terms of
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QoS parameters [41], [42], [43]. However, with the advent of
serverless platforms and their path breaking benefits among all
the available software architectures, it gives a new direction
for using the advantages of serverless architectures.

B. Serverless Computing

Serverless computing is a prominent cloud computing
model that has been used in a variety of disciplines such as
machine learning [44], scientific computing [45], and video
processing [46]. Serverless computing is expected to be used
by 50% of global organizations by 2025 [47]. FaaS apps
are created by developers who construct their applications
as a mix of serverless services. The underlying serverless
systems manage resources autonomously. As a result, de-
velopers do not need to manage servers or VM instances
in order to operate FaaS apps. Instead, when events (such
as an HTTP request) activate serverless functions, resources
are dynamically assigned to them. If a serverless function
is not utilized for an extended period of time, the platform
will release the resources. This allows for lightweight and
effective management of resources. Serverless functions and
their dependent libraries are packed into a single bundle in
FaaS applications and then delivered to serverless platforms.
If the app’s space crosses the deployment limit (for example,
250 MB uncompressed size on AWS Lambda), designers
can launch apps utilising container images with greater sizes
[17]. After the deployment is successful, serverless operations
will be triggered by predetermined events, such as an HTTP
request, a file change in cloud storage, or the activation of a
timer. When serverless functions are invoked, the serverless
platform dynamically assigns and starts dedicated function
instances (e.g., VMs or containers) with limited resources
(e.g., CPU and memory) to carry out their duties. When no
new requests are received, launched instances and resources
are automatically retired.

The execution of a serverless function can occur in two
modes: cold start and warm start [49]. If the called function
has not been utilized for a certain amount of time (keep-alive
time), its invocation is in cold-start mode. In this state, the
serverless platform needs to set up new VMs or containers,
transfer the function code from distant cloud storage to in-
stances over the network, load the necessary code to begin the
application process, and ultimately run the serverless function.
If, on the other hand, the called function has recently been
utilised, the invocation is in warm start mode, in which the
serverless platform uses previously launched instances of the
same function. However, the cold start latency has become a
challenge in serverless platforms.

1) Cold Start Latency: The time it takes for a computer
program or application to start and become responsive after it
has been idle or not utilised for a particular length of time is
referred to as cold start latency [50]. This phrase is frequently
used in conjunction with serverless computing systems and
containerized applications. Functions in serverless computing
systems are run in response to events (for example, HTTP
requests). A cold start delay may occur when a function
is initiated for the first time or after a period of inactivity.

The time it takes to allocate resources, load dependencies,
and execute code is included in this delay. In these contexts,
reducing cold start latency is critical for improving user expe-
rience and optimising resource utilisation. To reduce cold start
latency, several tactics and approaches may be used, such as
pre-warming resources, employing smaller and more efficient
runtime environments, and optimising code and dependencies.

There are multiple factors causing the cold start in the

serverless platforms such as choice of programming language,
code size, dependencies required for running the serverless
functions, and memory space etc. In this work, an experimental
study for doing empirical analysis is presented to verify
whether the choice of programming has any impact on the
cold start time. Additionally, a recommendation is given to the
serverless developers on selecting the suitable programming
language for a particular platform.

2) Serverless Providers: Serverless solutions are used for

a variety of applications, including web application devel-
opment, microservices, real-time data processing, and more.
They are well-known for their scalability since resources are
automatically assigned depending on demand, and develop-
ers are only paid for the compute resources utilised during
function execution. There are many companies which provide
serverless platforms such as AWS Lambda, Microsoft Azure,
Google Cloud Platform (GCP), IBM cloud functions etc [51].
In this study, three popular platforms: AWS Lambda, Azure
and GCP are considered for empirical analysis.

o AWS Lambda: One of the first serverless systems was
Amazon Web Services (AWS) Lambda. It enables you to
execute code in reaction to AWS events like as HTTP
requests, database updates, or file uploads. Lambda is
compatible with a variety of programming languages and
interfaces with other AWS services.

o Azure functions: Microsoft Azure offers this serverless
facility. It supports a variety of event triggers, including
HTTP requests, Azure Storage events, and updates to
Azure Cosmos DB. Functions can be written in languages
such as C#, Node.js, Python, and others.

e Google cloud functions: Google Cloud Functions is
Google’s serverless platform, which enables developers
to run code in response to HTTP requests, Cloud Pub/Sub
events, and more. It supports languages such as Node.js,
Python, and Go.

III. RELATED WORK

The existing literature on both microservices and serverless
computing have focused more on the software engineering
activities of the applications designed using those styles. The
research on both microservices and serverless is trending as
both the styles have emerged recently. In this section, the
works related to cold start and its evaluation and approaches
for migration to serverless are discussed.

A. Studies on cold start assessment

A detailed empirical evaluation of performance, scalability
and cold start latency is performed in [33] with respect to
three programming languages: Go, Python and Java. The
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experiments are performed only in AWS Lambda and the
results state that Go language exhibited very low cold start
compared to other languages. However, the limitation of this
work is that it is limited only to three programming languages
and tested only in AWS. In our work, all the programming
languages supported by each platform and all three major
serverless platforms are considered. A test suite to evaluate the
performance of applications in AWS, Azure, GCP and IBM is
presented in [34]. Similar to our proposed work, the authors
have used applications of different programming languages to
estimate the performance parameter. However, the focus of
our work is to find out the cold start latency of applications
written using different languages. Two other similar studies
[35], [36] were conducted to estimate the performance, start-
up delays and latency. However, the works are either limited
to two programming languages or have been experimented
only on two serverless providers. There exists many works
in the literature which primarily focuses on mitigating the
cold start latency in different platforms. Each existing work
proposes a different and unique technique to over the cold
start challenge in the serverless platforms. However, one of
our important contribution is to recursively test the cold start
in three major serverless providers: AWS Lambda, Azure and
Google Cloud with many applications written using all the
programming languages supported by each platform.

B. Studies on migration to serverless

The authors in [10] have presented the challenges in imple-
mentation of serverless applications and suggested few pos-
sible solutions for such problems. Also, automated migration
process is highlighted as open problem. An automated process
for migration of FaaS from one serverless to another platform
is highlighted as a challenge. In [11], the authors present
an empirical analysis of how migrating to serverless reduced
the hosting costs between 66 to 95%. It speeds up time to
market for delivery of new features. However, the authors
have selected legacy monolithic applications for migration to
serverless. The authors present how a FinTech application is
migrated to serverless in [12] and also the performance analy-
sis of pre and post migration of the application are presented.
A tool, ToLambda, for automatic conversion of Java monolith
application code into AWS Lambda Node.js microservices is
proposed in [17]. A semi automated approach for migrating
monolithic to microservices is proposed in [31] where different
approaches for transforming code are presented. In all the
above approaches for migrating to serverless have focused on
migrating legacy monolithic applications. However, our focus
is on migrating microservices based applications to serverless.
Hence, in our work, an automated approach for migrating
microservices to serverless is proposed.

A similar work of migrating microservices to serverless is
proposed in [18] where a complex IoT platform application
based on microservices is migrated to OpenWhisk (OW) and
Google Cloud Run (GCR). However, the proposed approach
is specific to only OW and GCR. The authors in [30] have
presented a comparative study between different serverless
platforms in terms of cost and performance by deploying a

microservices application. It is also highlighted that there is
a need for automatic approaches for migrating microservices
to serverless and also migrating the applications from one
serverless to other platforms. They have not proposed any
mechanism for migration which is considered as a major
contribution in our work. A partial migration of monolithic ap-
plication to microservices and serverless platform is proposed
in [32]. However, the serverless platform is only used to deploy
the application. Also, finding an optimal automatic migration
solutions for existing legacy systems is an interesting research
direction [3]. Additionally, only a few applications have been
migrated to serverless serverless either because of no proper
mechanism for migration or lack of awareness of the benefits
of serverless. In our work, an automated and generalized
approach is proposed to migrate to any serverless platforms.

IV. APPROACH

In this section, the proposed framework for migration of
microservices based applications to serverless platform is pre-
sented. The framework includes different tasks: (i) Empirical
investigation of cold start latency and (ii) Migration of mi-
croservices based applications to best serverless platform. The
benchmark applications selected for performing the empirical
investigation to find out the relation between the cold start
latency and its dependency on the programming language
are identified and are presented in below sections. Also, the
microservices based case study application considered for
migration to serverless is also presented.

A. Proposed Framework

A framework includes all the set of guidelines, tools and
procedure to design an application. The diagram in Figure 1
shows the detailed architecture of the proposed framework.
It includes two phases: In the first phase, FaaS applications
are deployed in three serverless platforms. Each application
is written using all the programming languages supported by
the serverless provider. Once the deployment is completed,
each FaaS application is allowed to switch to idle state after
it completes the waiting period. Then, cold start latency is
captured for each application in all three platforms with
respect to the programming language. The cold start latency
are analyzed and mapped corresponding to the programming
language of the platform.

After the first phase, the programming language with low
cold start latency in each platform is identified. The platform
with efficient cold start latency is considered for migration
of existing serverless platform. Though microservices perform
better compared to other existing architectural styles, due to
the advantages of serverless in terms of cost of the infrastruc-
ture, its maintenance and auto scaling feature, it triggers to mi-
grate existing microservices to serverless platforms. Migrating
microservices to serverless is a complex process as services
need to fit as per the serverless environment, i.e. FaaS needs to
be designed from microservices code. It is required to break
the microservices into smaller and functionally independent
services called functions. However, in this work, it is assumed
that the microservices application strictly follows the single
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Fig. 1: Proposed framework diagram

responsibility principle and each services performs only one
business task. Therefore, the microservices can be directly
considered as serverless functions and it requires to update the
environmental configuration settings. However, microservices
and serverless can be used together by making few services
as serverless functions to handle some tasks of the business
requirement.

B. Benchmark Applications for Cold Start Estimation

To perform the empirical analysis, the applications written
as serverless functions, also known as FaaS are chosen. In
specific, ten different classical computer science problems
which are written as serverless functions are considered. Since,
this is one of the initial studies in identifying the cold start
latency with different programming language, there is no
specific criteria in identifying the applications except that they
all perform different computational tasks. The details of the
programs along with the naming convention used in the paper
are presented in Table I.

App No Name of the Function
Appl Binary Search
App2 Bubble Sort
App3 Fibonacci Series
App4 Round Robin
App5 Random Number Generator
Appb Dijkstra’s algorithm
App7 Matrix Chain Multiplication
App8 Travelling Salesman Problem
App9 N-Queen’s Problem
Appl0 Encryption Decryption Algorithm

TABLE I: List of serverless functions and corresponding

notation

C. Benchmark Application for Migration to Serverless

A simple Node.js microservices application is considered
to be migrated to serverless architecture. The application is
a To-Do Manager which is divided into a set of services
specialized in doing specified tasks using a certain set of
protocols. The services communicate with each other over a
network. A diagram showing all the microservices involved is

shown below in Figure 2.

Delete Todo

Create Todo Get Todo Update Todo List Todos

PUT

GET REQUEST REQUEST

AWS

DynamoDB

POST REQUEST GET REQUEST

Fig. 2: Microservices of a To-Do application

The modules in the Figure 2 illustrates main functionali-
ties of the application. However, there are multiple services
involved in each of these modules which are running in
separate containers like Frontend, Database, Authentication
services etc. For easy understanding and implementation of
the application, a demo skeleton of a basic microservice is
created which includes different functions as listed below.

1) Hello: This represents just a home page of the applica-
tion.

2) Create Todo: A function to create a new to-do in the
database by user.

3) Get Todo: A function that helps to fetch any existing
to-do from the database.

4) Delete Todo: This function allows users to delete any
existing to-do, permanently erasing from the database.

5) Update Todo: This function allows to update any kind
of details for created to-do’s and store the updated details
back to the database.

6) List Todos: This function lists down the complete set
of created to-do’s fetching them from the database.

V. IMPACT OF PROGRAMMING LANGUAGE ON COLD
START

In this section, an empirical investigation to find out whether
programming language has any impact on the cold start of
the functions in serverless platforms is presented. Cold start
latency refers to the time it takes to start up and respond to the
first request after moving into idle state. There are many fac-
tors with respect to the programming language which influence
the cold start time such as initialization time, runtimes, and
the size of the program code. However, programming language
alone is not a factor for latency in serverless platforms. In this
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work, the prime focus is only on to identify the choice of
programming language for the serverless platform which has
less cold start latency.

For this investigation, three popular serverless platforms,
AWS Lambda, Azure and GCP are considered. Every platform
supports multiple programming languages to design the FaaS
applications and developers can choose any language of their
choice. In each platform, ten FaaS applications listed in
Section IV are developed in all the programming languages
supported and tested for cold start time. For detailed analysis,
total five invocations are given to the functions to observe how
the latency changes from first request to the first request. All
the details of the investigation for each platform is presented
in below sections.

A. AWS Lambda

Amazon Web Services (AWS) offers Lambda, a serverless
computing service. It allows you to execute code in response
to certain events without the need for server or infrastruc-
ture management. Lambda is a core component of serverless
computing that is intended to be highly scalable, affordable,
and simple to use [52]. It supports multiple programming
languages, including Node.js, Java, Python, Go, Ruby and
.NET. For the chosen FaaS applications, four popular program-
ming languages are chosen namely, Python, Ruby, Node.js and
Java. All the ten applications are designed and tested for cold
start. The details of the investigations of ten apps of different
languages are presented in Table II.

The outcome of the experiments performed on AWS
Lambda for the chosen ten applications which are written
in different programming languages is shown graphically in
Figures 3 to 12.
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TABLE II: Cold start latency in AWS

App No  Request Python Ruby Node.js Java

1 106.06 176.03  157.89 476.07

2 1.26 14.95 1.11 1.48
Appl 3 19.37 2.99 12.03 1.54

4 1.02 16.64 1.13 1.25

5 1.13 23.32 1.28 1.24

1 103.28 171.44  162.27 482.9

2 1.05 19.17 1.37 1.43
App2 3 091 20.28 5.32 1.17

4 091 2.57 1.25 1.2

5 0.88 1.9 1.1 1.27

1 108.54 168.78  140.55 377.45

2 1.23 14.96 2.14 1.99
App3 3 1.17 2.84 1.05 1.39

4 0.95 2 0.98 1.32

5 0.89 2.13 1.15 1.32

1 109.61 186.33  157.67 497.1

2 0.93 12.06 241 1.54
App4 3 0.9 1.99 1.2 1.42

4 0.74 1.83 1.14 1.45

5 0.97 5.17 1.1 1.42

1 106.16 170.67  175.67 366.96

2 1.03 12.76 19.72 1.16
App5 3 1.22 44.32 96.8 1.19

4 1.65 4.71 53.7 1.02

5 1.14 2.34 1.78 1.3

1 388.56  220.53 1422 417.66

2 1.04 11.34 1.21 2.17
App6 3 1.39 1.45 160.51 1.58

4 1.04 1.32 1.13 1.45

5 1.28 0.98 1.18 1.34

1 106.64 192.81  169.46 359.43

2 1.06 9.63 15.47 1.05
App7 3 1.1 2.67 108.39 1.14

4 0.95 1.4 43.85 1.17

5 0.98 1.03 1.1 1.14

1 106.12  226.04 175.97 484.59

2 391 18.1 23.92 1.2
App8 3 1 8.33 113.83 1.22

4 0.96 2.87 48.1 1.32

5 1.02 1.2 1.1 1.16

1 105.59 170.76  139.59 466.4

2 1.1 18.5 1.32 2.61
App9 3 1.08 2.71 0.99 1.56

4 1.03 2.88 1.54 1.63

5 0.88 1.91 2.1 1.55

1 148.12 168.37  162.36 417.72

2 1.88 10.19 1.19 1.98
Appl0 3 1.04 18.43 57.86 1.68

4 0.97 17.79 1.26 1.63

5 0.87 2.03 1.18 1.59
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As observed from the results, except for App 6 as shown in TABLE III: Cold start latency in Azure
Figure 8, it is clear that the cold start latency is very low from

python language for all the chosen applications and is worst _APP No  Request  Python Net Nodejs  Java

in case of Java programming language. Also, the cold start 1 1208.39 211.2878  233.0536  300.5885

latency of all the ten applications are close to each other for 2 12.6612 4.3641 9.2684 11.5317
a same programming language. Hence, python programming  Appl 3 16.6612 2.6364 5.7719 8.4519
language is recommended for designing FaaS applications in 4 15.2976 2.0698 5.6082 9.9744
AWS Lambda. 5 9.192 2.7268 5.6882 7.3837
1 1976.3024 27.3978 582.3396  430.1126
B. Azure Functions 2 21.4879 4.1179 25.727 81.7168
Microsoft Azure Functions is a serverless computing so-  App2 3 25513 3.8274 23.142 7.1881
lution that allows developers to construct and deploy event- 4 23.8869 3.4723 13.9164  10.7641
driven functions without having to manage the underlying 5 20.8624 3.4152 11.7639  12.4233
infrastructure. Azure Functions is intended to make it simple 1 109.8126 06.4478  97.3636  221.1956
to write tiny bits of code that reacts to events such as ) 47.8784 55316 20.6003  10.2047
HTTP. requests, database updates, file uploads, and othe.rs. App3 3 21.6472 42071 561972 10.0586
Node.js, .NET, Python, and Java are among the programming 4 13.59 5 5642, 113768 92454
languages supported by Azure Functions. Azure Functions is
a flexible and powerful serverless computing platform that is > 196454 il 7805 77266
tightly connected with the Azure platform [53]. It may be ! 1789.36196 1323012 127.6848  359.0856
used for everything from basic HTTP APIs to large event- 2 39.6606 3.0137 9.8123 920028
driven applications and processes. To investigate the cold start ~ App4 3 10.2039 2231 7.6918 8.0407
latency in Azure, four programming languages are considered 4 33.6337 1.9513 9.5791 12777
including Python, .NET, Node.js and Java. The details of the 5 27.5866 2.2599 7.7278 8.3208
findings of ten apps written using different languages are 1 20.2047 61.7047 1519499  111.1516
presented in Table IIL. 2 6.4607 2.051 323296  37.9257
The findings of the experiments carried on Azure platform 5,5 3 8.6043 4.8251 221659  9.0787
for all the applications are shown graphically in Figures 13 to 4 37666 25145 9222 6.5395
22. 5 5.0166 2.0799 12.1322 8.0905
1 2318.025 38.8971 231.0558  225.5467
3 107 Appin Arre o en 2 54.5376 34311 96335 67.3493
‘u;. —&— Net App6 3 6.6494 2.0682 6.1433 14.014
g 10° 5 T Nodeds 4 12.3834 2.8294 6.1948 11.2093
3
& 5 8.436 2.7549 6.4808 7.1536
E 101 4 1 2178.4853 25.9795 192.1277  254.0821
3 2 57.8733 3.5518 9.8856 56.7708
T 7 T . p App7 3 14.4021 2.1716 5.2187 12.0267
User Requests 4 16.5342 2.0125 5.2556 29.8186
Fig. 13: Cold start latency of Appl in Azure > 12.6525 2.8085 24202 11.1692
1 2408.5559 122.825 78.0096 353.0733
2 28.5449 1.9522 10.221 27.4601
App8 3 33.1856 2.2344 5.3812 8.5084
£ Aippz in Azure - 4 407756 2.056 6.0257  9.3902
z el 5 29.6055 32536 67379 9.0331
] —— Neode.js
ﬁ 102 4 1 1951.5208 17.7898 25.4152 269.2903
E 2 15.3996 5.9762 16.8295 47.3495
w
T ] \ App9 3 30.0608 3.2495 13.7276  17.7801
S 'S & - 4 16.2486 3.3141 19.0869 8.6922
1 2 3 4 5 5 47.3693 3.1401 10.8018  16.4285
pserRequests 1 15109101 774328 246841  583.5832
Fig. 14: Cold start latency of App2 in Azure 2 22.7408 5.3048 14.6535  163.2269
Appl0 3 35.3422 6.0761 11.2605 12.494
From the results presented in Table III and graphs, it 4 13.843 4.1862 10.1972  19.9526
is observed that .NET based FaaS application exhibit low 5 28.4856 3.25 14.7314 10.2384

latency compared to other programming languages. Out of
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the ten chosen applications, .NET has low latency for seven
applications and Node.js performs better for remaining three

TABLE IV: Cold start latency in Google Cloud Platform

applications. One important point of discussion would be, _APPNe Request Python Ruby Nodejs Java Go  .Net
as .NET is a framework offered by Microsoft and Azure is 1 969 188 219 1300 370 74
also a product of Microsoft, the FaaS applications designed 2 3 3 4 281 2 3
with NET are having low latency. Hence, it is recommended  Appl 3 4 2 4 6 260 3
to utilize .NET as the programming language for serverless 4 3 2 3 6 3 3
functions in Azure. 5 3 2 4 5 2 3
1 1100 2000 1000 1000 360 673
C. Google Cloud Functions 2 3 2 3 73 3
Google Cloud Functions is a Google Cloud Platform (GCP)  App2 3 5 2 3 11 2
serverless computing service. It enables developers to design 4 6 2 3 5 2
and deploy event-based functions that grow dynamically in 5 3 2 3 5 2
reaction to a variety of events. Google Cloud Functions is 1 10 110 172 160 82 735
built to respond to a wide range of event triggers, both from 5 3 4 1
GCP services and from outside sources. HTTP requests, Cloud App3 3 3 5
Storage events, Cloud Pub/Sub messages, Firestore database 4 5 3
updates, and other triggers are all supported [54]. Node.js, s 3 4
Python, Go, Java, and Ruby are among the programming
languages supported by Google Cloud Functions. In this ! 65 327 197 144394 681
platform, all the programming languages supported by the 2 6 7 2
GCP are considered for the investigations. The results of the  App4 3 4 3 1
investigations are presented in Table IV. 4 6 1
The results are presented graphically to show how the cold 5 4 7 59
start latency reduces from the first invocation to the next 1 84 48 10 18 3 576
4 invocations done on the same function. The findings are 2 9 2 4 4 2
presented in Figures 23 to 32. App5 3 3 5 3 6 2 4
4 2 5 6 2 3
1034 Applin GCP —e— Python 5 3 3 5 2 3
E —— Java
s x . e Fuby 1 956 81 1300 218 21 593
§ 1071 T Nodes 2 96 5 5 6
E —— Net App6 3 3 6 3
. N\ 4 3 4 2
3 - E— 5 3 4 4 14
, * - - - 1 757 108 143 169 12 428
' ° Usermequests ’ 2 4 6 8§ 3 B
App7 3 6 2 8
Fig. 23: Cold start latency of Appl in GCP 4 | 3
5 4 2 4 2 4
PTG 1 49 91 213 51 9 1300
T 101 Fytnon 2 3 2 4 9 15
> App8 3 3 2 3 5 3 4
£ 1001 4 3 2 5 6 1 4
x 5 3 2 4 5 1 3
E 101 4 1 883 2200 1100 1300 309 1200
S 2 3 3 4 6 2 4
App9 3 2 2 13 5 1 4
User Requests 4 2 2 5 6 2 4
Fig. 24: Cold start latency of App2 in GCP > 4 2 > 8 2 4
1 1100 2300 1300 1400 356 1300
From the results, it is observed that the Apps designed with 2 3 2 4 15 6 8
Go programming language exhibit lower latency compared to Appl0 3 3 3 4 5 1 3
other languages supported in GCP. For seven applications, the 4 4 2 8 4 2 2
cold start latency is lower for Go and python showcases lower 5 4 2 10 2 4

latency for other FaaS applications. Again, it raises a point of
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discussion and gives new direction of research to investigate
whether the programming language developed for the parent
serverless provider company shows lower cold start latency
for the FaaS applications. Since, Go is a product of Google
and GCP is the platform for designing serverless functions, it
might be the reason for lower latency.

D. Comparison

To further demonstrate the empirical investigations of cold
start and its impact with respect to the programming language,
a comparison for each programming language and how it
exhibits cold start latency in all three platforms is presented.
Since there are common programming languages in all three
platforms, the comparison is presented for common languages
in all three platforms. All the languages supported by these
platforms are very popular and each of them are widely used
for design of many applications. Hence, this comparison will
also give some underpinning ideas regarding the choice of the
programming language when the serverless platform is fixed
and developers have the choice only to select the language.

Python: The cold start performance of apps designed using
python language are represented in Figure 33. It can be
observed that Apps designed using python has lower cold start
latency in AWS and it is higher in Azure.
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Fig. 33: Cold start latency of Python in all 3 platforms

Java: For the Apps designed using Java, the results of
cold start latency is presented in Figure 34. The results for
the chosen ten Apps shows different behavior in different
platforms for Java language. For six applications, Java shows
lower latency in GCP compared to other two platforms.
However, considering the average latency for all ten Apps,
Java performs better in Azure and it maintains stability.
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Fig. 34: Cold start latency of Java in all 3 platforms

Node.js: The cold start latency of apps designed using
Node.js performs better in AWS platform for all the ten chosen
functions. It could be observed from the Figure 35 that there
is stable cold start for all the ten applications and its very low
compared to other two platforms.
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Fig. 35: Cold start latency of Node.js in all 3 platforms

Ruby: This language is supported only in two platforms,
AWS and GCP. The results from Figure 36 clearly state that
Ruby has very low latency when compared to functions in
GCP.
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Fig. 36: Cold start latency of Ruby in AWS and GCP

NET: Similarly, .NET is supported only by Azure and GCP
and it is clear from the graph in Figure 37 that the cold start
is very minimal for FaaS applications designed using .NET in
Azure.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

—m— Azure Net . .
1200 { ~* GCP x
— 1000
m
E
=
g 800
3 "
® i i
4
£ 600 . "
B
w
T A
5 400
o
2001 M,
) \/\.\W
0

T T T T T T T T T T
Appl App2 App3 App4 App5 App6 App7 App8 App9  Applo

Applications

Fig. 37: Cold start latency of .NET in Azure and GCP

Though the cold start time varies for FaaS applications with
the choice of programming language and also varies from
one platform to another for a FaaS application designed using
same programming language, it might not always be possible
for the developer to select the platform of their choice and
also the language of their interest. There are many factors
influencing the choice of platform and corresponding language
such as the cost of the infrastructure, rental for the CPU and
memory consumption and also the number of million requests
per sec. Hence, this work only gives the recommendation about
the choice of platform as well as the programming language
in each platform which has lower cold start latency. The
next phase of the framework is to propose a mechanism for
migrating the existing microservices to serverless platforms.
The details of the proposed migration approach is presented
in next sections.

VI. MIGRATION APPROACH

Serverless computing has changed the way applications
are designed and deployed. It has been a best alternative
for deploying microservices applications [25]. The component
which plays a major role in the automated migration approach
is the generation of yml file. The serverless.yml file is a YAML
configuration file that defines the functions, resources, plugins,
and other configuration information for our serverless applica-
tion. In this section, an automated approach for extracting the
required serverless yml file from containerized microservices
and deployment into serverless platforms using the yml file.
The complete process of migrating the containerized microser-
vices till the deployment in serverless platforms is presented
in Figure 38. Since, AWS is very popular amomg all other
providers considering the cost factors and cold start latency, in
this initial study, AWS Lambda is considered as the serverless
platform in the proposed migration work. The term serverless
platform refers to AWS Labmda in the migration process. The
structure and the configurations included in the yml file of the
AWS Lambad are discussed here.

A. Structure of yml file

This file is used to configure a service and contains in-
formation about your functions, the events that cause them,
and the AWS resources you should use [28]. Each service

configuration is managed in the file. Following are the main
features that should be considered in yml file:

o Define a serverless service

o Provide the cloud platform details to which the service
will be deployed to like Google Cloud, AWS, Azure etc.

o Write one or more functions

o Specify the events that will trigger each function (e.g.
HTTP requests)

« Define any plugin to use that extends behavior of server-
less frameworks

o Define a set of AWS resources to create

o Allow events listed in the events section to automatically
create the resources required for the event upon deploy-
ment

o Allow flexible configuration using variables

B. Migration Algorithm

This is the most critical phase in the whole process of
migration also called the automation phase. A file named
serverless.yml needs to be created which contains all the
functions and infrastructure resources. It acts as a service
configuration. This creation is automated by a Python script
that extracts parameters for serverless.yml file. Every mi-
croservice project has one such file containing all the routes
and requests along with other parameters of interest like path
, handler function etc. It is assumed that this file is in the
root folder of the project. Algorithm 1 contains the procedure
that parses “routes.js” file first of all to get the methods of
requests that exist, their paths that are used by API in the
web browser and their respective handlers defined where the
main logic of microservice rests. All these extracted values are
populated in serverless.yml file under functions section. This
automated algorithm which inputs the routing information of
the containerized microservices generates a yml file which can
be directly deployed in serverless platform.

C. Serverless deployment

Once the serverless.yml file is generated and handler func-
tions are ready, the next step is to deploy the modified
microservices into serverless platforms such as AWS. In the
process of deployment, different lambda functions are created
from individual microservices starting with the least critical
part first. For each microservices, separate HTTP gateways
are created and lambda functions are invoked using URLs.
The general process of serverless deployment is as shown in
below Figure 39.

D. Experimental Analysis

In this section, a containerized microservices is considered
as a case study application as discussed in Section IV.C and the
proposed approach is illustrated using this application. Also,
a comparative analysis of performance parameters including
response time and throughput is conducted for both container-
ized microservices and the ones migrated to serverless, the
details of which are presented in below sections.
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By applying the algorithm on the case study application dis-
cussed in Section VI.B, the following output is generated with
the method and the handler function. The handler functions are
the methods in the code that activates the events upon request
and once a particular handler returns a response, it activates
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Fig. 39: Serverless Deployment Framework

/hello handler.hello

the other events to satisfy the request. As mentioned in above | post | /createTodo | createTodo. handler |

sections, AWS Lambda is considered as the serverless platform
in this paper. The below handler functions are generated

suitable for AWS platform.

e +———

| delete | /deleteTodo | deleteTodo.handler |
| /listTodo | listTodo.handler

put | /updateTodo | updateTodo.handler |

/getTodo | getTodo.handler |

~~~~~~~~~~ s

1) Empirical analysis: Generally, to migrate applications
from one architecture to another or from one programming
language to another, it is very important to study the behavior
of the applications before and after the migration. In this
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Algorithm 1 serverless.yml generation

Input: Routing information file “routes.js”
Qutput: Serverless.yml file
: Begin
Initialize routes file to zero
Initialize each route to zero
Input the AppType
if AppType == NodelS then
Search for ‘package.json’ in directory
if Directory found then
Search for string “scripts” and “start”
Set path to value of filename written next to start
end if
Search for routes file in the path found by above
statement
12: if lines contain “get” or “post” or “put” or “delete”
then
13: Insert values of method, path and handler js func-
tion in each route.
14: else
15: Discard lines
16: end if
17: else
18: print “Not supported”
19: end if
20: Export eachroute to serverless.yml file return .yml file
21: End

R e A A

—_—
- o

regard, since the application is migrated from containers to
serverless platform, an empirical analysis is carried out to
assess the performance of the application post migration.
Performance metrics such as response time and throughput
are considered for analysis and since the applications are
based on services, SoapUI is the suitable tool for analysis.
SoapUI is a tool for testing Web Services; these can be the
SOAP Web Services as well RESTful Web Services or HTTP
based services. SoapUI is an Open Source and completely
free tool with a commercial companion -ReadyAPI- that has
extra functionality for companies with mission critical Web
Services. It can be used to do functional testing, performance
testing, interoperability testing, regression testing etc. Addi-
tionally load testing is performed for the chosen application
to check latency, utilization and various other parameters.

In order to analyze the parameters, different test scenarios
are defined. Initially, the microservices deployed in containers
undergo load testing and then the serverless applications are
tested for cold start latency and load testing. Finally, a com-
parison between both the styles of deployment is presented.

2) Load testing for containerized microservices: The To-
do application deployed in containers are tested by sending
HTTP requests to the microservices (API Calls) using SoapUI.
These requests are sent in random order by user and this test
is aimed to estimate the performance of the application with
throughput and response time as metrics. The average response
time captured for the containerized microservices is presented
in Table V.

API call Average Response Time
Hello_api 3 ms
create_todo 91 ms
update_todo 122 ms
delete_todo 129 ms
get_todo 129 ms
list_todos 105 ms

TABLE V: Average response time for microservices deployed
in containers

3) Cold start for serverless functions: The most important
factor of discussion is cold start latency in serverless platforms,
especially in AWS [19], [20]. It is the time taken by the
serverless functions to load all the required configurations and
warming the instances. The functions of the chosen case study
application is tested with different loads and the cold start
latency is observed for each of the microservices. To analyze
the performance of serverless functions with containerized
microservices, cold start latency is observed and the results
are presented in Table VI.

API call Maximum value | Average value
Hello_api 9 ms 6 ms
create_todo 354 ms 250 ms
update_todo 349 ms 200 ms
delete_todo 310 ms 233 ms
get_todo 355 ms 261 ms
list_todos 296 ms 145 ms

TABLE VI: Cold start latency for each API call

4) Load testing on serverless functions: Using SoapUI tool,
API calls are submitted for the case study application deployed
in serverless platform. In order to analyze the results in detail,
different loads with 500 and 1000 users are submitted through
SoapUI and the performance metrics such as response time
and throughput are captured. The results are presented in Table
VII.

Performance metric 500 users | 1000 users
Average response time (ms) 4620.6 8126
Throughput (transactions/sec) 4.06 0.68

TABLE VII: Load testing results with 500 and 1000 users

5) Comparison & Discussion: The results of performance
testing conducted on both containerized microservices and
corresponding serverless functions are compared in terms of
average response time and throughput. The comparison is
shown in Table VIII. It very clear from the results that the
serverless deployment model has better response time and
more number of transactions are executed successfully. This
states that the serverless platforms are best suited for deploying
microservices based applications instead of containers.

Performance metric Serverless | Containerized
Average response time (ms) 200 389
Throughput (transactions/sec) 156.85 17.06

TABLE VIII: Comparison of metrics for serverless and con-
tainerized deployment
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With the current buzz about the serverless computing in
both industry and academia, and with the comparative results,
serverless computing will attain high attention and most of
the internet applications will be designed and deployed using
serverless. Though container based approach for microservices
is running fine for applications, looking into the factors
affecting the customer satisfaction, serverless will dominate
the other existing cloud solutions.

VII. CONCLUSION

A framework for migration of microservices based appli-
cations to serverless platform with efficient cold start latency
is proposed. Specifically, an empirical investigation to study
the behavior of cold start with respect to the programming
language in three major serverless platforms including AWS,
Azure and GCP is presented. From the results, it is very clear
that programming language has an impact on the cold start
time of the serverless functions. However, only the choice
of the language does not directly impacts the cold start.
Later, an approach for migrating the existing microservices
based applications to serverless platforms is provided. Also, a
comparison between the microservices deployed in containers
and microservices which are designed as serverless functions
is also presented. It is observed that the microservices which
are designed and deployed as serverless functions has better
response time and throughput values. This study can be further
extended by investigating the various causes for cold start and
proposing techniques for mitigating the cold start problem in
serverless platforms avoiding the vendor lock-in problem.
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