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Abstract

Bladder cancer is a common malignancy with over 80,000 estimated new cases and nearly 18,000 deaths per year in the United

States alone. Therapeutic options for metastatic bladder cancer had not evolved much for nearly four decades, until recently,

when five immune checkpoint inhibitors were approved by the FDA. Despite the activity of these drugs in some patients, the

objective response rate for each is less than 25%. At the same time, fibroblast growth factor receptors (FGFRs) have been

attractive drug targets for a variety of cancers, and in 2019 the FDA approved the first therapy targeted against FGFR3 for

bladder cancer. Given the excitement around these new receptor tyrosine kinase and immune checkpoint targeted strategies,

and the challenges they each may face on their own, emerging data suggest that combining these treatment options could lead

to improved therapeutic outcomes. In this paper, we develop a mathematical model for FGFR3-mediated tumor growth and

use it to investigate the impact of the combined administration of a small molecule inhibitor of FGFR3 and a monoclonal

antibody against the PD-1/PD-L1 immune checkpoint. The model is carefully calibrated and validated with experimental data

before survival benefits and dosing schedules are explored. Predictions of the model suggest that FGFR3 mutation reduces

the effectiveness of anti-PD-L1 therapy, that there are regions of parameter space where each monotherapy can outperform

the other, and that pretreatment with anti-PD-L1 therapy always results in greater tumor reduction even when anti-FGFR3

therapy is the more effective monotherapy.
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Abstract1

Bladder cancer is a common malignancy with over 80,000 estimated new cases and nearly 18,0002

deaths per year in the United States alone. Therapeutic options for metastatic bladder cancer had3

not evolved much for nearly four decades, until recently, when five immune checkpoint inhibitors4

were approved by the FDA. Despite the activity of these drugs in some patients, the objective5

response rate for each is less than 25%. At the same time, fibroblast growth factor receptors6

(FGFRs) have been attractive drug targets for a variety of cancers, and in 2019 the FDA approved7

the first therapy targeted against FGFR3 for bladder cancer. Given the excitement around these8

new receptor tyrosine kinase and immune checkpoint targeted strategies, and the challenges they9

each may face on their own, emerging data suggest that combining these treatment options could10

lead to improved therapeutic outcomes. In this paper, we develop a mathematical model for FGFR3-11

mediated tumor growth and use it to investigate the impact of the combined administration of a12

small molecule inhibitor of FGFR3 and a monoclonal antibody against the PD-1/PD-L1 immune13

checkpoint. The model is carefully calibrated and validated with experimental data before survival14

benefits and dosing schedules are explored. Predictions of the model suggest that FGFR3 mutation15

reduces the effectiveness of anti-PD-L1 therapy, that there are regions of parameter space where16

each monotherapy can outperform the other, and that pretreatment with anti-PD-L1 therapy always17

results in greater tumor reduction even when anti-FGFR3 therapy is the more effective monotherapy.18

1 Introduction19

Bladder cancer is one of the 10 most common cancers in the United States and in advanced stages20

5-year survival rates are low (below 35%) [1]. For more than 30 years, therapeutic strategies21

have focused on the use of systemic chemotherapy before, during, or after loco-regional therapy22

[2]. Unfortunately, outcomes with chemotherapy are poor in advanced cases [3]. For this reason,23

researchers have turned their attention to targeted therapies.24

Members of the fibroblast growth factor receptor (FGFR) family have become a successful25

therapeutic focal point for bladder cancer [4]. Genomic analysis of bladder cancer has identified26
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frequent alterations of FGFRs, including over-expression and mutations of FGFR3 that activate27

the receptor via ligand-independent dimerization [4]. Under normal conditions, heparin bound28

fibroblast growth factor (FGF) mediates FGFR3 dimerization, leading to kinase activation and29

stimulation of the extracellular-signal-regulated kinase (ERK) and protein kinase B (AKT) signaling30

pathways, followed by increased cell proliferation and cell survival [4]. FGFR3 mutations that lead31

to constitutive activation of downstream signaling pathways in the absence of FGF are commonly32

found in bladder cancers. Urothelial bladder carcinoma has the most established association with33

altered FGFR3 signaling, with up to 80% of low-grade tumors harboring FGFR3 mutations [5].34

Clinical trials using small molecule inhibitors (SMIs) of FGFR3 show promising clinical responses35

for patients with FGFR3 mutations and in 2019, the FDA approved the first therapy targeted36

against FGFR3 [4].37

At the same time, immunotherapy has now emerged as an exciting domain for exploration for38

many cancers including bladder cancer. The recent success of programmed cell death protein 139

(PD-1) and programmed death-ligand 1 (PD-L1) blockade in cancer therapy illustrates the impor-40

tant role of the PD-1/PD-L1 checkpoint in the regulation of anti-tumor immune responses [6]. In41

particular, monoclonal antibodies (mAbs) targeting the PD-1/PD-L1 pathway have resulted in fa-42

vorable outcomes in advanced bladder cancer and 6 immune checkpoint inhibitors (ICIs) targeting43

this pathway were approved in 2015-2018 [7]. Despite therapeutic potential of ICIs, only a minority44

(approximately 20%) of bladder cancer patients respond favorably to these therapies and median45

survival with second line immunotherapy remains shorter than 1 year [8]. Figure 1 is a schematic46

diagram showing the impact of FGFR3 mutations and PD-1-PD-L1 checkpoints on tumor growth47

and tumor cell - T cell interactions.48

Given the potential and challenges ICIs on their own, it is possible that the co-acting combina-49

tion of potent immune checkpoint inhibitors and specific FGFR3 inhibitors can offer much-needed50

improvements in targeted therapeutics for bladder cancer. The the rationale for combining FGFR3-51

targeted therapy with immunotherapy is confirmed in preclinical and correlative literature and52

animal models suggest potential synergies between these two mechanisms [8]. When attempting to53

combine two very different therapeutic approaches that target distinct pathways, treatment out-54
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Figure 1. Microenvironment of tumor cell showing the dynamics of FGFR3 mutation on tumor
cells (phosphorylation of the kinase region leads activation of AKT, ERK, STAT, and MAPK
proteins which result into target DNA transcription leading to cell proliferation and cell survival),
the activation of T cell by tumor cells, and suppression of T cell activation and proliferation by
PD-L1 binding with PD-1.

comes can depend on the order and timing in which therapies are administered. Experimental55

studies of the most appropriate strategy for FGFR3 inhibition in the context of ICI therapy (either56

through sequencing or combination) are generally in early clinical stages. Data driven mathematical57

modeling is an ideal tool for analyzing novel drug combinations for clinical cancer treatment and58

here we design a model to investigate FGFR3 mediated tumor growth and response to combination59

targeted and ICI therapy. The sections below describe the details of model development, sensitivity60

and identifiability analysis, parameter estimation, and therapeutic predictions.61

2 Model Formulation62

Our mathematical model is based on the current biological understanding of bladder cancer growth63

when the FGFR3 mutation is present. We first develop a pretreatment model that describes the64

impact of ligand-independent activation of FGFR3 on tumor growth and CTL mediated death.65

Next, we extend the pretreatment model to include anti-PD-L1 therapy alone and in combination66
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with FGFR3-targeted therapy. These models are used to predict the impact of therapy on survival67

outcomes and to suggest the best dose scheduling regimes for therapeutic efficacy.68

2.1 Model Formulation with FGFR3 and Immune Checkpoints69

The pretreatment model, described in detail below, captures the local evolution of free FGFR3 (R)70

and active FGFR3 dimer complexes (D) on tumor cells (T ) as well as PD-1 (PD) and PD-L1 (L)71

mediated immune cell (Y ) kill. The model variables and their units are described in Table 1.

Table 1. Description of Variables

Variable Description Units
R Free FGFR3 monomer receptors nmol
D Active FGFR3 dimer complexes nmol
T Tumor cells cells
Y Cytotoxic T cells (CTL) cells
PD PD-1 nM
L PD-L1 nM

72

The equations in (1) below describe the ligand-independent dimerization of FGFR3. Parameters73

that mediate these FGFR3 dynamics include the receptor association rate (kf ) and dissociation rate74

(kr). It is also known that activated receptors undergo stimulated endocytosis but can continue75

to signal along the endocytic pathway [9] so we also include terms for receptor internalization and76

recycling rate (kp). For a full list of parameters see Table 2.77

dR

dt
= −2kfR

2 + 2krD + 2kpD +RTP(T, φD)− R

R+ 2D
RTD(T, Y, φD)

dD

dt
= kfR

2 − krD − kpD −
D

R+ 2D
RTD(T, Y, φD)

(1)

These ODEs must account for changes in receptor number due to cellular proliferation and apoptosis.78

The last two terms in the equation for free receptors (R) describes the generation of new receptors79

as cells divide and the loss of receptors as cells die, respectively, where RT is the total number of80

FGFR3 molecules on tumor cells and R
R+2D is the fraction of free FGFR3 that is removed from the81

loss of tumor cells (T ) by cytotoxic T cells (Y ). The FGFR-dependent proliferation growth and82

death rates of tumor cells (i.e., P(T, φD) and D(T, Y, φD) are defined in the temporal dynamics of83
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the tumor cells described below, where φD is the fractional occupancy of active FGFR3 dimer per84

cell defined by:85

φD =
1

RT

D

T
. (2)

Equation (3) below models the temporal dynamics of the tumor cells86

dT

dt
= (α1 + α2φD)T − δ1Y

1 + γTφD
T ≡P(T, φD)−D(T, Y, φD) (3)

The first term in Equation (3) describes tumor cells with high antigenicity proliferating exponentially87

with a natural growth rate α1, and an FGFR-mediated tumor growth rate α2. The second term in88

Equation (3) describes the killing of tumor cells by cytotoxic T cells (Y ) modified by the impact of89

FGFR3 on tumor survival, where δ1 is the death rate of a tumor cell by cytotoxic T cells, and γT is90

the sensitivity of fractional occupancy of FGFR. This formulation assumes that the total number91

(converted to nmol using molecular weight) of receptors per tumor cell RT remains constant. This92

means that the total amount of FGFR3 in the system should be conserved. We can ensure that the93

model equations do conserve FGFR3 by considering the sum of the equations of the model (1):94

dR

dt
+ 2

dD

dt
= RT [P(T, φD)−D(T, Y, φD)] = RT

dT

dt
,

Therefore, upon integration, we have95

R+ 2D = RTT.

The equation for the change in cytotoxic T cells (Y) is given by:96

dY

dt
=

(
µ+ αY

T

κ+ T
Y

)
F (PD, L)− δ2TY − δY Y (4)

The first term in Equation (4) represents a constant recruitment/activation of T cells at a rate, µ.97

The second term describes proliferation that occurs as the result of antigenic stimulation by the98

tumor cells. The maximum proliferation rate is αY and κ represents the population of T at which the99
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immune cells lyse tumor cells at half of their maximum killing rate [10]. The factor F (PD, L), which100

is described in greater detail below, represents the suppression of T cell activation and proliferation101

via the PD-1/PD-L1 checkpoint. The variables PD and L denote the molar concentrations of PD-1102

and PD-L1, respectively, expressed by cells within the model. The molar concentrations are obtained103

by first calculating the PD-1 expression on all T cells and the PD-L1 expression on all T cells and104

tumor cells as outlined in the Appendix found in [10]. Our formulation of F (PD, L) in Equation105

(7) below ensures that as PD and L increases so does the number of PD-1/PD-L1 complexes within106

the tumor region. This increase corresponds to a smaller F (PD, L) value, modeling the inhibition107

of T cell activity. Finally, the last two terms describe how CTLs can die. Specifically, interaction108

with tumor cells can result in death at a rate δ2 as was done in [11], but which sets our model apart109

from [10, 12, 13]. CTLs can also die naturally at a rate δY .110

We assume that all T cells express PD-1 and that the temporal dynamics of this cell-bound111

protein is proportional to the rate of change of the T cells on which they reside as described by112

Equation 5. This is the same approach used in [10, 12, 13].113

dPD
dt

= ρP
dY

dt
⇒ PD = ρPY (5)

where, ρP is the cell rate of expression of PD-1 on T cells. Again, following [10, 12, 13], the molar114

concentration of PD-L1 (L) within the tumor micro-environment is given by115

L = ρL(Y + εT ) (6)

where ρL is the is the molar concentration of PD-1 per T cell and the parameter ε > 1 reflects the116

fact that the expression of PD-L1 is upregulated on tumor cells (and depends on the specific type of117

tumor). Finally, we choose the following functional form for T cell suppression via PD-1 signaling,118

F (PD, L), just as in [10, 12, 13] by119

F (PD, L) =
1

1 + PDL/KY Q
. (7)
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The parameter values and their sources for the full pretreatment model are provided in Table 2.120

Table 2. Pretreatment Parameter Values

Variable Description Range of value (Baseline) Units Source
FGFR3-related

kf FGFR3 association rate 1− 5× 1011 (4.16× 1011) nmol−1 d−1 [14]
kr FGFR3 dissociation rate 10− 2000 (864) d−1 [14]
kp FGFR3 recycling rate 10− 150 (112.32) d−1 [14]
RT Total FGFR3 receptors 1.49− 1.74× 10−11 (1.66× 10−11) nmol cell−1 [15]

Tumor-related
α1 Proliferation rate 0.12− 0.51 (0.337) d−1 Best fit
α2 FGFR3-mediated prolif-

eration rate
0.001− 0.1 (0.00774) d−1 Best fit

δ1 CLT-mediated death
rate

1− 2.5× 10−7 (1.1× 10−7) cell−1 d−1 [11]

γT FGFR3-enhanced sur-
vival sensitivity

0.1− 0.5 (0.3018) Best fit

T cell-related
µ Activation/recruitment

rate
1− 2× 104 (1.3× 104) cell d−1 [11]

αY Max proliferation rate 0.1− 0.5 (0.3044) d−1 [11, 12, 16]
κ Proliferation half-

saturation constant
106 − 3× 107(2.019× 107) cell [11]

δ2 Tumor-mediated death
rate

2− 4× 10−10 (3.422× 10−10) cell−1 d−1 [11]

δY Natural death rate 0− 0.05 (0.0412) d−1 [10]
ρP PD-1 per cell 10−9 − 10−7 (1.258× 10−8) nM [10]
ρL PD-L1 per cell 10−9 − 2× 10−7 (2.51× 10−8) nM [10]
ε Tumor - immune PD-L1

ratio
1− 100 (50) [10, 12, 16]

KY Q Immune checkpoint inhi-
bition constant

10−4 − 10−2 (1.296× 10−3) nM2 [10]

2.2 Model Formulation with FGFR3, Immune Checkpoints, and Combination121

Therapy122

In this section, we extend our pretreatment model equations to incorporate the therapeutic admin-123

istration of an immune checkpoint inhibitor (ICI) in the form of a monoclonal antibody against124
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PD-L1 and a small molecule inhibitor (SMI) targeting the FGFR3 pathway. We refer to the former125

as anti-PD-L1 therapy and the latter as anti-FGFR3 therapy and our goal is to study the response126

of tumor cells to these therapies alone and in combination. See Figure 2 for a schematic description127

of a tumor cell undergoing anti-FGFR3 and anti-PD-L1 combination therapy.

Figure 2. Microenvironment of tumor cell with combination therapy of anti-FGFR3 drug plus
anti-PD-L1 antibody. We assume that anti-FGFR3 drug binds with both FGFR3 monomers and
dimers. Anti-PD-L1 antibody targets PD-L1, thus inhibiting its binding with PD-1 and enabling T
cell activation and proliferation.

128

An anti-PD-L1 antibody (A) binds to PD-L1 and inhibits the formation of the PD-1-PD-L1129
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complex. Following [10, 12, 13], the equation for the change in anti-PD-L1 antibody is given by:130

dA

dt
= −µLALA− δAA, (8)

with an initial condition, A(0), that represents the amount of anti-PD-L1 antibody administered via131

intraperitoneal injection at different time points, µLA is the depletion rate of anti-PD-L1 antibody132

through binding with PDL-1 (L) and δA is the natural degradation rate of anti-PD-L1 antibody.133

Upon administration of an anti-PD-L1 antibody, the equation for the change in cytotoxic T cells134

(given in Equation (4)) is modified and given by:135

dY

dt
=

(
µ+ αY

T

κ+ T
Y

)
F (PD, L,A)− δ2TY − δY Y. (9)

The functional form F (P,L,A) given by:136

F (PD, L) =
1

1 +
PDL

KY Q

(
1− A

A+KD

) . (10)

where KD is the dissociation constant of the PD-L1/anti-PD-L1 complex. The factor F (PD, L,A)137

represents the impact of an anti-PD-L1 by reducing the number of PD-1/PD-L1 complexes within138

the tumor region. In the absence of an anti-PD-L1 antibody (i.e., A = 0), the factor F (PD, L,A)139

becomes F (PD, L) given by Equation (7). See Appendix A for the full derivation of F (PD, L,A).140

By binding to the kinase activity region of the receptors, an anti-FGFR3 drug (rogaratinib)141

inhibits the phosphorylation of the FGFR3 kinase domain and the downstream signaling of AKT,142

MAPK, ERK, and STAT [17, 18, 19]. To incorporate the therapeutic administration of rogaratinib,143

we designed a pharmacokinetic model with oral administration of rogaratinib. We assume that the144

tumor resides in a pharmacokinetic compartment of its own, and rogaratinib is transferred into the145

tumor from the systemic circulation at the same rate as the peripheral tissue. The pharmacokinetics146

of rogaratinib and the system of equations (and all the underlying assumptions) governing the147

dynamics of FGFR3 in the tumor cell in the presence of rogaratinib are given in Appendices B and148

C, respectively.149
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Overall, the temporal dynamics of the tumor cells in the presence of combination therapy of150

anti-FGFR3 and anti-PD-L1 is given by:151

dT

dt
= (α1 + α2φ

C
D)T − δ1Y

1 + γTφCD
T ≡P(T, φCD)−D(T, Y, φCD) (11)

where φCD is the fractional occupancy of active FGFR3 dimer per cell in the presence of anti-FGFR3152

drug (described in Appendix A) and the temporal dynamics of cytotoxic T cells (Y ) are given by153

Equation (9).154

3 Pretreatment Results155

3.1 Parameter Sensitivity156

We use uncertainty and sensitivity analysis to determine the parameters that have the greatest157

effect on tumor growth in the FGFR3 mutation model without treatments (Equations (1), (3),158

and (4)). Global sensitivity analysis quantifies the impact of the variations or sensitivity of each159

parameter of the model on the model outcomes [20, 21, 22]. In particular, following [21, 22], Latin160

hypercube sampling (LHS), and the partial rank correlation coefficient (PRCC) will be used for161

this analysis. The sensitivity analysis of the model is carried out using the tumor volume (in162

mm3) at the final time point, which is defined as T (tf )

106
where tf = 25 d. The range and baseline163

values of the parameters, tabulated in Table 2, will be used. The result depicted in Figure 3 shows164

that the parameters that significantly affect the tumor growth dynamics are the natural growth165

rate of tumor cells (α1), the CTL mediated death rate of tumor cells (δ1), and FGFR3-mediated166

tumor proliferation (α2), and the sensitivity of tumor survival to FGFR3 (γT ). Overall, these167

results indicate that therapies (monotherapies or combination therapies) that reduce the natural168

growth rate of tumor cells, increase the death rate of tumor cells by cytotoxic T-cells (e.g. the use169

of antibodies to target the immune checkpoint PD-1/PD-L1 pathway to active cytotoxic T-cells),170

and/or decreasing fractional occupancy of FGFR3 dimer complexes on tumor cells (e.g., the use171

of anti-FGFR3 drugs to target the FGFR3 pathway) will be effective in controlling and treating172

bladder cancer with FGFR3 mutation.173
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Figure 3. Sensitivity analysis of models (1), (3), and (4) showing PRCC values for the model
parameters using the tumor volume as a response function. The baseline and range of parameter
values used are given in Table 2.

174

3.2 Pretreatment Identifiability175

To determine which model parameters, if any, can be uniquely estimated from a given data set176

(and to what degree of certainty), we employ identifiability analysis [23]. This toolkit allows us to177

determine the subset(s) of identifiable parameters and explore their interplay without even using178

experimental data for parameter estimation and model calibration [24]. We examine both structural179

and practical identifiability of the model parameters.180

3.2.1 Structural Identifiability181

First, we perform a structural identifiabilty analysis to determine whether or not it is possible to182

obtain a unique solution for the parameters while assuming perfect data (noise-free and continuous183

in time and space) [25, 26, 27, 28]. Specifically, we consider the subset of the sensitive parameters184

identified in Section 3.1 and determine if they can be uniquely estimated from measurements of185

values of all the model variables (active dimer complexes on tumor cells, tumor volume, and the186

number of cytotoxic T cells). The structural identifiability of the model is analyzed using the187
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MATLAB package GenSSI (see [25, 28] for complete details).188

We obtained an identifiability tableau in Figure 4A that shows 8 non-zero rows–indicated by189

black regions and corresponding to non-zero generating series coefficients–that depend on the sen-190

sitive parameters. If any parameters from the identifiability tableau can be computed as functions191

of the power series coefficients and eliminated, then a reduced tableau is obtained [25], as shown in192

Figure 4B. Using the GenSSI algorithm, we obtained unique solutions for all the sensitive parame-193

ters (α1, δ1, α2, γT ), that is, they are globally identifiable. Thus, the model is globally structurally194

identifiable, which indicates that error-free time series data of all the model variables would be195

sufficient to identify a unique subset of the four parameters.196

Figure 4. Model identifiability results with the subset of four most sensitive parameters the model.
(A) Identifiability tableau. (B) Results and reduced tableau. All four parameters shown are globally
identifiable.

3.2.2 Practical Identifiability197

In practice, complete time-series and noiseless experimental data for structural identifiability are198

not available. Therefore, in this section, we carry out a practical identifiability analysis to deter-199

mine whether the most-sensitive parameters are identifiable from noisy experimental data of tumor200

volume. To do this, we seek to determine whether a distribution with a clear mode can be deter-201

mined for each of the sensitive parameters given such data. We used the Markov chain Monte Carlo202
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(MCMC) method with Metropolis-Hastings sampling [25]. Given simulated data for the system203

output, prior distributions of the parameter values, and a likelihood function, the MCMC samples204

the posterior distributions of the parameter, and the Metropolis-Hastings updating scheme accepts205

the new sample with probability given by the ratio of the new likelihood to the old likelihood [25].206

Specifically, we use uniform distributions as prior distributions on the parameters within the207

ranges given in Table 2. To create the likelihood functions, we use the experimental data for208

tumor volume without FGFR3 mutation – to determine the practical identifiability of α1 and δ1 –209

and the experimental data for tumor volume with FGFR3 mutation – to determine the practical210

identifiability of α2 and γT . The tumor volume for each day is assumed to be log-normally distributed211

about the mean tumor volume at each time point and truncated to be within one standard deviation212

of this mean. The joint probability distribution of these is then used to create the likelihood213

functions for the two applications of the MCMC method. We first used MCMC to estimate the214

posterior distributions for α1 and δ1 and then separately used it for α2 and γT . In both cases, we215

used a chain length of 10,000 to sample from the posterior distributions.216

The result depicted in Figure 5A in the form of one-dimensional histograms and two-dimensional217

heat maps shows that α1 has a normal distribution and δ1 has a broad distribution within its range218

in Table 2, thus indicating that α1 is practically identifiable and δ1 is not practically identifiable.219

Then, by sampling from this posterior distribution and forward simulating, we generate model220

predictions of tumor volume distributions without FGFR3 mutation at the sample time points221

that are tightly controlled and match the corresponding distributions from the data (Figure 5B).222

Similarly, using experimental data for mean tumor volume with FGFR3 mutation, our simulation223

showed that α2 and γT have a normal and a broad distribution, respectively (Figure 5C), within224

its range in Table 2. Hence, α2 is practically identifiable, and γT is not practically identifiable225

given the available experimental data. We again sample from the posterior distribution and forward226

simulate to generate tumor volume distributions with FGFR3 mutation, and again we see that these227

distributions are tightly controlled and match the corresponding data distribution (Figure 5D).228
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Figure 5. (A) Matrix of two-dimensional heat maps with one-dimensional histograms on the
diagonal showing the parameter distributions of α1 and δ1 using experimental data of tumor volume
without FGFR3 mutation. (B) The distributions of tumor volume for the MCMC chain, for five
time points using experimental data of tumor volume without FGFR3 mutation. (C) Matrix of
two-dimensional heat maps with one-dimensional histograms on the diagonal showing the parameter
distributions of α2 and γT using experimental data of tumor volume with FGFR3 mutation (D)
The distributions of tumor volume for the MCMC chain, for five time points using experimental
data of tumor volume with FGFR3 mutation.

3.3 Pretreatment Experimental Studies229

For mouse experiments, 6-8 week old female C57BL/6 mice were obtained from Jackson laboratory.230

Mice were housed in a specific pathogen-free animal facility at the University of Chicago. The MB49231

cell line is a carcinogen-induced urothelial carcinoma cell line derived from a male C57BL/6 mouse,232

which was generously provided by Timothy L. Ratliff, Purdue University. The MB49-FGFR3G370C233

cell line was were generated by retroviral transduction using the pMXs-IRES-GFP vector and sorted234

4 times for GFP expression. For tumor growth experiments, mice were injected subcutaneously with235

1× 106 MB49-FGFR3G370C tumor cells or GFP vector control MB49 tumor cells. Tumor volume236

was measured two times per week until endpoint. All experimental animal procedures were approved237
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by the University of Chicago Animal Care and Use Committee (IACUC).238

3.4 Pretreatment Parameter Estimation239

Having determined the identifiabilty properties of the most significant parameters both structurally240

and practically, we turn to estimating these parameters from experimental data. Specifically, we fit241

the mathematical model to two growth curves of MB49 bladder cancer cell lines, with and without242

mutant FGFR3 as described above. We use experimental data of tumor volume vs time (5 time243

points) for 5 mice without mutant FGFR3 to estimate the FGFR3-independent tumor growth rate244

(α1). We use the MATLAB lsqcurvefit function with ode15s solver, and an initial condition, given245

by T (0) = 106 cells and Y (0) = 3.2 × 105 cells [11], to carry out the data-fitting process. By246

calibrating Equations (3) and (4) with α2 = γT = 0 with the experimental data (Figure 6A - green247

curve), we obtained the best fit value for α1 = 0.337 d−1, which corresponds to a bladder tumor248

doubling time of 2.1 days in mice. The box-plot of the residual vector shown in Figure 6B indicates249

that the model can accurately predict temporal changes tumor volume in mice without the FGFR3250

mutation.251

With FGFR3-independent parameters estimated, we next calibrate the model with FGFR3252

mutation (Equations (1), (3), and (4)). Specifically, we use experimental data of tumor volume253

vs. time when the FGFR3 mutation is present in mice (Figure 6A - red curve) to estimate two254

parameters associated with ligand-independent activation of FGFR3 (i.e., the FGFR3-mediated255

tumor proliferation rate (α2 = 0.007 74 d−1) and the FGFR3-mediated survival sensitivity parameter256

(γT = 0.3018). As before, we generated box-plots of residuals (Figure 6C), indicating that the model257

can accurately predict tumor volume when the FGFR3 mutation is active. It is important to note258

that growth of the experimental tumor cell line is not dependent on the FGFR3 activating mutation,259

which was exogenously introduced. Thus, we do not expect the FGFR3 activating mutation to have260

a significant impact on tumor growth as observed in both the data and model simulation.261
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Figure 6. (A) Green curve: Calibration of models (3) and (4) with α2 = γT = 0 to the experimental
data of tumor without FGFR3 mutation in mice (n = 5) to estimate the FGFR3-independent
growth rate (α1 = 0.337 d−1). Blue curve: Calibration of models (1), (3), and (4) to the growth
curve of tumor with FGFR3 mutation in mice (n = 5) to estimate FGFR3-dependent parameters
(α2 = 0.007 74 d−1 and γT = 0.3018). (B, C) Residual plots showing that the models predict tumor
volume without FGFR3 mutation and with FGFR3 mutation, respectively.

3.5 Relative Impact of FGFR3-dependent Pathways on Tumor Growth262

With all parameters associated with tumor growth now estimated, an important question arises263

about which FGFR3-mediated effect, increased proliferation or increased survival, results in a264

greater measurable increase in tumor volume. We addressed this by estimating, from simulations,265

the difference between the tumor volume on day 25 when the FGFR3 survival benefit is switched266

off (i.e.α2 ∈ [0.001, 0.03] and γT = 0) and when the FGFR3 proliferative benefit is turned off (i.e.267

α2 = 0 and γT ∈ [0.1, 0.5]). In this way, we compare their relative contributions to tumor growth268

and in Figure 7 we see that parameter space is divided in two by which mechanism leads to more269

tumor growth. It is interesting to note that the region in parameter space that corresponds to the270

proliferation effect resulting in larger tumors is much more expansive. This region also contains the271

point corresponding to our estimated parameters as shown by the red dot in Figure 7, though the272

difference in the effect on tumor volume there is slight.273
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Figure 7. Heatmap showing the difference between tumor volume in mice on day 25 predicted
from model with α2 ∈ [0.001, 0.03] and γT = 0 and volume in mice on day 25 predicted from model
with α2 = 0 and γT ∈ [0.1, 0.5]. The red dot represents the difference between the model with
α2 = 0.007 74 d−1, γT = 0 and the model with α2 = 0 d−1, γT = 0.3018, indicating that FGFR3
mutation have an almost equal effect on both tumor proliferation and survival in the experimental
design. The contour plot shows the prediction of tumor volume on day 25 at the different pairs of
α2 and γT in the ranges [0.001, 0.03] and [0.1, 0.5], respectively.

4 Treatment Results274

We next turn to the question of understanding the effects of therapy on the tumor reduction.275

Specifically, in this section we simulate the model with immune checkpoint and FGFR3 targeted276

therapy alone and in combination. The dosing schedule for the therapies are presented in Figure 8277

– anti-FGFR3 therapy is administered every day starting from day 7 through day 25 except on days278

12, 13, 19, and 20 (these days are regarded as off-days) and anti-PD-L1 antibody is administered279

every 3 days starting on day 7 (except on the off-days).280

Figure 8. Dosing schedule of anti-FGFR3 and anti-PD-L1 monotherapies.
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4.1 Treatment with anti-PD-L1 Antibody Alone281

In order to study the effect of monotherapy with an anti-PD-L1 immunotherapeutic agent, we cali-282

brated Equations (1), (3), and (9)) with the experimental data for tumor cells without the FGFR3283

mutation in mice (Figure 9A). In the experiments that generated this data, doses of 100 µg anti-284

PD-L1 therapeutic agent with a half-life of 48 hours was administered to mice via intraperitoneal285

injection using the baseline schedule in Figure 8. We used this data to estimate the drug disso-286

ciation constant (KD) and the depletion rate of anti-PD-L1 antibodies through binding to PD-L1287

(µLA). These results are shown in Fig 9A. With the model now calibrated to data where the FGFR3288

mutation is absent, we turn to validating the model with data where the FGFR3 mutation is active.289

Specifically, to accomplish this validation step, we directly compared (i.e., no additional parameter290

fitting) the model simulations with the experimental data of anti-PD-L1 therapy against FGFR3-291

mutant tumor cells (Figure 9B). The result shows an excellent correlation between the model and292

the data without the need for parameter tuning.293

Figure 9. (A) Anti-PD-L1 therapy model calibration to experimental data of anti-PD-L1 ther-
apy on tumor cells without FGFR3 mutation in mice to estimate KD = 0.1005 nM, µLA =
2.6611× 10−5 d−1. (B) The estimated parameters are used to simulate the anti-PD-L1 therapy
model with FGFR3 mutation, and directly compared with the corresponding data in mice. Param-
eter values used are given in Tables 2 and 4.

In Figure 10, the model output from Figures 9A and B is compared to the corresponding models294

without anti-PD-L1 therapy. The larger gap in 10A compared to 10B shows that mice without295

FGFR3 mutation receive more benefit from anti-PD-L1 therapy compared to mice with FGFR3296
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mutation.

Figure 10. Comparison of models with anti-PD-L1 therapy. Results in (A) and (B) show that
mice without FGFR3 mutation receive more benefit from anti-PD-L1 therapy compared to mice
with FGFR3 mutation. Parameter values used are given in Tables 2 and 4.

297

4.2 Treatment with anti-FGFR3 Inhibitor Alone298

Next we investigate targeted therapy against the FGFR3 receptor using the dosing schedule in Figure299

8. To estimate rogaratinib pharmacokinetic parameters, we fit a three-compartment model for300

rogaratinib bio-distribution (described in Appendix B) to experimental data of rogaratinib plasma301

concentration in mice [17]. Using these parameter values, we simulated (see Figure 11) FGFR3302

mutant tumor response to the following doses of rogaratinib: 25 mg/kg QD (once a day), 25 mg/kg303

BID (twice a day), 50 mg/kg QD, and 75 mg/kg QD using the dosing schedule in Figure 8. It is304

clear from Figure 11 that the various doses of anti-FGFR3 drugs do not have substantial impacts on305

the tumor volume. Also, the effect sizes of the doses are approximately equal. These results are not306

surprising since this tumor cell line is not dependent on the FGFR3 activating mutation–which was307

exogenously introduced to study its impact on anti-PD-L1 therapy as shown in Fig 10–for enhanced308

tumor growth.309
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Figure 11. Simulation of anti-FGFR3 therapy model with FGFR3 mutation with no treatment,
25 mg/kg QD (once a day), 25 mg/kg BID (twice a day), 50 mg/kg QD, and 75 mg/kg QD of
rogaratinib using the dosing schedule in Figure 8. (B) Model prediction of tumor volume on day 25
in mice. Parameter values used are given in Tables 2-4.

4.3 Treatment with Combination Therapy310

We simulated the model to predict the effect of combining anti-FGFR3 and anti-PD-L1 therapies on311

tumor cells with FGFR3 mutation in mice (using the dosing schedule in Figure 8 with co-treatment312

on days 7, 10, 14, 17, 21 and 24). The result is shown in Figure 12, along with the impact of313

anti-FGFR3 therapy only and anti-PD-L1 therapy only. Our model predictions show that the effect314

of each therapy is approximately additive when combined, and combination therapy reduces the315

tumor volume on day 25 by 33.3% compared to 21.9% in the case of anti-PD-L1 therapy only.316

Similar results were obtained when the anti-PD-L1 therapy is combined with either 25 mg/kg QD,317

25 mg/kg BID or 50 mg/kg QD dose of rogaratinib (results not shown).318

We further simulated the model with a wider range of the parameters that govern FGFR3 impact319

on proliferation (α2 ∈ [0.001, 0.03]) and survival (δ1 ∈ [0.1, 0.5]) to compare the effectiveness of anti-320

PD-L1 and anti-FGFR3 monotherapies when the influence of the FGFR3 mutation on tumor growth321

varies. The results depicted in Figure 13 show that for some combinations of α2 and γT , especially in322

the region where the FGFR3 pathway has significant impact on tumor growth, the targeted therapy323

outperforms the immune checkpoint monotherapy (this result also shows the possible significant324

impact of anti-FGFR3 monotherapy on FGFR3 overexpressing cancers). It is also important to325
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Figure 12. (A) Simulation of model with FGFR3 mutation with no therapy (blue), anti-FGFR3
therapy only (gray), anti-PD-L1 therapy only (black) and combination therapy (green). (B) Model
prediction of tumor volume on day 25 in mice. Parameter values used are given in Tables 2-4.

note, by comparing Figure 12B to Figure 13BII, that the efficacy of combination therapy can be326

significantly increased in parameter ranges where there is a substantial increase in the effectiveness327

of rogaratinib while anti-PD-L1 therapy retains its efficacy.328

4.4 Kaplan-Meier Survival Analysis329

Kaplan-Meier survival analysis is used to measure the fraction of subjects living for a certain amount330

of time after treatment in an experiment or clinical trial [29]. To further estimate the effects of anti-331

FGFR3 monotherapy, anti-PD-L1 monotherapy, and combination therapies on tumor with FGFR3332

mutation using the baseline dosing schedule in Figure 8, we carried out a Kaplan-Meier analysis by333

measuring the fraction of mice, St, surviving at time t using the formula below:334

St =
N −NTV≥2000mm3,t

N
, (12)

where N is the total number of mice and NTV≥2000mm3,t is the number of mice that did not survive335

(i.e., mice with tumor volume (TV ) above or equal to the survival threshold (2000 mm3)) at time t.336

We generated 50 mice by randomly sampling the sensitive parameters (α1, δT , α2, and γT ) within337
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Figure 13. (A) A heatmap showing the difference in effect size of anti-PD-L1 and anti-FGFR3
therapies on day 25 on tumor with FGFR3 mutation. The black dot (i) indicate an example where
anti-PD-L1 therapy has larger effect size than anti-FGFR3 therapy (the values for the effect sizes are
shown in Figure 12B) (B) Prediction of tumor volume and effect size of anti-PD-L1 monotherapy,
anti-FGFR3 monotherapy, and combination therapy using (ii) α2 = 0.03 d−1 and γT = 0.134 where
the effect size of anti-PD-L1 and anti-FGFR3 are approximately equal; and (iii) α2 = 0.029 d−1 and
γT = 0.47 where anti-PD-L1 therapy has lesser effect size than anti-FGFR3 therapy. The arrow
indicates the direction of increasing relative strength of anti-PD-L1 monotherapy.

their ranges of values given in Table 2. In particular, we generated normal sampling distributions for338

practically identifiable parameters (α1 and α2) using their respective mean and standard deviation339
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and uniform sampling distributions for practically non-identifiable parameters (δ1 and γT ). The340

simulation was repeated for five stochastic realizations. The result depicted in Figure 14 shows that341

78 – 96% of the mice treated with combination therapy survived on day 25 compared to mice treated342

with anti-PD-L1 monotherapy (62 – 76%), anti-FGFR3 monotherapy (28 – 42%) or untreated mice343

(10 – 20%). Since the values for the FGFR3-dependent parameters are within the region where anti-344

PD-L1 monotherapy has more effect size than anti-FGFR3 monotherapy (Figure 13A), we expect345

that more mice would survive when treated with anti-PD-L1 therapy.

Figure 14. Kaplan-Meier survival analysis showing the fraction (mean ± SD) of mice that survived
with no treatment (blue), anti-FGFR3 monotherapy (gray), antiPD-L1 monotherapy (black) and
combination therapy (green). Parameter values used are in Tables 2-4 with normal distribution
of α1 (with mean = 0.337 d−1 and standard deviation = 0.0034 d−1), normal distribution of α2

(with mean = 0.007 74 d−1 and standard deviation = 0.0016 d−1), uniform distributions of δ1 and
γT within their range of values in Table 2

346

Figure 15 shows the distribution of parameters associated with the mice that survived until day347
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25 in the Kaplan-Meier survival analysis. These results show that the surviving mice are character-348

ized by high CTL-induced death rate (δ1) (i.e., slow-growing tumor cells). In particular, the only349

untreated mice that survived until day 25 had a CTL-induced death rate above 1.9×10−7cell−1 d−1;350

those treated with anti-FGFR3 monotherapy needed at least a value of 1.6× 10−7cell−1 d−1 (with351

one exception). Even anti-PD-L1 monotherapy and combination therapy needed δ1 to exceed352

1.3× 10−7cell−1 d−1 to give at least even odds for the mice to survive until day 25.353

Figure 15. Distribution of sensitive parameters related to mice that survived on day 25 of survival
analysis with different therapeutic conditions. The distances between each bar and the maximum
frequency represent the distribution of mice that did not survive in the Kaplan-Meier analysis.
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4.5 Dosing Schedules354

Next, we use the model to determine how best to administer anti-PD-L1 and anti-FGFR3 targeted355

therapies. To determine the most favorable combinations and to investigate the potential synergy356

between anti-PD-L1 and anti-FGFR3 therapies in mice with FGFR3 mutation, we simulate different357

dose-scheduling for anti-FGFR3 and anti-PD-L1 therapies (Figure 16).358

Figure 16. Dosing schedule of pretreatment with anti-FGFR3 therapy and pretreatment with
anti-PD-L1 therapy.

In these simulations, we considered treatments of tumor cells with FGFR3 mutation with a total359

of 10 doses of 75 mg/kg QD of rogaratinib and 4 doses of 100 µg of anti-PD-L1 antibody using the360

dosing schedules 2 and 3 shown in Figure 16 (compared to 15 doses of anti-FGFR3 and 6 doses of361

anti-PD-L1 in the dosing schedule (baseline schedule) in Figure 8).362

The ultimate goal is to determine the optimal dosing strategy that minimizes tumor growth363

while also minimizing the amount of drug administered. The tumor is either pretreated with anti-364

FGFR3 therapy or pretreated with anti-PD-L1 therapy as shown in Figure 17. The results depicted365

in Figures 17 show that the pretreatment of tumors with anti-PD-L1 therapy (Schedule 3) is more366

effective than pretreatment of tumors with anti-FGFR3 therapy (Schedule 2). This result persists367

throughout the α2 − γT parameter space, even in regions where anti-FGFR3 monotherapy greatly368

outperforms immune checkpoint monotherapy (result not shown). It is also important to note that369

that the outcomes for Schedule 3 are comparable to those from the baseline schedule of co-treatment,370

which administers five additional doses of therapy.371
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Figure 17. Simulation showing effect size of the different dosing schedules (A) Simulation of
model with FGFR3 mutation with no therapy (blue), treatment with baseline combination therapy
(green), pretreatment with anti-FGFR3 therapy, and pretreatment with anti-PD-L1 therapy. (B)
Model prediction of tumor volume on day 25 in mice. Parameter values used are given in Tables
2-4.

5 Discussion372

Until recently, systemic chemotherapy was the only recourse for people suffering from bladder can-373

cer, and outcomes remained discouraging as many patients either fail to respond to treatment374

or suffer recurrent disease within 5 years [30, 31]. After nearly four decades of little progress, im-375

munotherapy with checkpoint inhibitors (PD-L1 and PD-1) has fundamentally shifted the treatment376

paradigm of bladder cancer [31]. At the same time, advances in the understanding of the molecular377

biology of bladder cancer has led to the identification of molecular pathways, such as FGFR3 sig-378

naling, upon which new therapeutic approaches can be targeted [32]. In this paper, we developed379

an experimentally-validated mathematical model for the dynamics of bladder cancer growth and380

response to receptor tyrosine kinase (RTK) targeted therapy alone and in combination with an381

immune checkpoint inhibitor (ICI). This model is the first of its kind in that it incorporates the382

molecular details of an FGFR3 mutation that initiates signaling via ligand-independent dimeriza-383

tion to enhance tumor cell proliferation and survival. Our model formulation allows us to track384

the fraction of active FGFR3 dimers and to use this quantity to augment the rates of tumor cell385
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division and tumor cell death, which is mediated by cytotoxic T cells. A second important feature386

of our model is that it explicitly accounts for the formation of PD-1/PD-L1 complexes that inhibit387

T cell proliferation and activation.388

The model is carefully calibrated and validated with experimental measures of tumor volume389

with and without the FGFR3 mutation. In an attempt to identify which FGFR3-mediated effect390

has more impact on tumor growth, we computed the difference between the tumor volume when391

FGFR3 only impacts the tumor cell proliferation rate and the tumor volume when FGFR3 only392

impacts tumor cell survival. The results suggest that FGFR3 mutation can lead to increased tumor393

volume due primarily to either proliferation or survival effects–depending on the relative strengths394

of these signaling pathways, i.e. the parameters. However, the proliferation effect is more influential395

across a larger region of parameter space. Interestingly, for our estimated parameter values, the396

effects of FGFR3 on proliferation and survival are nearly equal.397

Based on the mechanisms of action of an immune checkpoint inhibitor targeting PD-L1 and a398

tyrosine kinase inhibitor targeting FGFR3 (rogaratinib), we extended our model to evaluate the399

impact of these therapies alone and in combination. Simulations of anti-PD-L1 therapy showed400

that tumors with FGFR3 mutation are more susceptible to anti-PD-L1 therapy than wild type401

FGFR3 tumors. This effect is likely independent of FGFR3 effects on intrinsic tumor growth and402

survival, since both cell lines grow essentially at the same rate in the presence or absence of FGFR3403

activating mutations. These results are in line with our reported experimental data and suggest404

that the FGFR3 mutation can impact the effectiveness of anti-PD-L1 therapy. Furthermore, the405

experiments described here use a tumor cell line that is not dependent on the FGFR3 activating406

mutation, which was exogenously introduced. Thus, we did not expect the FGFR3 activating407

mutation to have a significant impact on tumor growth. Our anti-FGFR3 monotherapy model408

simulations clearly show that this is indeed the case for four different doses of rogaratinib. However,409

when we simulated a wider range of the parameters that govern FGFR3 impact on proliferation410

and survival, we saw that for realistic values of α2 and γT , anti-FGFR3 therapy can not only411

have substantial impact on tumor reduction, targeted therapy can actually outperform anti-PD-L1412

monotherapy.413
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Despite the slight impact of rogaratinib monotherapy on tumor cells with FGFR3 mutation when414

baseline parameters are used, our model simulations show that its combination with anti-PD-L1415

therapy increases the effect size of the anti-PD-L1 therapy on tumor cells with the FGFR3 mutation.416

That is, while anti-PD-L1 antibody loses efficacy when the FGFR3 mutation is active, anti-PD-L1417

antibody impact on tumor reduction is recovered when combined with a drug that targets FGFR3.418

In fact, Kaplan-Meier survival analysis showed that when mice with FGFR3 mutant bladder cancer419

are treated with combination therapy, they have a much higher probability of surviving to day 25420

compared to mice treated with either monotherapy. We also found that there are parameter ranges421

for of α2 and γT where there is a significant increase in tumor reduction due to rogaratinib and422

only a small decrease in tumor reduction due to immune checkpoint therapy, and this leads to a423

substantial increase in the efficacy of combination therapy.424

In an attempt to find the most effective way of delivering combinations of these two therapies , we425

simulated two different dose-scheduling regimens for rogaratinib and an immune checkpoint inhibitor426

targeting PD-L1. We compared outcomes of these strategies to each other and to our baseline dose427

schedule of co-treatment, which administers five additional doses of rogaratinib. Our results show428

that pretreatment with anti-PD-L1 therapy leads to greater tumor reduction than pretreatment429

with anti-FGFR3 therapy. Interestingly, even in parameter regimes where anti-FGFR3 monotherapy430

greatly outperforms immune checkpoint monotherapy, the model predicts that it is still better to431

pretreat with the anti-PD-L1 drug. Furthermore, our baseline schedule of co-treatment performs432

only slightly better, with five additional doses of anti-PD-L1 therapy, than pretreatment with anti-433

PD-L1 therapy. This result suggests that some patients may benefit more from pretreatment with434

anti-PD-L1 because fewer drug doses can be used to achieve similar outcomes. These findings have435

direct clinical relevance given that anti-FGFR3 therapy is currently FDA approved, but it remains436

unknown whether it is best employed prior to or after anti-PD-L1 immunotherapy.437

This modeling study not only quantifies the influence of the FGFR3 mutation on bladder cancer438

growth; it also predicts various outcomes for RTK and ICI mono- and combination therapy. In the439

current model formulation, we are considering the total amount of FGFR3 monomers in the system440

and allowing all monomers to interact with each other. The resulting dimerization of monomers441
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allows us to quantify the temporal changes in fractional occupancy of active FGFR3 dimers in the442

system and their impact on tumor growth dynamics. In future iterations of the model, we could443

relax these assumptions and reformulate the model so that FGFR3 monomers only interact with444

other monomers on the same cell. We are currently modifying this model to describe different445

mechanisms of immune cell kill. We will also extend the model to include the impact of spatial446

dynamics by translating this system of ordinary differential into an agent-based modeling framework.447

Continued computational modeling of bladder cancer therapy can potentially lead to patient specific448

optimization of combination of anti-FGFR3 with anti-PD-L1 treatments.449
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Appendix450

A. Formulation for PD-1/PD-L1 Complexes, Q451

Following [12], the molar concentration of PD-L1 (L) within the tumor microenvironment consists

of the amount of free PD-L1 and the amount of PD-L1 bound to the drug,

L = Lfree + Lbound,

with L = ρL(Y + εT ). We consider the following reaction:

PD + Lfree
αPL−−−⇀↽−−−
δQ

Q,

Following [10, 12, 13, 16], we assume that the association and dissociation of Q are fast, so452

applying a quasi-steady state argument, we can approximate Q using the equation:453

Q =
αPL
δQ

PDLfree =
αPL
δQ

PD(L− Lbound). (A-1)

We also considered the following reaction:

Lfree
k+1−−⇀↽−−
k−1

Lbound,

where k+1 and k−1 are the association and dissociation rates of Lbound. By the law of mass action454

and assuming the process is at equilibrium [12],455

dLbound
dt

= k+1LfreeA− k−1Lbound = 0

Lbound =
k+1

k−1
LfreeA =

k+1

k−1
(L− Lbound)A

Lbound =
A

A+KD
L

(A-2)

where KD =
k−1

k+1
(i.e., the dissociation constant of the PD-L1/anti-PD-L1 complex). Thus, by

substituting Equation (A-2) into Equation (A-1), we derived the following expression for Q, given
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by:

Q =
αPL
δQ

PDL

(
1− A

A+KD

)
Finally, we choose the following functional form for F (Q) defined by456

F (Q) =
1

1 +
Q

KTQ

≡ F (P,L,A) =
1

1 +
PDL

KY Q

(
1− A

A+KD

) (A-3)

where KY Q =
δQ
αPL

KTQ (described in Table 2) [10, 12, 13, 16]. In order to achieve agreement

between the units for A and KD in Equation A-3, we converted the dosage of anti-PD-L1 in the

experiment from µg to nmol/L using the following formula:

c (nmol/L) =
m (µg)

V (L)×molar mass (µg/nmol)
,

where V is the carrying capacity of tumor volume without FGFR3 mutation (4000 mm3 = 0.004 L),457

molar mass = 1.5× 105 g/mol = 1.5× 102 µg/nmol, so that 100 µg of anti-PD-L1 is equivalent to458

166.67 nmol/L of anti-PD-L1.459

B. Pharmacokinetics of anti-FGFR3 (rogaratinib)460

We developed a compartmental model to describe the pharmacokinetic profile of rogaratinib in the461

plasma. The pharmacokinetic model is given as follows, where G(t), CS(t), and CP (t) represents462

the concentration of the drug in the gut, central, and peripheral compartments, respectively:463

dG

dt
= kaG

dCS
dt

= FkaG− k12CS + k21CP − kCS
dCP
dt

= k12CS − k21CP

(B-1)

where ka is the first-order absorption rate constant, k is the elimination rate constant, F is the464

bioavailability of the drug that accounts for the fraction of dose that reaches the central compart-465

ment, and k12 and k21 are distribution rate constants from the central compartment to the peripheral466
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compartment and vice versa, respectively. The pharmacokinetic parameters are estimated by fit-467

ting the analytical solution of the central compartment, (CS(t)) to the experimental data of the oral468

administration of rogaratinib described in [17]. The best fit values and fitting are given in Table469

Table 3 and Figure 18, respectively.470

Table 3. Best fit pharmacokinetic parameter of rogaratinib for PK model (B-1)

Parameter Description Best fit val-
ues

Reference

75 mg/kg 50 mg/kg 25 mg/kg

ka Absorption rate 0.4815 h−1 0.3597 h−1 0.4942 h−1 Estimated
F Bioavailabilty 0.42 h−1 0.42 h−1 0.42 h−1 [19]
k12 Plasma-Tissue

transfer rate
577.44 h−1 423.11 h−1 47.915 h−1 Estimated

k21 Tissue-Plasma
transfer rate

1.2478 h−1 2.6785 h−1 0.2864 h−1 Estimated

k Elimination rate 193.53 h−1 202.95 h−1 309.15 h−1 Estimated

471

Figure 18. Time profiles of single-dose of 75 mg/kg QD (red dashed line), 50 mg/kg QD (blue
dashed line), 25 mg/kg QD (black dashed line) and 25 mg/kg BID (green dashed line) of rogaratinib
in plasma. The best fit of model is plotted together with experimental data of rogaratinib in mice
described in [17]. Parameter values used are given in Tables 2-4.
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C. Model equations related to treatment with anti-FGFR3 (rogaratinib)472

The system of equations governing the dynamics of the FGFR3 monomers and dimers (see Figure473

19) in the tumor cell in the presence of rogaratinib is given by,474

dRF
dt

= −2kfR
2
F + 2krDA + 2kp(DA +DC

C +DC
A) +RTP (T, φD)− kRc,onCRF + kRc,offR

C
F

− RF
Σ
RTD(T, Y, φCD),

dDA

dt
= kfR

2
F − krDA − kpDA − kDc,onCDA + kDc,offD

C
A −

DA

Σ
RTD(T, Y, φCD),

dC

dt
= k12C1 − k21C − kRc,onCRF + kRc,offR

C
F − kDc,onCDA + kDc,offD

C
A ,

dRCF
dt

= kRc,onCRF − kRc,offRCF − 2kf (RCF )2 + 2krD
C
C −

RCF )

Σ
RTD(T, Y, φCD),

dDC
C

dt
= kf (RCF )2 − krDC

C − kpDC
C −

DC
C

Σ
RTD(T, Y, φCD, )

dDC
A

dt
= kDc,onCDA − kDc,offDC

A − kpDC
A −

DC
A

Σ
RTD(T, Y, φCD),

(C-1)

whereRF , DA, R
C
F , andD

C
A represent the free FGFR3 monomers, active dimers, monomer/rogaratinib475

complex, and active dimer/rogaratinib complex respectively (see Figure 2 for the flowchart of the476

mechanism of action of rogaratinib). The monomer/rogaratinib complexes dimerize to form DC
C ,477

and C represents the concentration of rogaratinib in the tumor microenvironment. As an anti-478

FGFR3 drug, we assumed that rogaratinib binds to the kinase region of FGFR3 monomers (RF )479

and active dimers (DA) on tumor cells at rates kRc,on (to form monomer/rogaratinib complex (RCF ))480

and kDc,on (to form active dimer/rogaratinib complex (DC
A)). These complexes dissociate at rates481

kRc,off and kDc,off , respectively. Furthermore, we assume that rogaratinib drug does not affect dimer-482

ization, dissociation, and internalization, thus, the monomer/rogaratinib complex (RCF ) dimerizes483

at a rate kf to form DC
C which can either dissociate at a rate kr, internalized at a rate kp. We484

assumed that upon internalization, both monomer/rogaratinib and active dimer/rogaratinib com-485

plexes are recycled at a rate kp, leaving behind the drug, to reproduce FGFR3 monomers (RF ).486

The term φCD is the fractional occupancy of active dimer on a tumor cell with anti-FGFR3 and487

Σ = RF + 2DA +RCF + 2DC
C + 2DC

A . The flowchart and parameter values for model (C-1) are given488

in Table 4 and Figure 19, respectively.489
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The underlying assumptions for this equation are (i) the tumor resides in a pharmacokinetic

compartment of its own; (ii) the binding rates are the same, independent of cell type; (iii) rogaratinib

is transferred into the tumor from the systemic circulation at the same rate as the peripheral tissue,

k12; and (iv) the tumor volume is negligible compared to the volume of a mouse; therefore the

amount of the drug leaking into the bloodstream (at the rate k21) will not affect the concentration

of free rogaratinib in the systemic circulation. Furthermore, the formulation of the model (C-1)

assumes that the total number (converted to nmol using molecular weight) of receptors per tumor

cell RT remains constant. Thus, we can ensure that the model equations do conserve FGFR3 by

considering the sum:

dRF
dt

+ 2
dDA

dt
+
dRCF
dt

+ 2
dDC

C

dt
+ 2

dDC
A

dt
=
dΣ

dt
= RT

(
P (T, φCD)−D(T, Y, φCD)

)
= RT

dT

dt
.

Therefore, upon integration, we have Σ = RT × T .490

Table 4. Parameter Values Related to anti-FGFR3 and anti-PD-L1 Therapy

Parameter Description Baseline Units Reference
Value

Anti-FGFR3 related
kRc,on Rogaratinib-FGFR3

monomer association rate
1.28× 105 nmol−1 d−1 [17]

kRc,off Rogaratinib-FGFR3
monomer dissociation rate

95.04 d−1 [17]

kDc,on Rogaratinib-FGFR3 dimer as-
sociation rate

1.28× 105 nmol−1 d−1 [17]

kDc,off Rogaratinib-FGFR3 dimer
dissociation rate

95.04 d−1 [17]

Anti-PD-L1 related
µLA Anti-PD-L1 depletion via

binding to PD-L1
2.66× 10−5 nM−1 d−1 Estimated

δA Anti-PD-L1 natural degrada-
tion rate

0.3466 d−1 Estimated

KD PD-L1-Anti-PD-L1 dissocia-
tion rate

0.1005 nM Estimated

491

35



Figure 19. Flowchart of rogaratinib as anti-FGFR3 treatment. (A) Rogaratinib drug associate
with FGFR3 monomer on tumor cells at a rate kRC,on to form RCF and dissociate at a rate kRC,off .
RCF dimerize at a rate kCf to form DC

C which can either dissociate at rate kr, or internalize and
recycled into FGFR3 monomer at a rate kp. (B) Rogaratinib bind with an active dimer DA at
a rate kDC,on to form DC

A which dissociate at a rate kDC,off . These events lead to (1) inhibition of
FGFR3 phosphorylation; and consequently, (2) inhibition of downstream signaling of AKT, MAPK,
ERK and STAT.
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