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Abstract

Intro: Long-term treatment with interferon-alfa (IFN) can reduce the disease burden of patients diagnosed with myeloprolifera-

tive neoplasms (MPN). Determining individual patient-responses to IFN-therapy may allow for efficient personalized treatment,

reducing both drop out and disease burden. Methods: A mathematical model describing hematopoietic stem cells and the im-

mune system is suggested. Considering the bone marrow and the blood allows for modelling disease dynamics both in the

absence and presence of treatment. Through comprehensive modelling of the effects of IFN, the model was related to individ-

ualized patient-data consisting of longitudinal hematologic and molecular measurements. Treatment responses are modelled

on a population-level, allowing for personalized predictions from a single pre-treatment data point. Results: Personalized fits

were found to agree well with data. This allowed for a quantitative description of the treatment-response, yielding a mech-

anistic interpretation of differences between individual patients. Population-level treatment-responses were simulated. Based

on pre-treatment data and the actual treatment scheduling, the population-level response was found to predict the treatment-

response of particular patients accurately over a five-year period. Conclusion: Mechanism-based modelling of treatment effects

demonstrates that hematologic and molecular observables can be predicted on the level of individual patients. Personalized

patient-fits suggest that the effect of IFN-treatment can be quantified and interpreted through mathematical modelling, de-

spite variation in hematologic and molecular response for different patients. Modelling suggests that both hematologic and

molecular markers must be considered to avoid immediate relapse. Furthermore, personalized model-fits provides quantitative

measures of the hematologic and molecular response, determining when treatment-cessation is appropriate. Proof-of-concept

population-level modelling of treatment-responses from pre-treatment data successfully predicted clinical measures for a five-year

period. This approach could have direct clinical relevance, offering expert guidance for clinical decisions about IFN-treatment

of MPN-patients.
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1 Abstract

Intro: Long-term treatment with interferon-alfa (IFN) can reduce the disease burden of patients diagnosed
with myeloproliferative neoplasms (MPN). Determining individual patient-responses to IFN-therapy may allow
for efficient personalized treatment, reducing both drop out and disease burden.

Methods: A mathematical model describing hematopoietic stem cells and the immune system is suggested.
Considering the bone marrow and the blood allows for modelling disease dynamics both in the absence and
presence of treatment. Through comprehensive modelling of the effects of IFN, the model was related to
individualized patient-data consisting of longitudinal hematologic and molecular measurements. Treatment-
responses are modelled on a population-level, allowing for personalized predictions from a single pre-treatment
data point.

Results: Personalized fits were found to agree well with data. This allowed for a quantitative description
of the treatment-response, yielding a mechanistic interpretation of differences between individual patients.
Population-level treatment-responses were simulated. Based on pre-treatment data and the actual treatment
scheduling, the population-level response was found to predict the treatment-response of particular patients
accurately over a five-year period.

Conclusion: Mechanism-based modelling of treatment effects demonstrates that hematologic and molecu-
lar observables can be predicted on the level of individual patients. Personalized patient-fits suggest that the
effect of IFN-treatment can be quantified and interpreted through mathematical modelling, despite variation
in hematologic and molecular response for different patients. Modelling suggests that both hematologic and
molecular markers must be considered to avoid immediate relapse. Furthermore, personalized model-fits pro-
vides quantitative measures of the hematologic and molecular response, determining when treatment-cessation
is appropriate. Proof-of-concept population-level modelling of treatment-responses from pre-treatment data suc-
cessfully predicted clinical measures for a five-year period. This approach could have direct clinical relevance,
offering expert guidance for clinical decisions about IFN-treatment of MPN-patients.

2 Introduction

The Philadelphia-negative myeloproliferative neoplasms (MPNs) is a group of blood cancers, which includes
the diseases essential thrombocythemia (ET), polycythmia vera (PV) and primary myelofibrosis (PMF). MPNs
progress slowly over several years, with severe side effects, such as an increased risk of experiencing dehabili-
tating thrombosis, and leukemic transformation where the patient acquires a secondary cancer, such as acute
myeloid leukemia (AML) [5]. Chronic inflammation observed for MPN-diagnosed patients suggests that disease-
progression and co-morbidity is driven by the immune system [13, 14]. Improved understanding of the link
between disease progression and the immune system could improve future treatment by halting the disease be-
fore the cycle of chronic inflammation becomes uncontrollable. Therapy with pegylated Interferon-alpha (IFN)
was investigated thoroughly in a recent clinical trial, showing that IFN causes an exponential decline in disease
burden for long-term therapy [25]. Despite well-documented effects of IFN [20], and a history of IFN-therapy
for MPN-patients [30] IFN is currently not a part of standard-of-care for MPN-patients everywhere.

Mathematical modelling of hematologic diseases has a long history [18, 7], with important medical advances
and findings [9, 33, 32, 31, 34, 12, 19, 16, 15, 23, 1, 22, 21].

While validation and testing of predictive power of mathematical modelling is necessary before clinical
application [4], mathematical modelling is apt to become an important part of clinical assessment of disease-
stage and treatment, for both blood-cancers and localized tumours [8].

Mathematical models of hematopoietic stem cells (HSC) have given important insight about the hematopoi-
etic system [17, 11, 3, 6, 26, 27]. Hematologic disease can arise from a malignant stem cell clone, leading many
authors to explicitly model the malignant clone and the competition of stem cells [28, 2, 33]. Importantly,
modelling suggests that treatment of HSC-derived disease must target the malignant stem cells [10, 1, 22, 21].
Consequently, mathematical models of hematologic malignancies should consider some notion of HSC if suc-
cessful therapy is expected to be captured by model behaviour.

In a recent study, we mathematically modelled the IFN-induced decline in disease burden observed in MPN-
patients, predicting whether a state of minimal residual disease would be attained [21]. The model described
HSC, blood-cell production and immune-system feedback, and was originally calibrated to data from MPN-
patients [1].

In this work, we propose a related model in which the description of HSC-behaviour has been expanded. The
proposed model is related to both hematologic and molecular measures, demonstrating that both cell-counts
and disease burden of MPN-patients can be modelled simultaneously. We first describe the model and how IFN-
therapy was interpreted mathematically. A fitting-procedure relating the model to data of individual patients
is described. Personalized modelling suggests that molecular measures are necessary to determine treatment-
cessation will cause an early relapse. Population-level model predictions are made for a sub-cohort of patients,
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in which the full period of IFN-treatment (up to five years) is predicted from a single pre-treatment data-point.
This proof-of-concept result suggests that mathematical modelling on both individual- and population-level
could be a useful clinical tool in the near future, predicting e.g. the outcome of treatment-cessation or increases
in dosage.

3 Materials and Methods

3.1 Mechanism-based mathematical model of the hematopoietic system

To model the effect of IFN on the MPN patients of the DALIAH trial described above, we first introduce a
mathematical model of the healthy hematopoietic stem cells (HSC), leukemic stem cells (LSC), blood cells and
the immune cells. The model is based on two previously presented models: The Cancitis model [1, 21] and a
model of HSC-dynamics within the bone marrow [27].

HSC
NH

LSC
NL

Wild-type
Blood-cells

MH

Leukemic
Blood-cells

ML

Cellular
Debris
D

Immune
system

S

× ×
Eliminated

Eliminated

E

Figure 1: Schematic compartment diagram of mathematical model Wild-type HSC and
the produced blood-cells, NH and MH respectively, are shown as blue circle on the left, while LSC
and the LSC-derived blood-cells, NL and ML respectively, are shown as red circles on the right.
The cellular debris arising from natural cell-death of blood-cells, D, is shown as a grey circle,
while the immune system, S, is represented by a grey box in the middle. Black arrows represents
flows between compartments, and red arrows signify upregulation by the immune system. The
circle with × represent a multiplication in numbers to the proliferation of progenitor-cells. The
self-renewal of HSC and LSC is not depicted in the figure due to its non-linear form, however the
grey box and the line connecting HSC and LSC represented this interaction of stem cells within
the bone-marrow niches (shown as a dark-red box at the bottom).

The model is given by a system of ordinary differential equations describing the amount of wild-type HSC
NH , the amount of LSC NL, the number of mature blood-cells arising from the wild-type HSC MH , the number
of mature blood-cells arising from the LSC ML, the amount of cellular debris D, and an abstract measure of the
immune system response, S. The stem-cell dynamics of the model of Pedersen et al. [27] give rise to a production
of blood-cells. Following apoptosis (programmed cell-death) the cell-debris (D) upregulates the immune system
(S), which increases stem-cell production, to maintain cell-counts. This ensures a robust hematopoietic system,
that can model both disease-free hematopoeisis, early-disease stages and treatment. A schematic diagram of
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the model is shown in figure 1. Additional details about the model-formulation is given in the supplementary
material. The model is given as the following system of ordinary differential equations, describing the gain and
loss of each of the six variables:

ṄH = µHS

(
2γρH (1 −NH −NL)

αH + 1 −NH −NL
− 1

)
NH (1a)

ṄL = µLS

(
2γρL (1 −NH −NL)

αL + 1 −NH −NL
− 1

)
NL (1b)

ṀH = ωHκHS − dHMH (1c)

ṀL = ωLκLS − dLML (1d)

Ḋ = dHMH + dLML − eDDS (1e)

Ṡ = rSD − eSS + g (1f)

where κj =

(
2 − 2ρj +

2γαjρj
αj + 1 −NH −NL

)
µjΘNj . All parameters are non-negative. Additionally, ρj ≤ 1

and γ ≥ 1. Default values given in table 1, along with a brief description of what biological processes the
parameters represent. It can be shown that all variables remain non-negative for non-negative initial conditions.
A numerical solution representing a typical disease-progression scenario is depicted in figure 2, together with
simulated treatment, as described in section 3.2.

We define the disease level in the model as the relative frequency of blood-cells derived from LSC out of all
blood-cells, ML

MH+ML
.

A fraction of the total blood-cell count in the model is assumed to be of a particular cell-type. We define the
thrombocyte-count as Cthro = Rthro(MH + ML) and the leukocyte-count as Cleuk = Rleuk(MH + ML), where
Rthro and Rleuk are the cell-specific fractions.

Mathematical analysis of the model was described in [24]. We omit a thorough mathematical analysis here,
however some brief comments are warranted. For most choices of model-parameters, three steady states exists:
A trivial steady state with no cells, a healthy steady state with NL = ML = 0 and a full-blown leukemic steady
state with NH = MH = 0. Numerical investigations of local stability reveals that typically only one steady
state is stable, while the two others are unstable. This suggests that for a given choice of parameters, the
system will asymptotically approach the stable steady state. This allows us to compute the long-term effect
of treatment. To investigate the transient behaviour during treatment, the model can be solved numerically,
simulating particular treatment-effects on parameters.

3.2 Modelling treatment-effects

Treatment with IFN has been found to deplete the population of LSC that give rise to MPN [20]. To model this
effect, we consider an IFN-induced decrease of ρL, the parameter related to LSC differentiation. Preliminary
model investigations revealed that decreasing ρL resulted in depletion of LSC and a decrease in the disease
level. Visual inspection of data suggests a transient effect of IFN on the total cell-count, reducing both healthy
and leukemic mature cells before the disease level decreases. A change in the proliferation of both healthy and
leukemic progenitor cells, as modelled by parameters ωH and ωL respectively, could explain such decrease in
total cell count. Hence, when modelling IFN-treatment, we perturb parameters ρL, ωH and ωL. To reduce the
degrees of freedom, we consider only equal perturbation of ωH and ωL, such that the relation ωL = 2.5ωH is
maintained throughout this work for both default parameter-values and perturbed parameters. Perturbation of
ρL affects primarily the relative frequency of cells while perturbation of ωH and ωL affects the total amount of
mature blood cells. A numerical example of perturbing these parameters is shown in figure 2. Within the first
year of treatment, a transient effect of perturbing ωH and ωL causes a pronounced decrease in blood-cell counts.
A corresponding transient increase is seen when treatment is ceased. This transient effect occurs because ωH
and ωL affects both healthy and leukemic blood-cells, and as a consequence, without perturbation of ωH and
ωL, the transient decrease of total blood-cells counts does not occur (not shown).

For default parameters, solutions of the model approach the full-blown leukemic steady state for any pos-
itive number of malignant stem cells, and hence, relapse always occurs. However, the degrees of parameter-
perturbation considered in the simulated treatment affects the time until relapse occurs. To estimate the time
between treatment-cessation and relapse, we defined a relapse-threshold of 1.5 · 1012 blood-cells, corresponding
to a 50% increase compared to the healthy steady state count. When total blood cell counts exceed this value
after treatment-cessation, relapse is assumed to have occurred. For the example shown in figure 2, relapse
occurs 6 years after treatment cessation, around year 28. Simulating a range of treatment-specific values of ωL,
ωH and ρL, we investigated the resulting time to relapse. The results are shown in figure 3. While changes
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Figure 2: Illustrative model simulation with treatment affecting ρL, ωH and ωL. Starting
in the healthy steady state at time t = 0 (with MH ≈ 1 · 1012), one HSC is removed from NH
and added to NL. Due to the growth advantage of the leukemic clone for default parameters,
the disease progresses in absence of treatment. This progression is shown in black in both panels.
The relative frequency of malignant mature cells, ML

MH+ML
, reaches approximately 65% within 20

years. Between year 20 and 22 a treatment-scenario is simulated, setting ρL = 0.515, ωH = 2 · 106

and ωL = 5 · 106. At year 22, parameters are reset to their default values. The left panel depicts
the mature cell-counts, MH + ML, with the dotted blue line depicting the simulated treatment-
scenario. The right-hand panel shows the relative frequency of malignant mature cells, ML

MH+ML
,

with the dotted blue curve showing the scenario with treatment. The grey background illustrates
the treatment-period.
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Parameter Value Description Parameter Value Description

µH 0.0376 Release-rate from bone-
marrow niche, HSC

µL 0.0432 Release-rate from bone-
marrow niche, LSC

ρH 0.5289 Rate of self-renewing pro-
liferation, HSC

ρL 0.5310 Rate of self-renewing pro-
liferation, LSC

αH 0.0053 Post-cell-division
differentiation-rate, HSC

αL 0.0051 Post-cell-division
differentiation-rate, HSC

Θ 15000 Number of quiescence-
inducing stem cell niches
within bone-marrow

γ 1 Effective new daughter-
cells per stem cell division

ωH 4.7 · 106 Blood-cells produced per
stem cell differentiation,
HSC

ωL 11.75 · 106 Blood-cells produced per
stem cell differentiation,
LSC

dMH
0.0129 Death-rate, healthy ma-

ture cells
dML

0.0129 Death-rate, leukemic ma-
ture cells

eD 2 · 105 Clearance-rate of cellular
debris

rS 0.0003 Debris-dependent
immune-system acti-
vation

eS 2 Immune-system inactiva-
tion

g 7 External inflammation

Table 1: Default parameters used in simulations. Parameters uH , uL, dMH
, dML

, eD, rS
and eS are in units of [days−1], while the other parameters are without unit. Parameters uL, ρL,
αL and ωL were determined from the healthy counterparts and were modified to agree with the
disease progression as described in [25]. The remaining default values were determined in the work
described in [21] and [26].

to ωH and ωL are important for a transient reduction in blood-cell counts, the effect on the time to relapse is
minor. Conversely, reduction of ρL lengthens the time to relapse.

3.3 Data

We consider data from the prospective randomized open-label phase III clinical trial “DALIAH” (EudraCT num-
ber: 2011-001919-31) [25, 21]. In the trial, a cohort of MPN-patients received Pegylated r-IFNα (IFN) monother-
apy (Either Interferon alfa-2a “Pegasys” or Interferon alfa-2b “PegIntron”). Data consisted of IFN-dosage and
timing, as well as longitudinal hematologic and molecular measurements. In particular, the thrombocyte- and
leukocyte-counts as well as the JAK2617F (JAK2) allele burden were measured. We consider the JAK2 allele
burden a measure of the disease progression. A total of 63 patients [21] are here considered, 17 of which were
diagnosed with ET, 35 with PV, 6 with PMF and 5 patients with prefibrotic myelofibrosis.

3.4 Pharmaco-kinetic modelling of IFN-dose

IFN was given on a weekly, bi-weekly or tri-weekly basis, in a range of dosages. For simplicity, we here report
a daily average dose. A pharmaco-kinetic (PK) model of IFN was considered, in agreement with our previous
work [21]. We assume an equal rate of uptake and clearance of IFN, τ = 1

7
µg
day , inspired by previous work on

PK modelling of IFN [29]. Letting I(t) denote the stepwise constant daily dose in units of µg IFN, we choose
the simplest possible PK description of the blood-concentration:

Ḃ(t) = τ(I(t) −B(t)) (2)

where the dot denotes the time-derivative. The IFN blood-concentration B(t) is in units of µg IFN, assuming a
constant blood volume and ignoring patient-specific variations in volume. For constant I(t) = I0, administered
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Figure 3: The relationship between the modelled treatment response and time to re-
lapse. The scenario of figure 2 was simulated, with two years of simulated treatment from year 20
to year 22. A range of values of ρL, ωH and ωL during treatment was considered. The time from
treatment cessation (at year 22) until total blood-cell counts exceeded 1.5 · 1012 were determined.
The vertical axis signifies the change of both ωH and ωL, as the relation ωL = 2.5ωH was main-
tained. The simulated scenario of figure 2 corresponded to a 0.97 fold change of ρL and a 0.43 fold
change to ωL and ωH .
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with onset at time t = t0, this differential equation may be solved explicitly:

B(t) = I0 − (I0 −B(t0))e−τ(t−t0) (3)

3.5 Pharmaco-dynamics of IFN

The pharmaco-dynamics (PD) of IFN is modelled such that parameter-perturbation depends directly on the
blood-concentration of IFN. For the perturbation of ωH and ωL, we define ω̂H and ω̂L as functions of the
blood-concentration B:

ω̂(B) =

{
(1 + νωB)ω for νω ≥ 0

eνωBω for νω < 0
(4)

where the parameter νω describes how significant the parameter is perturbed. For νω < 0, the parameter is
reduced, while it is increased for νω > 0. For all values of νω, ω̂ ≥ 0 is fulfilled.

A different perturbation for ρL is considered, since ρL ≤ 1 must be maintained for all doses. We define ρ̂L
as:

ρ̂L(B) =
ρL

ρL + (1 − ρL)e−νρLB
(5)

where νρL determines the degree of response to treatment.
For the patients considered, the time-dependent blood-concentration, B(t), was described in section 3.4.

Hence, both ω̂H , ω̂L and ρ̂L are time-dependent.

3.6 Procedure for obtaining individualized patient-fits

Combining data for IFN-dose with the parameter-perturbations described by the PK- and PD-modelling de-
scribed in sections 3.4 and 3.5, the response of an individual patient to IFN-treatment could be represented by
two parameters, νρL and νω.

Three measures were considered for determining how well the model agreed with data; The disease-level
error, defined as the sum of squared errors (SSE) between model disease-level and the JAK2 allele burden, the
thrombocyte-error, defined as the SSE ofthe thrombocyte-counts and the (scaled) blood-cells counts and finally
the leukocyte-error, defined as the SSE of leukocyte-counts and the (scaled) blood-cell counts.

For the 63 patients considered, personalized model-fits were determined. A model-simulation without treat-
ment was shifted in time such that at t = 0 the model disease agreed with the baseline-measurement of the
JAK2 allele burden of the patient. This could also be used to estimate the time of initial mutation and disease
onset, see [25].

Subsequently, we used an iterative three-step data-fitting procedure. Initially, a value of νρL was found that
minimized the disease-level error, using the MATLAB function fminsearch. Secondly, blood-cell scaling-factors
Rthro and Rleuk and treatment-parameter νω were fitted such that the thrombocyte-error and leukocyte-error
were minimized. Finally, an additional optimization of νρL with the disease-level error was carried out, and
scaling-factors Rthro and Rleuk were re-optimized to minimize thrombocyte-error and leukocyte-error.

We emphasize that the procedure priorities the agreement between the disease burden, as given by the JAK2
allele burden in data and model disease-level given by ML

MH+ML
, rather than cell-counts.
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4 Results

4.1 Patient fits

Personalized values of νρL , νω, Rtrom and Rleuk were determined for each patient, describing the patient-specific
response to IFN of the given patients. This was done for all 63 patients from the DALIAH trial. The resulting
numerical solutions of the model are shown in the supplementary material, and two examples are shown in
figure 4. In all figures, patient-ID’s are used that correspond to those used in [21]. The model reproduces both
the dynamics of hematologic measures (blood-cell counts) and molecular measures (the JAK2 allele burden),
and was found to agree with both patients that respond well to treatment and patients that do not.

Good responders are characterized by a significant decrease in disease burden and a normalization of cell
counts. As changes to ρL primarily affects the disease burden while ωH and ωL affect the total cell count, the
fitted values of νρL and νω identifies good-responders. In particular, good responders are found to have fitted
values lower than those of bad responders. Hence, the patient fits provide quantitative measures for how well a
patient responded to treatment.

Patient-specific fits allows us to simulate hypothetical treatment-scenarios. In particular, we can consider
the effect of halting treatment. In figure 5 two simulated scenarios are shown for a particular patient, halting
treatment after 0.5 and 5 years. When treatment was ceased early, cell-counts rapidly return to elevated levels,
with thrombocytes above the healthy interval within half a year. After five years of treatment, we find that
approximately nine years without treatment is possible before the thrombocyte-count exceeds the threshold.
Note that cell-counts at the times chosen were approximately equal (just below 300 · 103 cells per µL), both in
the model and in data. Hence, the stage of disease at year 0.5 and year 5 would be indistinguishable, if based
solely on cell-counts. Our findings suggests that monitoring the disease burden is important to determine the
time to relapse.

4.2 Cell-counts at steady state

For all patients, scaling factors were found, relating the modelled sum of mature cells to the blood-cell counts
observed in data. Scaling the steady state value of MH in the healthy steady state with the scaling-factor gives
a patient-specific estimate of pre-disease cell-counts. For most patients, these cell-counts are found to be within
the healthy interval, validating the model in the absence of disease. Scaling the steady-state value of ML in
the full-blown leukemic steady state provides an estimate for the cell-count that would be approached if no
treatment had been initiated. Significantly increased blood-cell counts were predicted at the leukemic steady
state. As heightened blood-cell counts are a diagnostic criteria, this further validates the model in absence of
treatment. Additional details along with histograms of the steady state values are given in the supplementary
material.

4.3 Population modelling of patient response

While the model was found to agree well with most patients, the model reproduced data of a sub-cohort of
20 patients particularly well. These were not necessarily patients that respond well (or poorly) to treatment,
but rather determined by particular selection criteria. Details are given in the supplementary material. Based
on this sub-cohort, a two-dimensional log-normal distribution of νρL and νω was determined. This distribution
describes the treatment-response parameters on a population-level.

From the distribution, 1000 virtual patients were chosen, described by dose-dependent parameter-perturbations.
For each of the virtual patients, we simulated treatment schedules identical to each of the 20 patients in the
sub-cohort. For these simulations, initial conditions corresponding to those of the baseline measurement of the
real patient were used. In figure 6, an example is shown.

We consider an entirely simulated patient-response. Mean baseline values of patients diagnosed with PV
were leukocyte-counts of 11.4 · 103(µL)−1, thrombocyte-count of 571 · 103(µL)−1, and JAK2 allele burden of
44%. Simulating 1000 virtual patient responses with the mean baseline values as initial conditions and a daily
dose of 5µg IFN (a weekly dose of 35µg IFN), we determined the expected distribution of patient-responses
illustrating the treatment-response of an idealized PV patient. The results are shown in figure 7.

9



(a) Patient P082

(b) Patient P198

Figure 4: Examples of patient-specific fits of the model. The left panels display the blood-
cells count as grey circles. The black curve displays the sum of mature cells, MH + ML, scaled
by the appropriate scaling factors. A simulation without treatment is shown dotted black for
comparison. Approximate healthy intervals of cell-counts are shown in dashed grey, defined as
between 145 · 103 and 390 · 103 thrombocytes per µL and between 4 · 103 and 11 · 103 leukocytes
per µL. In the right-hand panel, the model disease level is shown together with the JAK2 allele
burden data. A treatment-free simulation is shown in dotted black. Bottom-right panel depicts
the pharmacokinetically modelled estimate of IFN-concentration. For all possible doses between
0 and 20µg daily IFN, model stability for the given patient-specific parameters were determined
numerically. Doses for which the healthy steady state was locally stable are shown as a green
background, while doses where the full-blown leukemics steady state was found to be locally stable
are shown in red. Panel (a) patient “P082” is depicted, with fit-parameters νρL = −0.0091,
νω = −0.0821, Rtrom = 4.1 · 10−9 and Rleuk = 1.5 · 10−7 Panel (b) depicts patient “P198”, which
had fit-parameters νρL = −0.004, νω = −0.0455, Rtrom = 6.5 · 10−9 and Rleuk = 3.1 · 10−7.
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Figure 5: Simulations of halted treatment can estimate the time to relapse. Based on the
model-fit to data for patient “P198”, as shown in figure 4b, we simulated two additional scenarios:
One where treatment was halted after 0.5 year, shown in dash-dotted red, and a scenario where
treatment was halted at the end of the study, year 5, shown in dash-dotted green. For a full figure
legend, see figure 4. The colored background of the bottom-right panel shown in figure 4 was here
omitted for visual clarity.
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Figure 6: Virtual patient responses based on baseline measurement and IFN dosing
shows good agreement with real patient-response in some cases. Patient data for patient
“P082” is shown as black circles ©. 1000 virtual patients were simulated and the sum of mature
cells were scaled to agree with the baseline data-point for either leukocytes or thrombocytes. The
blue curve shows the median response-curve. The shaded grey areas displays the distribution,
with the darkest grey showing the interval from 25% to 75% of values at the given time-points,
the next-darkest interval shows from 10% to 90% while the final interval from 5% to 95% of
virtual patient-responses is shown in light grey. The bottom right panel displays the IFN blood-
concentration used for both the real patient and the virtual patients.
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Figure 7: Virtual patient responses based on average PV baseline measurements shows
the distribution of an idealized IFN response. Based on the average baseline values of PV
patients, shown as black circles ©, 1000 virtual patients were simulated and the sum of mature
cells were scaled to agree with the baseline data-point for leukocytes and thrombocytes in the
top-left and bottom-left panel respectively. The blue curve shows the median response-curve. The
shaded grey areas displays the distribution, with the darkest grey showing the interval from 25%
to 75% of values at the given time-points, the next-darkest interval shows from 10% to 90% while
the final interval from 5% to 95% of virtual patient-responses is shown in light grey. The bottom
right panel displays the IFN blood-concentration used, corresponding to a constant 5µg IFN dose.
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5 Conclusion

A stem-cell extension of the mechanism-based Cancitis model was presented, describing simultaneously the
blood-production in the human body and the behaviour of hematopoietic stem cells. Through pharmacokinetic
and pharmacodynamic modelling of the effect of Interferon-alfa (IFN), the model was further extended. Consid-
ering a cohort of MPN-diagnosed patients and using patient-specific data for IFN-doses, the model reproduced
both hematologic data for blood-cell counts and molecular markers describing disease burden, on the level of
individual patients.

We find that normalization of cell-counts during IFN-treatment could be explained by an induced decrease
in self-renewal of leukemic stem cells, and decreased proliferation of all progenitors cells. This finding agrees
with and expands our previous work [21].

Apart from population-level parameters shared between patients, model-fits consisted of four fitted param-
eters: Two scaling-parameters of the blood-cell counts and two parameters, νρL and νω The parameter νω
described the number of blood-cells produced per differentiated stem cell, and was found to relate to a transient
change in blood-cell counts. νρL determined the proliferation of malignant stem cells, and primarily affected
long-term disease burden. Furthermore, we found that the time from treatment-cessation until blood-cell counts
return to a heightened value also depended on νρL .

Patient-specific fits were made to data for the JAK2V 617F allele burden and the thrombocyte- and leukocyte-
counts. Such simultaneous agreement with both hematologic and molecular markers are novel, and our work
represent initial efforts of modelling different types of data of individual patients. The agreement between
model and data demonstrates that mechanism-based mathematical modelling can accurately capture patient-
behaviour, while allowing for a biological interpretation of the treatment-response. The treatment-response was
quantified on a personalized level by the separate effect of νρL and νω, with the former parameter describing the
decrease in disease burden an lengthening of the time to relapse, while the latter describes a transient decrease
in blood-cell counts. In addition, our results highlight the importance of monitoring the disease burden, by
demonstrating that relapse occurs earlier if treatment is ceased before the disease burden is sufficiently reduced,
see figure 5.

Quantifying the two-fold effect of IFN revealed the existence of a clinical challenge. A significant response in
hematologic measures, as quantified by νω, suggests that high IFN-doses could lead to an excessive decrease in
blood-cell-counts, which could constitute a risk for the health of the patient. However, our results simultaneously
suggested that for long-term molecular response and lengthening of the time to relapse, as quantified by νρL ,
the IFN-dose must be increased. While combination therapy or novel dose-scheduling could solve this challenge,
the challenge of maximizing long-term benefit while minimizing short-term risk remains. Personalized estimates
of νρL and νω quantifies this challenge on a personal level, identifying patients suitable for increased doses and
patients that are not.

Proof-of-concept population modelling was presented. This allowed for a population-level description of the
effect of IFN-treatment, and simulation of virtual patients representing the population. Comparing the distri-
bution of 1000 virtual patients with data from a sub-cohort showed that patient-data could be predicted by
the model based only on pre-treatment data and information of IFN-dose. While further validation of our ap-
proach is necessary, predicting patient-responses before treatment-initiation could be an important clinical tool.
Furthermore, updating and refining predictions during subsequent clinical follow-up, could give the clinician an
estimate of the patient-trajectory, guiding future clinical decisions.

In conclusion, we find that modelling the quantitative dynamics of hematologic and molecular markers on
a patient-specific level during IFN-treatment is possible. In order to make accurate predictions for treatment-
response based on mathematical modelling, both hematologic and molecular data are needed, highlighting the
importance of obtaining molecular data in a clinical setting. Further model-validation and evaluation of the
predictive power of the model is required before the model is used as a predictive clinical tool. However, we
assess that personalized mathematical modelling as described here could benefit MPN-patients significantly.
Furthermore, we believe that, given the similar biological structure of hematologic malignancies, such modelling
could be extended to other types of blood cancers in future work, increasing the potential benefit.
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