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Abstract

In this study, the fractional sine-Gordon model in the time-dependent variable domain using Caputo non-integer order basis

derivative is presented. The main purpose is to utilize the adaptation of reproducing kernel Hilbert algorithm to construct

pointwise numerical solution to variant forms of fractional sine-Gordon model in fullness of overdetermination Dirichlet boundary

condition. Allocates theoretical requirements are employed to interpret pointwise numerical solutions to such fractional models

on the space of Sobolev. In addendum, the convergence of the pointwise numerical algorithm and error estimates are promoted

by global convergence treatises. This handling pointwise numerical solution depending on the orthogonalization Schmidt

process that can be straightway carried out to generate Fourier expansion within a fast convergence rate. The soundness

and powerfulness of the discussed algorithm are expounded by testing the solvability of a couple of time-fractional sine-Gordon

models. Some schematic plots and tabulated results outcomes signalize that the algorithm procedure is accurate and convenient

in the field of fractional sense. Ultimately, future remarks and concluding are acted with the most focused used references.
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Abstract. In this study, the fractional sine-Gordon model in the time-dependent variable domain using Caputo non-

integer order basis derivative is presented. The main purpose is to utilize the adaptation of reproducing kernel 

Hilbert algorithm to construct pointwise numerical solution to variant forms of fractional sine-Gordon model in 

fullness of overdetermination Dirichlet boundary condition. Allocates theoretical requirements are employed to 

interpret pointwise numerical solutions to such fractional models on the space of Sobolev. In addendum, the 

convergence of the pointwise numerical algorithm and error estimates are promoted by global convergence 

treatises. This handling pointwise numerical solution depending on the orthogonalization Schmidt process that 

can be straightway carried out to generate Fourier expansion within a fast convergence rate. The soundness and 

powerfulness of the discussed algorithm are expounded by testing the solvability of a couple of time-fractional 

sine-Gordon models. Some schematic plots and tabulated results outcomes signalize that the algorithm procedure 

is accurate and convenient in the field of fractional sense. Ultimately, future remarks and concluding are acted with 

the most focused used references. 

Keywords: Time-fractional sine-Gordon model; Dirichlet boundary condition; Reproducing kernel Hilbert 

algorithm; Caputo time-fractional partial derivative; Pointwise numerical solution 

Abbreviations: TFSGM: Time-fractional sine-Gordon model; DBC: Dirichlet boundary condition; RKHA: reproducing 

kernel Hilbert algorithm; CTFPD: Caputo time-fractional partial derivative; HS: Hilbert space; RK: Reproducing 

kernel 
 

1  Utilization 

The physical constructions of TFSGM concern an interdisciplinary field connecting mathematical analysis, 

numerical mathematics, semiclassical physics, and quantum physics, which are designed and analyzed to simulate 
physical behaviors in modern wave theory, models of particle physics, stability of fluid motions, nonlinear optics, 

differential geometry, and propagation of fluxon [1-9]. But in return, the sources why we examine the fractional 

kind of SGM are that: in the real phenomena, the following state of  a physical mode relies on not exclusive its existing 

state but also at its historical states. To paradigm such characteristics and merits, a robust and adequate tool is the 

fractional descriptive approach. This signalizes that, TFSGM can supply a lot more precise and appropriate 

depiction of the physical modes including hereditary and memory characteristics. Generally, the fractional 

descriptive approach lids many scopes of engineering and science such as anomalous diffusion, biological models, 

quantum mechanics, Pipkin’s viscoelasticity, etc. [10-14]. 

So that more and more fractional systems have been utilized lately, a way to assemble the solutions of 

fractional integral/differential models becomes a crucial and warm subject. But in return, for widely of such 

fractional integral/differential models, we cannot reap their analytic solutions in terms of well-known basic 

functions. Thereafter, a huge quantity of researchers has attempted to broaden numerical schemes, approximation 

methods, or numerical algorithms to manage answers which might be lacking or tough to find. Focusing on these 

findings, we can see it's far an exciting and difficult challenge to broaden numerical methods for such fractional 
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integral/differential models. In this analysis, we utilize and design an efficient and fast numerical algorithm in the 

space of Sobolev relying on RK Hilbert functions, so-called, the RKHA to solve the TFSGM regarding the DBC in form 

of schematic plot and tabulated results. Anyhow, we consider the subsequent fractional model that obey the 

following formalism: 

∂𝜏
𝜔𝜙(𝜅, 𝜏) +𝒜 ∂𝜏𝜙(𝜅, 𝜏) − ℬ ∂𝜅

2𝜙(𝜅, 𝜏) + 𝜐(𝜅, 𝜏) sin(𝜙(𝜅, 𝜏)) = 𝜓(𝜅, 𝜏), (1) 

regarding the DBC 

{
 

 
𝜙(𝜅, 0) = 𝜑1(𝜅),

∂𝜏𝜙(𝜅, 0) = 𝜑2(𝜅),

𝜙(0, 𝜏) = 𝜒1(𝜏),

𝜙(1, 𝜏) = 𝜒2(𝜏),

 (2) 

and regarding the CTFPD 

∂𝜏
𝜔𝜙(𝜅, 𝜏) = {

Γ−1(2 − 𝜔)∫
𝜏

0

(𝑡 − 𝜔)1−𝛼 ∂𝑡
2𝜙(𝜅, 𝑡)𝑑𝑡, 1 < 𝜔 < 2,

∂𝜏
2𝜙(𝜅, 𝜏), 𝜔 = 2.

 (3) 

Herein, (𝜅, 𝜏) ∈ Ω ≔ [0,1] × [0,1], 𝜐(𝜅, 𝜏) and 𝜓(𝜅, 𝜏) are smooth enough functions defined on Ω, and ∂𝜏
𝜔𝜙(𝜅, 𝜏) 

with 1 < 𝜔 < 2 represent the CTFPD of 𝜙(𝜅, 𝜏) over the measurement interval 0 ≤ 𝑡 < 𝜏 ≤ 1. The term parameters 

𝒜 and ℬ are known as the dissipative with 𝒜 ≥ 0 and ℬ > 0. Specifically, TFSGM (1-3) reduces to undamped 

TFSGM for 𝒜 = 0 and a damped one for 𝒜 > 0. The term function 𝜐(𝜅, 𝜏) represents Josephson current density, 

whilst, 𝜑1(𝜅) and 𝜑2(𝜅) characterize wave models and velocity, simultaneously. In addendum to the previous, 

𝜓(𝜅, 𝜏) is known as the forcing non-homogenized function, whilst 𝜒1(𝜏) and 𝜒2(𝜏) are boundary forcing functions. 

Hither, by ∂𝜏𝜙(𝜅, 𝜏) we mean 𝜙𝜏(𝜅, 𝜏) and by ∂𝜅
2𝜙(𝜅, 𝜏) we mean = 𝜙𝜅𝜅(𝜅, 𝜏), and so on. 

Mathematically, the DBC is a type of constraint solution that commonly appears when imposed on the 

differential/integral models, it is an apportionment of a linear interpolation of the values of a suggested solution 

on Ω. As a rule, DBC is a weighted interpolation of Robin-Neumann BCs. This constraint is rendered as impedance 

conditions, from their fulfillment in electrostatics, thermodynamics, fluid dynamics, and beam theory [15-29]. 

Anyhow, an interesting type of TFSGM is finding an unknown source term function 𝜙(𝜅, 𝜏) behind conformable 

DBC of its component as utilized in (1-3). In this permission, we are interested in finding a pointwise numerical 

solution 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) whose seek behind unique exact one and its DBC. 
On the numerical level, the RKHA was used in its discretion horizon to pointwise numerically solving and 

studying bifurcations behavior of a variety of integral/differential operator models of different species of 

derivatives [30-52]. More specifically, the implementation of the RKHA for pointwise numerical solvability of 

TFSGM depends on four phases as [53-55]: 

• Firstly, we neatly identify solution domain-range spaces whereas an unsuitable choice is an obstacle to achieve 

the coveted solutions. 

• Secondly, we erect the RK functions whereas the focusing is on the Green function positionality. 

• Thirdly, we generate a group of orthonormal basis functions for space solutions by couple RK functions, Gram-

Schmidt orthogonalization process, a boundary operator, and a dense sequence of points in the domain of 

space solution. 

• Fourthly, we symbolize the exact continued answer of TFSGM by a sum of an infinite orthonormal basis 

functions accomplished from the mentioned last stages. 

• Finally, we truncate series of exact solution representation by 𝑛-terms as a numerical pointwise solution. 

In contract of the utilization, the enduring sections are synopsized sequentially as next: Section 2 utilized 

fundamentals RK spaces and RK functions. Section 3 utilized the preparation and processing of TFSGM in RKHA. 

Section 4 utilized convergence of solutions in RKHA and some addendum results. Section 5 utilized RKHA junctures 

and mathematical debates with some tabulation and plot results. Ultimately, Section 7 utilized highlight, 

concluding, and future. 

2  Fundamentals RK spaces and RK functions 

If Η is an HS of mappings defined on a set Δ, then Τ: Δ × Δ → ℝ is an RK of Η when the next are completely fulfilled: 
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Firstly, for each 𝜏 ∈ Δ, Τ(⋅, 𝜏) ∈ Η. Secondly, for each Τ ∈ Η and each 𝑡 ∈ Δ, 〈Τ(⋅), Τ(⋅, 𝜏)〉Η = Τ(𝜏). Hither, we will 

write ‖𝜔‖𝜁
2 = ⟨𝜔(𝜉),𝜔(𝜉)⟩𝜁 with 𝜔 ∈ 𝜁, 𝜉 ∈ [0,1] and 𝜁 ∈ {Σ(1,2), Σ̂(1,2), Σ(3,2), Σ̂(3,2)}. In addendum, we will assume 

that 𝜔,𝜔′, 𝜔′′ ∈ 𝐿2[0,1], whilst, 𝐴𝐶[0,1] denots the set of absolutely continuous functions on [0,1]. 

The elements in Σ(1,2) are explored as Σ(1,2) [0,1] = {𝜒: 𝜒 ∈ 𝐴𝐶[0,1]} and equipped with the inner 

representation product 

⟨𝜒1(𝜏), 𝜒2(𝜏)⟩Σ(1,2) = 𝜒1(0)𝜒2(0) + ∫ 𝜒1
′(𝜏)𝜒2

′ (𝜏)𝑑𝜏
1

0

. (4) 

But in return, the RK function of Σ(1,2)[0,1] can performs as 

Π𝜍
{1}(𝜏) = 1 +min(𝜍, 𝜏). (5) 

In the identical modality, if [0,1] is the domain-space, then the inner representation product of Σ̂(1,2)[0,1] has 

the form ⟨𝜑1(𝜅),𝜑2(𝜅)⟩Σ̂(1,2) = 𝜑1(0)𝜑2(0) + ∫ 𝜑1
′ (𝜅)𝜑2

′ (𝜅)𝑑𝜅
1

0
 with RK function Π̂𝜆

{1}(𝜅) = 1 +min(𝜅, 𝜆). 

The elements in Σ(3,2) are explored as Σ(3,2) [0,1] = {𝜒: 𝜒, 𝜒
′ ∈ 𝐴𝐶[0,1] ∧ 𝜒(0) = 𝜒′(0) = 0} and equipped with 

the inner representation product 

⟨𝜒1(𝜅), 𝜒2(𝜅)⟩Σ(3,2) =∑𝜒1
(𝑖)(0)𝜒2

(𝑖)(0)

2

𝑖=0

+∫ 𝜒1
′′(𝜏)𝜒2

′′(𝜏)𝑑𝜏
1

0

. (6) 

But in return, the RK function of Σ(3,2)[0,1] can performs as 

Π𝜍
{3}(𝜏) =

1

120
{
𝜏2(𝜏3 − 5𝜏2𝜍 + 10𝜍2(𝜏 + 3)), 𝜏 ≤ 𝜍,

𝜍2(𝜍3 − 5𝜍2𝜏 + 10𝜏2(𝜍 + 3)), 𝜏 > 𝜍.
 (7) 

The elements in Σ̂(3,2) are explored as Σ̂(3,2) [0,1] = {𝜑:𝜑, 𝜑
′, 𝜑′′ ∈ 𝐴𝐶[0,1] ∧ 𝜑(0) = 𝜑(1) = 0} and equipped 

with the inner representation product 

⟨𝜑1(𝜅), 𝜑2(𝜅)⟩Σ̂(3,2) =∑𝜑1
(𝑖)(0)𝜑2

(𝑖)(0)

1

𝑖=0

+ 𝜑1(1)𝜑2(1) + ∫ 𝜑1
′′′(𝜅)𝜑2

′′′(𝜅)𝑑𝜅
1

0

. (8) 

But in return, the RK function of Σ̂(3,2) [0,1] can performs as 

Π̂𝜆
{3}(𝜅) =

1

120
{
𝜆(𝔒1(𝜅, 𝜆) + 𝔒2(𝜅, 𝜆) + 5𝔒3(𝜅, 𝜆)), 𝜅 ≤ 𝜆,

𝜅(𝔒1(𝜆, 𝜅) + 𝔒2(𝜆, 𝜅) + 5𝔒3(𝜆, 𝜅)), 𝜅 > 𝜆,
 (9) 

whereas 𝔒1(𝑥, 𝑦), 𝔒1(𝑥, 𝑦), and 𝔒1(𝑥, 𝑦) are formulated, simultaneously, as 

𝔒1(𝜅, 𝜆) = 𝜅
2𝜆(6 + 120 − 𝜅3 − 𝜆3),

𝔒2(𝜅, 𝜆) = 𝜆(𝜆
3 − 10𝜅3) − 5𝜅(−24 + 𝜆3),

𝔒3(𝜅, 𝜆) = 𝜅(𝜆(𝜅
3 − 24) + 𝜅(𝜆3 − 24)).

 (10) 

To fitting adequate spaces contains the suggested solution of (1-3); a couple HSs and RK functions are setting 

up. Hither, we will write Ι = [0,1]⊗ [0,1] and ‖𝜙‖𝜁
2 = ⟨𝜙(𝜉, 𝜍), 𝜙(𝜉, 𝜍)⟩𝜁, whereas 𝜙 ∈ 𝜁, 𝜉, 𝜍 ∈ Ι and 𝜁 ∈ {Υ, Υ̂}. In 

addendum, we will assume that 𝜕𝜅
3𝜕𝜏

3𝜙, 𝜕𝜅𝜕𝜏𝜙 ∈ 𝐿
2(Ι), whilst, 𝐶(Ι) denotes the set of continuous functions on Ι. 

Definition 1 The elements in Υ(Ι) are explored as 

Υ(Ι) = {𝜙: 𝜕𝜅
2𝜕𝜏

2𝜙(𝜅, 𝜏) ∈ 𝐶(Ι) ∧ 𝜙(𝜅, 0) = 𝜕𝜏𝜙(𝜅, 0) = 𝜙(0, 𝜏) = 𝜙(1, 𝜏) = 0}, (11) 

and equipped with the inner representation product 

⟨𝜙1(𝜅, 𝜏), 𝜙2(𝜅, 𝜏)⟩Υ =∑〈∂𝜏
𝑗
𝜙1(𝜅, 0), ∂𝜏

𝑗
𝜙2(𝜅, 0)〉Σ̂(3,2)

2

𝑗=0

 

+∫ [∑∂𝜏
2 ∂𝜅

𝑗
𝜙1(0, 𝜏)𝜕𝜏

2𝜕𝜅
𝑗
𝜙2(0, 𝜏)

1

𝑗=0

+ ∂𝜏
2𝜙1(1, 𝜏) ∂𝜏

2𝜙2(1, 𝜏)] 𝑑𝜏
1

0

 

+∫ ∫ ∂𝜅
3 ∂𝜏

2𝜙1(𝜅, 𝜏) ∂𝜅
3 ∂𝜏

2𝜙2(𝜅, 𝜏)𝑑𝑥𝑑𝜏
1

0

1

0

. 

(12) 
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Theorem 1 The RK function of Υ(Ι) can performs as 

Ρ(𝑦,𝑠)(𝜅, 𝜏) = Π̂𝜆
{3}(𝜅)Π𝜍

{3}(𝜏), (13) 

whereas for each 𝜙(𝜅, 𝜏) ∈ Υ(Ι), one has ⟨𝜙(𝜅, 𝜏), Ρ(𝜆,𝜍)(𝜅, 𝜏)⟩Υ
= 𝜙(𝜆, 𝜍) and Ρ(𝜆,𝜍)(𝜅, 𝜏) = Ρ(𝜅,𝜏)(𝜆, 𝜍). 

Proof. From the functional framework of Σ̂(3,2) [0,1] and Σ(3,2)[0,1] with differentials 𝑑𝜅 and 𝑑𝜏, one has 

〈𝜙(𝜅, 𝜏), Π̂𝜆
{3}(𝜅)Π𝜍

{3}(𝜏)〉Υ 

=∑〈∂𝜏
𝑗
𝜙(𝜅, 0), ∂𝜏

𝑗
Π̂𝜆
{3}(𝜅)Π𝜍

{3}(0)〉Σ̂(3,2)

2

𝑗=0

 

+∫ [∑𝜕𝜏
2𝜕𝜅

𝑗
𝜙(0, 𝜏)𝜕𝜏

2𝜕𝜅
𝑗
Π̂𝜆
{3}(0)Π𝜍

{3}(𝜏) + 𝜕𝜏
2𝜙(1, 𝜏)𝜕𝜏

2Π̂𝜆
{3}(1)Π𝜍

{3}(𝜏)

1

𝑗=0

]
1

0

𝑑𝜏 

+∫ ∫ 𝜕𝜅
3𝜕𝜏

2𝜙(𝜅, 𝜏)𝜕𝜅
3𝜕𝜏

2Π̂𝜆
{3}(𝜅)Π𝜍

{3}(𝜏)
1

0

𝑑𝜅𝑑𝜏
1

0

 

=∑〈∂𝜏
𝑗
𝜙(𝜅, 0), Π̂𝜆

{3}(𝜅) ∂𝜏
𝑗
Π𝜍
{3}(0)〉Σ̂(3,2)

2

𝑗=0

 

+∫ [∑𝜕𝜏
2𝜕𝜅

𝑗
𝜙(0, 𝜏)𝜕𝜏

2Π𝜍
{3}(𝜏)𝜕𝜅

𝑗
Π̂𝜆
{3}(0) + 𝜕𝜏

2𝜙(1, 𝜏)Π̂𝜆
{3}(1)𝜕𝜏

2Π𝜍
{3}(𝜏)

1

𝑗=0

] 𝑑𝜏
1

0

 

+∫ ∫ ∂𝜅
3 ∂𝜏

2𝜙(𝜅, 𝜏) ∂𝜅
3Π̂𝜆

{3}(𝜅) ∂𝜏
2Π𝜍

{3}(𝜏)𝑑𝜅𝑑𝜏
𝐿

0

1

0

 

=∑∂𝜏
𝑗
〈𝜙(𝜅, 0), Π̂𝜆

{3}(𝜅)〉Σ̂(3,2) ∂𝜏
𝑗
Π𝜍
{3}(0)

2

𝑗=0

 

+∫ 𝜕𝜏
2Π𝜍

{3}(𝜏)𝜕𝜏
2 [∑𝜕𝜅

𝑗
𝜙(0, 𝜏)𝜕𝜅

𝑗
Π̂𝜆
{3}(0) + 𝜙(1, 𝜏)Π̂𝜆

{3}(1) + ∫ 𝜕𝜅
3𝜙(𝜅, 𝜏)𝜕𝜅

3Π̂𝜆
{3}(𝜅)𝑑𝜅

1

0

1

𝑗=0

] 𝑑𝜏
1

0

 

=∑∂𝜏
𝑗
𝜙(𝜆, 0) ∂𝜏

𝑗
Π𝜍
{3}(0) + ∫ ∂𝜏

2Π𝜍
{3}(𝜏) ∂𝜏

2〈𝜙(𝜅, 𝜏), Π̂𝜆
{3}(𝜅)〉Σ̂(3,2)𝑑𝜏

1

0

2

𝑗=0

 

=∑∂𝜏
𝑗
𝜙(𝜆, 0) ∂𝜏

𝑗
Π𝜍
{3}(0) + ∫ ∂𝜏

2Π𝜍
{3}(𝜏) ∂𝜏

2𝜙(𝜆, 𝜏)𝑑𝜏
1

0

2

𝑗=0

 

= ⟨𝜙(𝜆, 𝜏), Π𝜍
{3}(𝜏)〉Σ̂(3,2) 

= 𝜙(𝜆, 𝜍). 

(14) 

Thereafter, ⟨𝜙(𝜅, 𝜏), Ρ(𝜆,𝜍)(𝜅, 𝜏)⟩Υ
= 𝜙(𝜆, 𝜍), while in return, Ρ(𝜆,𝜍)(𝜅, 𝜏) = ⟨Ρ(𝜆,𝜍)(𝜉, 𝜁), Ρ(𝜅,𝜏)(𝜉, 𝜁)⟩Υ

=

⟨Ρ(𝜅,𝜏)(𝜉, 𝜁), Ρ(𝜆,𝜍)(𝜉, 𝜁)⟩Υ
= Ρ(𝜅,𝜏)(𝜆, 𝜍). ■ 

Definition 2 The elements in Υ̂(Ι) are explored as Υ̂(Ι) = {𝜙:𝜙 ∈ 𝐶(Ι)} and equipped with the inner representation 

product 

⟨𝜙1(𝜅, 𝜏), 𝜙2(𝜅, 𝜏)⟩Υ̂ = 〈𝜙1(𝜅, 0), 𝜙2(𝜅, 0)〉Σ̂(1,2) 

+∫ ∂𝜏𝜙1(0, 𝜏) ∂𝜏𝜙2(0, 𝜏)𝑑𝜏 + ∫ ∫ ∂𝜅𝜏
2 𝜙1(𝜅, 𝜏) ∂𝜅𝜏

2 𝜙2(𝜅, 𝜏)𝑑𝜅𝑑𝜏
1

0

1

0

1

0

. 
(15) 

Theorem 2 The RK function of Υ̂(Ι) can performs as 

Ρ̂(𝜆,𝜍)(𝜅, 𝜏) = Π̂𝜆
{1}(𝜅)Π𝜍

{1}(𝜏), (16) 
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whereas for each 𝜙(𝜅, 𝜏) ∈ Υ̂(Ι), we have ⟨𝜙(𝜅, 𝜏), Ρ̂(𝜆,𝜍)(𝜅, 𝜏)⟩Υ̂
= 𝜙(𝜆, 𝜍) and Ρ̂(𝜆,𝜍)(𝜅, 𝜏) = Ρ̂(𝜅,𝜏)(𝜆, 𝜍). 

Proof. Leaves to the reader to complete it. ■ 

3  TFSGM: preparation and processing 

In the utilized work, the determinant function 𝜙(𝜅, 𝜏) is specified whereas the TFBM (1-3) is unruffled hold. To do 

this fully, problem initialization for the RKHA of finding 𝑛-term pointwise numerical solution in its discrete horizon, 

and the construction of the orthogonal function systems of Υ(Ι) are utilized.  In addendum, we will offering that 

{𝜃𝑖(𝜅, 𝜏)}𝑖=1
∞  is complete, whilst, {Ρ(𝜅𝑖,𝜏𝑖)(𝜅, 𝜏)}𝑖=1

∞
 is a linearly independent on Υ(Ι) in the zone that {(𝜅𝑖, 𝜏𝑖)}𝑖=1

∞  is 

dense on Ι. 

Our subsequent step is to work on vanishinization the DBC in (2) to put 𝜙 in Υ(Ι). Anyhow, the subsequent 

initialization could be making use of taking into account 𝜒1(0) ≠ 0. In this direction, set 

𝜙(𝜅, 𝜏):= 𝜙(𝜅, 𝜏) − 𝜏(𝜑2(𝜅) + 𝜒1
−1(0)(𝜅 − 1)𝜑1(𝜅)𝜑2(0) − 𝜅𝜑2(1)) + 𝜒1

−1(0)(𝜅 − 1)𝜑1(𝜅)𝜒1(𝜏)

− 𝜅𝜒2(𝜏) − 𝜅𝜑1(𝜅) + 𝜅𝜒2(0). 
(17) 

Despite the whole thing and for plainness, we will indicate the new transformed solution by 𝜙(𝜅, 𝜏) in the flesh, 

so, we acknowledge and fixe that 

{
Φ[𝜙](𝜅, 𝜏) = ∂𝜏

𝜔𝜙(𝜅, 𝜏) + 𝒜 ∂𝜏𝜙(𝜅, 𝜏) − ℬ ∂𝜅
2𝜙(𝜅, 𝜏),

ℋ(𝜅, 𝜏, 𝜙(𝜅, 𝜏)) = 𝜓̂(𝜅, 𝜏) − 𝜐(𝜅, 𝜏) sin(𝜙(𝜅, 𝜏)) .
 (18) 

regarding the homogenized DBC 

{
 

 
𝜙(𝜅, 0) = 0,

∂𝜏𝜙(𝜅, 0) = 0,

𝜙(0, 𝜏) = 0,

𝜙(1, 𝜏) = 0.

 (19) 

For the attitude of the RKHA procedure, we realize the differential linear operator Φ and its mapping as 

{
Φ: Υ(Ι) → Υ̂(Ι),

Φ[𝜙](𝜅, 𝜏) = ℋ(𝜅, 𝜏, 𝜙(𝜅, 𝜏)).
 (20) 

To texture the orthogonal function systems of Υ(Ι), we nominate a countable dense subset {(𝜅𝑖, 𝜏𝑖)}𝑖=1
∞  within 

Ι. Insert 𝛿𝑖(𝜅, 𝜏) = Ρ̂(𝑥𝑖,𝑡𝑖)(𝜅, 𝜏) and 𝜃𝑖(𝜅, 𝜏) = Φ
∗[𝛿𝑖](𝜅, 𝜏), whereas Φ∗: Υ̂(Ι) → Υ(Ι). The normalized orthonormal 

function of {𝜃𝑖(𝜅, 𝜏)}𝑖=1
∞

 systems related to Υ̂(Ι) is commonly initialized from the execution of the Gram-Schmidt 

orthogonalization of {𝜃𝑖(𝜅, 𝜏)}𝑖=1
∞  as 

𝜃𝑖(𝜅, 𝜏) = ∑𝜎𝑖𝑘𝜃𝑘(𝜅, 𝜏)

𝑖

𝑘=1

. (21) 

Fundamentally, the recipients should know that the use of Schwarz inequality on Φ:Υ(Ι) → Υ̂(Ι) produce its 

boundedness; this intend that ‖Φ[𝜙](𝜅, 𝜏)‖Υ
2 ≤ 𝐶‖𝜙‖Υ̂

2  with 𝐶 > 0. For more clarifications see the proof of the 

allocated details in [30]. 

Theorem 3 {𝜃𝑖(𝜅, 𝜏)}𝑖=1
∞  is a complete in Υ(Ι) whereas 

𝜃𝑖(𝜅, 𝜏) = Φ(𝜆,𝜍)[Ρ](𝜅, 𝜏)|(𝜆,𝜍)=(𝜅𝑖,𝜏𝑖)
. (22) 

Proof. Note that Φ(𝜆,𝜍) tick that Φ design to a function of (𝜆, 𝜍). But in fact, 

𝜃𝑖(𝜅, 𝜏) = Φ
∗[𝛿𝑖](𝜅, 𝜏)

               = ⟨Φ∗[𝛿𝑖](𝜆, 𝜍), Ρ(𝜅,𝜏)(𝜆, 𝜍)⟩Υ
               = ⟨𝛿𝑖(𝜆, 𝜍),Φ(𝜆,𝜍)[Ρ(𝜅,𝜏)](𝜆, 𝜍)⟩Υ̂
               = Φ(𝜆,𝜍)[Ρ(𝜅,𝜏)](𝜆, 𝜍)|(𝜆,𝜍)=(𝜅𝑖,𝜏𝑖)

               = Φ(𝜆,𝜍)[Ρ(𝜆,𝜍)](𝜅, 𝜏)|(𝜆,𝜍)=(𝜅𝑖,𝜏𝑖)
.

               ∈ Υ(Ι).

 (23) 

To complete, for each 𝜙 ∈ Υ(Ι), pick ⟨𝜙(𝜅, 𝜏), 𝜃𝑖(𝜅, 𝜏)⟩Υ = 0, 𝑖 = 1,2,…. Then 
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⟨𝜙(𝜅, 𝜏), 𝜃𝑖(𝜅, 𝜏)⟩Ν = ⟨𝜙(𝜅, 𝜏),Φ
∗[𝛿𝑖](𝜅, 𝜏)⟩Υ

                                   = ⟨Φ[𝜙](𝜅, 𝜏), 𝛿𝑖(𝜏)⟩Υ̂
                                   = Φ[𝜙](𝜅𝑖 , 𝜏𝑖)
                                   = 0.

 (24) 

for {(𝜅𝑖 , 𝜏𝑖)}𝑖=1
∞  is dense on Ι, we get Φ[𝜙](𝜅, 𝜏) = 0 via the existence of Φ−1. Thus 𝜌 = 0. ■ 

Theorem 4 {Ρ(𝜅𝑖,𝜏𝑖)(𝜅, 𝜏)}𝑖=1
∞

 is a linearly independent on Υ(Ι). 

Proof. Frankly, this is being demonstrated with {Ρ(𝜅𝑖,𝜏𝑖)(𝜅, 𝜏)}𝑖=1
𝜂

 is a linearly independent for each 𝜂 − 1 ≥ 0. But in 

return, if {𝑎𝑖}𝑖=1
𝜂

 fulfill ∑ 𝑎𝑖Ρ(𝜅𝑖,𝜏𝑖)(𝜅, 𝜏)
𝜂
𝑖=1 = 0 and taking 𝑏𝑘(𝜅, 𝜏) ∈ Υ(Ι) with 𝑏𝑘(𝜅𝑙 , 𝜏𝑙) = δ𝑙,𝑘 for 𝑙, 𝑘, 1,2,⋯ , 𝜂, then 

0 = ⟨𝑏𝑘(𝜅, 𝜏),∑𝑎𝑖Ρ(𝜅𝑖,𝜏𝑖)(𝜅, 𝜏)

𝜂

𝑖=1

⟩

Υ

   =∑𝑎𝑖⟨𝑏𝑘(𝜅, 𝜏), Ρ(𝜅𝑖,𝜏𝑖)(𝜅, 𝜏)⟩Υ

𝜂

𝑖=1

   =∑𝑎𝑖𝑏𝑘(𝜅𝑖, 𝜏𝑖)

𝜂

𝑖=1
   = 𝑎𝑘 .

 (25) 

Or 𝑎𝑘 = 0 for 𝑘 = 1,2,⋯ , 𝜂. ■ 

4  Convergence of solutions in RKHA 

In this portion, functional initialization of exact and numerical pointwise solutions are given in Υ(Ι) depending on 

the Fourier expansion theorem. Over and above, convergence of 𝜙𝑛(𝜅, 𝜏) → 𝜙(𝜅, 𝜏) as 𝑛 → ∞ with some error 

behavior results are examined. Ultimate that, uniformly convergence of ∂𝜅
𝑖 ∂𝜏

𝑗
𝜙𝑛(𝜅, 𝜏)  → ∂𝜅

𝑖 ∂𝜏
𝑗
𝜙(𝜅, 𝜏) with 𝑖 =

0,1,2, 𝑗 = 0,1 as 𝑛 → ∞ is offered. 

Scrutinize the following qualifier: if 𝜙 ∈ 𝐶(Ι) and {𝜃̅𝑖(𝜅, 𝜏)}𝑖=1
∞  an orthonormal functions system, then 

⟨𝜌(𝜅, 𝜏), 𝜃̅𝑖(𝜅, 𝜏)⟩Υ, 𝑖 = 1,2,… is called Fourier functions of 𝜙(𝜅, 𝜏) regard to {𝜃̅𝑖(𝜅, 𝜏)}𝑖=1
∞  and 𝜙(𝜅, 𝜏) =

∑ ⟨𝜙(𝜅, 𝜏), 𝜃̅𝑖(𝜅, 𝜏)⟩Υ𝜃̅𝑖
(𝜅, 𝜏)∞

𝑖=1  called its Fourier expansion.  Anyhow, all of this qualifies us to write the subsequent 

outcome. 

Theorem 5 If 𝒦𝑖 = ∑ 𝜎𝑖𝑘Γ(𝜅𝑘, 𝜏𝑘 , 𝜙(𝜅𝑘, 𝜏𝑘))
𝑖
𝑘=1  and 𝜙(𝜅, 𝜏) is the exact solution of (20) regarding to (19), then 

𝜙(𝜅, 𝜏) =∑𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)

∞

𝑖=1

. (26) 

Proof. Mainly, ⟨𝜙(𝜅, 𝜏),𝜑𝑖(𝜅, 𝜏)⟩Υ = 𝜙(𝑥𝑖 , 𝑡𝑖) and ∑ 𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)
∞
𝑖=1  is the Fourier expansion on {𝜃𝑖(𝜅, 𝜏)}𝑖=1

∞
. 

Thereafter, ∑ 𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)
∞
𝑖=1  is a convergent in ‖⋅‖Υ whereas 
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𝜙(𝜅, 𝜏) =∑⟨𝜙(𝜅, 𝜏), 𝜃̅𝑖(𝜅, 𝜏)⟩Υ𝜃̅𝑖
(𝜅, 𝜏)

∞

𝑖=1

               =∑〈𝜙(𝜅, 𝜏),∑𝜎𝑖𝑘𝜃𝑘(𝜅, 𝜏)

𝑖

𝑘=1

〉Υ 𝜃̅𝑖(𝜅, 𝜏)

∞

𝑖=1

               =∑∑𝜎𝑖𝑘⟨𝜙(𝜅, 𝜏),Φ
∗𝜑𝑘(𝜅, 𝜏)⟩Υ𝜃̅𝑖(𝜅, 𝜏)

𝑖

𝑘=1

∞

𝑖=1

               =∑∑𝜎𝑖𝑘⟨Φ𝜙(𝜅, 𝜏), Ρ̂(𝜅𝑘,𝜏𝑘)(𝜅, 𝜏)⟩Υ̂
𝜃̅𝑖(𝜅, 𝜏)

𝑖

𝑘=1

∞

𝑖=1

               =∑∑𝜎𝑖𝑘Φ𝜙(𝜅𝑘 , 𝜏𝑘)𝜃̅𝑖(𝜅, 𝜏)

𝑖

𝑘=1

∞

𝑖=1

               =∑∑𝜎𝑖𝑘ℋ(𝜅𝑘, 𝜏𝑘 , 𝜙(𝜅𝑘, 𝜏𝑘))𝜃̅𝑖(𝜅, 𝜏)

𝑖

𝑘=1

∞

𝑖=1

               =∑𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)

∞

𝑖=1

.

 (27) 

In else words, ∑ 𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)
∞
𝑖=1  is solely the exact solution of (20) regarding (19). ■ 

For pointwise numerical output, pick out (𝜅1, 𝜏1) = (0,0). From (19) 𝜙(𝜅1, 𝜏1) is known. In addendum, pick out 

𝜙0(𝜅1, 𝜏1) = 𝜙(𝜅1, 𝜏1) and realize 𝑛-term pointwise numerical solution of 𝜙(𝜅, 𝜏) using its related truncating issue 

as 𝜙𝑛(𝜅, 𝜏) = ∑ 𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)
𝑛
𝑖=1 . One  more time, for Υ(Ι) is an HS one has ∑ 𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)

∞
𝑖=1 < ∞. From this point, one can 

pledge that 𝜙𝑛(𝜅, 𝜏) satisfies (19). Ultimate that, to ‖𝜙𝑛‖Υ < ∞, {(𝜅𝑖, 𝜏𝑖)}𝑖=1
∞  is dense on Ι, and the exact solution of 

(20) regarding to (19) is unique. Thereafter, pointwise numerical solution achieved 𝜙𝑛(𝜅, 𝜏) → 𝜙(𝜅, 𝜏) as 𝑛 → ∞. 

Corollary 1 The 𝑛-term pointwise numerical solution of (20) regarding to (19) fulfills: 

𝜙𝑛(𝑥, 𝑡) =∑𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)

𝑛

𝑖=1

. (28) 

Theorem 6 ∂𝜅
𝑖 ∂𝜏

𝑗
𝜙̂𝑛(𝜅, 𝜏)  → ∂𝜅

𝑖 ∂𝜏
𝑗
𝜙̂(𝜅, 𝜏) with 𝑖 = 0,1,2, 𝑗 = 0,1 as 𝑛 → ∞ is achieved. 

Proof. Regarding (26) and (28) one awards ‖𝜙 − 𝜙𝑛‖Υ → 0 as 𝑛 → ∞. Anyhow 

|∂𝜅
𝑖 ∂𝜏

𝑗
(𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏))| = |⟨𝜙(𝑦, 𝑠) − 𝜙𝑛(𝑦, 𝑠), ∂𝜅

𝑖 ∂𝜏
𝑗
Φ[Ρ(𝜅,𝜏)](𝜆, 𝜍)⟩Υ|

                                                    ≤ ‖𝜙 − 𝜙𝑛‖Υ‖∂𝜅
𝑖 ∂𝜏

𝑗
Φ[Ρ(𝜅,𝜏)](𝜆, 𝜍)‖Υ

                                                    ≤ 𝑀𝑖,𝑗‖𝜙 − 𝜙𝑛‖Υ.

 (29) 

Or |∂𝜅
𝑖 ∂𝜏

𝑗
(𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏))| → 0 as 𝑛 → ∞. ■ 

In the posterior results, (𝓀𝜅, 𝓀𝜏) = (
1

𝑛−1
,
1

𝑛−1
) with (𝜅𝑖, 𝜏𝑗) = ((𝑖 − 1)𝓀𝜅, (𝑗 − 1)𝓀𝜏) whereas 𝑖 = 1,2,… , 𝑛 and 

𝑗 = 1,2,… , 𝑛. Whilst,  ‖𝜙(𝜅, 𝜏)‖∞ = max
(𝜅,𝜏)∈Ι

|𝜙(𝜅, 𝜏)| and 𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏) denotes to nature errors at (𝜅, 𝜏) ∈ Ι in 

Υ(Ι). 

Theorem 7 Let 𝜙(𝜅, 𝜏) and 𝜙𝑛(𝜅, 𝜏) be exact and pointwise numerical solutions of (20) regarding to (19), 

simultaneously. Assume that ∂𝜅
3 ∂𝜏𝜙(𝜅, 𝜏), ∂𝜅

2 ∂𝜏
2𝜙(𝜅, 𝜏) ∈ 𝐶(Ι) whereas ‖∂𝜅

3 ∂𝜏𝜙(𝜅, 𝜏)‖∞, ‖∂𝜅
2 ∂𝜏

2𝜙(𝜅, 𝜏)‖∞ < ∞. 

Then a positive constant 𝒞 exists with 

‖𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)‖∞ ≤ 𝒞𝓀𝜏𝓀𝜅
2(𝓀𝜅 + 𝓀𝜏). (30) 

Proof. In [𝜅𝑖 , 𝜅𝑖+1] × [𝜏𝑗 , 𝜏𝑗+1] ⊂ Ι, one has 

∂𝜅
2 ∂𝜏(𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)) = ∂𝜅

2 ∂𝜏 (𝜙(𝜅, 𝜏) − 𝜙(𝜅𝑖 , 𝜏𝑗) + 𝜙𝑛(𝜅𝑖 , 𝜏𝑗) − 𝜙𝑛(𝜅, 𝜏) + 𝜙(𝜅𝑖 , 𝜏𝑗) − 𝜙𝑛(𝜅𝑖 , 𝜏𝑗)). (31) 

Extend ∂𝜅
2 ∂𝜏𝜙(𝑥, 𝑡) around (𝜅𝑖, 𝜏𝑗) by employing the Taylor theorem, one bring that 
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∂𝜅
2 ∂𝜏𝜙(𝜅, 𝜏) = ∂𝜅

2 ∂𝜏𝜙(𝜅𝑖 , 𝜏𝑗) + (𝓀𝜅 ∂𝜅 + 𝓀𝜏 ∂𝜏) ∂𝜅
2 ∂𝜏𝜙(𝜅𝑖 + 𝜚𝓀𝜅 , 𝜏𝑗 + 𝜚𝓀𝜏) + ⋯ , 𝜚 ∈ [0,1]. (32) 

The continuation of ∂𝜅
3 ∂𝜏𝜙 and ∂𝜅

2 ∂𝜏
2𝜙 on Ι utilized that 

‖∂𝜅
2 ∂𝜏 (𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅𝑖, 𝜏𝑗))‖

∞
= 𝑂(𝓀𝜅 + 𝓀𝜏). (33) 

By a simple refinement, one can pin 

|∂𝜅
2 ∂𝜏 (𝜙𝑛(𝜅𝑖 , 𝜏𝑗) − 𝜙𝑛(𝜅, 𝜏))| ≤ ∫ |∂𝜅

3 ∂𝜏 ∂𝜏 ∂𝜏𝜙𝑛(𝜆, 𝜏𝑗)|𝑑𝜆
𝜅

𝜅𝑖

+∫ |∂𝜅
2 ∂𝜍

2𝜙𝑛(𝜅, 𝜍)|𝑑𝜍
𝜏

𝜏𝑗

. (34) 

Using ‖∙‖∞, it appears that 

‖∂𝜅
2 ∂𝜏 (𝜙𝑛(𝜅𝑖 , 𝜏𝑗) − 𝜙𝑛(𝜅, 𝜏))‖

∞
= 𝑂(𝓀𝜅 + 𝓀𝜏). (35) 

Given arbitrary ϵ > 0 utilizing Theorem 6, a sufficiently large 𝑛 exists with 

‖∂𝜅
2 ∂𝜏 (𝜙(𝜅𝑖 , 𝜏𝑗) − 𝜙𝑛(𝜅𝑖, 𝜏𝑗))‖

∞
< ϵ. (36) 

By combining the results in (31-36) for the election value of 𝑛, we gained 

‖∂𝜅
2 ∂𝜏(𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏))‖∞ = 𝑂(𝓀𝜅 + 𝓀𝜏). (37) 

Employing integral property of functions, one can be gained 

∂𝜅𝜏
2 ∂𝜅 ∂𝜏(𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)) = ∂𝜅𝜏

2 (𝜙(𝜅𝑖, 𝜏) − 𝜙𝑛(𝜅𝑖, 𝜏)) + ∫ (∂𝜆
2 ∂𝜏(𝜙(𝜆, 𝜏) − 𝜙𝑛(𝜆, 𝜏)))𝑑𝜆

𝜅

𝜅𝑖

. (38) 

 

∂

∂𝑡
(𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)) = ∂𝜏(𝜙(𝜅𝑖 , 𝜏) − 𝜙𝑛(𝜅𝑖, 𝜏)) + ∫ (∂𝜆𝜏

2 (𝜙(𝜆, 𝜏) − 𝜙𝑛(𝜆, 𝜏))) 𝑑𝜆
𝜅

𝜅𝑖

. (39) 

 

𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏) = 𝜙(𝜅, 𝜏𝑖) − 𝜙𝑛(𝜅, 𝜏𝑖) + ∫ (∂𝜍(𝜙(𝜅, 𝜍) − 𝜙𝑛(𝜅, 𝜍))) 𝑑𝜍
𝜏

𝜏𝑖

. (40) 

Using (37-40) and utilizing Theorem 6, one can see 

‖𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)‖∞ ≤ 𝒞(𝓀𝜏𝓀𝜅
3 + 𝓀𝜏

2𝓀𝜅
2). (41) 

Or ‖𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)‖∞ ≤ 𝒞𝓀𝜏𝓀𝜅
2(𝓀𝜅 +𝓀𝜏) with 𝒞 > 0. ■ 

Ultimate that, we discussed hither the behaviour of {𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)}𝑛=1
∞  in ‖⋅‖Υ. The connection 

‖𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)‖Υ
2 = ∑ (∑𝜎𝑖𝑘ℋ(𝜅𝑘 , 𝜏𝑘 , 𝜙(𝜅𝑘 , 𝜏𝑘))

𝑖

𝑘=1

)

2
∞

𝑖=𝑛+1

, (42) 

harvest that {𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)}𝑛=1
∞ ↘ in ‖⋅‖Υ. But as ∑ 𝒦𝑖𝜃̅𝑖(𝜅, 𝜏)

∞
𝑖=1 < ∞, one can finds ‖𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)‖Υ

2 → 0 

as 𝑛 → ∞. This is only the proof of the following score. 

Theorem 8 Let 𝜙(𝜅, 𝜏) and 𝜙𝑛(𝜅, 𝜏) be exact and pointwise numerical solutions of (20) regarding to (19), 

simultaneously. Then {𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)}𝑛=1
∞ ↘ in ‖⋅‖Υ with ‖𝜙(𝜅, 𝜏) − 𝜙𝑛(𝜅, 𝜏)‖Υ → 0 as 𝑛 → ∞. 

5  RKHA junctures and mathematical debates 

The inferred scientific formalism is computationally decided not exclusively to check the theoretical declarations 

yet, additionally to contrast the numerical outcomes obtained and the specific arrangements recognized and to 

affirm the viability of the techniques utilized. To confirm the reliability and high degree of accurateness of the 

proposed approach, a couple of numerical applications for TFBM besides their fractional hereditary features within 

two geometries are performed. 

5.1  RKHA phases 

To use the RKHA, divide Ι into 𝑝 × 𝑞 points against Ι𝜅 =
1

𝑝
 and  Ι𝜏 =

1

𝑞
 whereas 𝑝, 𝑞 ∈ ℕ. Anyhow the connection 

points (𝜅𝑙 , 𝜏𝑚) on Ι can be defined, simultaneously, as 

(𝜅𝑙 , 𝜏𝑚) = (𝑙Ι𝜅, 𝑚 Ι𝜏), 𝑙 = 0,1,2,⋯ , 𝑝,𝑚 = 0,1,2,⋯ , 𝑞. (43) 

The coefficients of orthogonalization 𝜎𝑖𝑘 in (21) are computed as the first algorithm. 

Algorithm 1. Finding orthogonalization coefficients 𝜎𝑖𝑘 of 𝜃𝑘(𝜅, 𝜏) in 𝜃𝑖(𝜅, 𝜏): 
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Stage 1:  Pick out 𝒻𝑖,𝑝(𝜏) = ⟨𝜃𝑖(𝜏), 𝜃𝑝(𝑡)⟩Υ
; 

Stage 2:  Pick out ℊ𝑖(𝜏) = ‖𝜃𝑖‖Υ
2 −∑ 𝒻𝑖,𝑝

2 (𝜏)𝑖−1
𝑝=1 ; 

Stage 3:  For 𝑖 = 2,3,… and 𝑘 = 1,2,… , 𝑖, apply 

𝜎11 = ‖𝜃1‖Υ,

𝜎𝑖𝑖 =
1

√ℊ𝑖(𝜏)
, 𝑖 ≠ 1,

𝜎𝑖𝑗 = −
1

√ℊ𝑖(𝜏)
∑𝒻𝑖,𝑝

2 (𝜏)𝜎𝑝𝑗

𝑖−1

𝑝=𝑗

, 𝑖 > 𝑗.

 (44) 

 

The pointwise numerical solvability of TFSGM can be accomplished by stratifying the stages in the next second 

algorithm. 

Algorithm 2. Finding 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) of 𝜙(𝜅, 𝜏) in TFSGM (1-3) on 𝒟: 

Stage 1: Pick out 𝑛 = 𝑝𝑞 collocation points in Ι; 

Stage 2: Pick out 𝑖 = 1,2,⋯ , 𝑛 and 𝑘 = 1,2,… , 𝑖; 

Stage 3: Design 𝜃𝑖(𝜅𝑙, 𝜏𝑚) = Φ(𝜆,𝜍)[Ρ](𝜅, 𝜏)|(𝜆,𝜍)=(𝜅𝑙,𝜏𝑚)
; 

Stage 4: Take out the orthogonalization coefficients 𝜎𝑖𝑘; 

Stage 5: Design 𝜃𝑖(𝜅𝑙 , 𝜏𝑚) = ∑ 𝜎𝑖𝑘
𝑖
𝑘=1 𝜃𝑖(𝜅𝑙 , 𝜏𝑚); 

Stage 6: Pick 𝜙0(𝜅1, 𝜏1); 

Stage 7: Design 𝑖 = 1; 

Stage 8: Design 𝒦𝑖 = ∑ 𝜎𝑖𝑘
𝑖
𝑘=1 ℋ(𝜅𝑙, 𝜏𝑚); 

Stage 9: Design 𝜙𝑖(𝜅𝑙 , 𝜏𝑚) = ∑ 𝒦𝑖𝜃𝑘(𝜅𝑙 , 𝜏𝑚)
𝑖
𝑘=1 ; 

Stage 10: If 𝑖 < 𝑛, then design 𝑖 = 𝑖 + 1 and seek 8, else stop. 

5.2  Couple applications on TFSGM 

In all started, invoke that Ι𝜅 =
1

𝑝
 in [0,1] and Ι𝜏 =

1

𝑞
 in [0,1] whereas (𝜅𝑙 , 𝜏𝑚) = 𝑙𝑚Ι𝜅Ι𝜏. Again, invoke from (3) 

∂𝜏
𝜔𝜙(𝜅, 𝜏) = Γ−1(2 − 𝜔)∫

𝜏

0
(𝑡 − 𝜔)1−𝛼 ∂𝑡

2𝜙(𝜅, 𝑡)𝑑𝑡 is the CTFPD over the measurement interval 0 ≤ 𝑡 < 𝜏 ≤ 1 and 

1 < 𝜔 < 2 and not deny to use Algorithms 1 and 2. 

Application 1: Primarily, look for the TFSGM of the pattern: 

∂𝜏
𝜔𝜙(𝜅, 𝜏) + ∂𝜏𝜙(𝜅, 𝜏) − ∂𝜅

2𝜙(𝜅, 𝜏) + exp(−𝜅2) sin(𝜙(𝜅, 𝜏)) = 𝜓(𝜅, 𝜏), (45) 

regarding the DBC 

{
 

 
𝜙(𝜅, 0) = 0,

∂𝜏𝜙(𝜅, 0) = 0,

𝜙(0, 𝜏) = 0,

𝜙(1, 𝜏) = exp(−1) 𝜏2+𝛼.

 (46) 

Hither, (𝜅, 𝜏) ∈ Ω and 1 < 𝜔 < 2  provided that the variable source term function 𝜓(𝜅, 𝜏) is fixed such as the 

source term function 𝜙(𝜅, 𝜏) is 

𝜙(𝜅, 𝜏) = 𝜅 exp(−𝜅2) 𝜏2+𝛼 . (47) 

Application 2: Anew, look for the TFSGM of the pattern: 

∂𝜏
𝜔𝜙(𝜅, 𝜏) + ∂𝜏𝜙(𝜅, 𝜏) − 2∂𝜅

2𝜙(𝜅, 𝜏) + (cos(𝜅2) + sin(𝜅2)) sin(𝜙(𝜅, 𝜏)) = 𝜓(𝜅, 𝜏), (48) 

regarding the DBC 
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{
 

 
𝜙(𝜅, 0) = 0,

∂𝜏𝜙(𝜅, 0) = 0,

𝜙(0, 𝜏) = 𝜏2+𝛼 ,

𝜙(1, 𝜏) = cos(1) 𝜏2+𝛼 + sin(1) 𝜏2𝛼 .

 (49) 

Hither, (𝜅, 𝜏) ∈ Ω and 1 < 𝜔 < 2  provided that the variable source term function 𝜓(𝜅, 𝜏) is fixed such as the 

source term function 𝜙(𝜅, 𝜏) is 

𝜙(𝜅, 𝜏) = cos(𝜅2) 𝜏2+𝛼 + sin(𝜅2) 𝜏2𝛼 . (50) 

5.3 Tabulation debates 

The pointwise numerical solution of the TFSGM in the CTFPD sense is worthy for foreseeing the dynamic attitudes 

of several physical and engineering models, inclusive heat conduction, quantum chemistry, diffusion process, and 

mechanical models. Closest, tabulated results outcomes in discrete issues and short debates are discussed and 

utilized to assure both theoretical framework and RKHA.  

Following, numerical pointwise effectiveness of (𝜅𝑙 , 𝜏𝑚) will be offered for Applications (1-2) as next: 

• Tables (1-4) relates to Application 1 and tabulates |𝜙(𝜅𝑙 , 𝜏𝑚) − 𝜙𝑛(𝜅𝑙 , 𝜏𝑚)| for pointwise numerically 

approximating the source term function 𝜙(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {2,1.75,1.5,1.25} over Ω. 

• Tables (5-8) relates to Application 2 and tabulates |𝜙(𝜅𝑙 , 𝜏𝑚) − 𝜙𝑛(𝜅𝑙 , 𝜏𝑚)| for pointwise numerically 

approximating the source term function 𝜙(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {2,1.75,1.5,1.25} over Ω. 

Table 1: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 1 over Ω with 𝜔 = 2. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  1.02 × 10−4  5.76 × 10−5  3.98 × 10−4  2.47 × 10−4  6.91 × 10−5 
0.4 0  9.06 × 10−5  5.37 × 10−5  7.76 × 10−5  5.59 × 10−5  6.50 × 10−5 
0.6 0  8.14 × 10−5  5.02 × 10−5  2.98 × 10−4  6.93 × 10−5  6.04 × 10−5 
0.8 0  7.38 × 10−5  4.72 × 10−5  5.87 × 10−5  7.48 × 10−5  5.71 × 10−5 
1 0  0  0  0  0  0 
 

Table 2: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 1 over Ω with 𝜔 = 1.75. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  4.27 × 10−4  4.81 × 10−4  2.93 × 10−4  2.09 × 10−4  4.66 × 10−4 
0.4 0  3.72 × 10−4  1.33 × 10−4  2.74 × 10−4  2.03 × 10−4  5.72 × 10−5 
0.6 0  6.88 × 10−5  2.62 × 10−4  2.57 × 10−4  1.11 × 10−4  5.22 × 10−5 
0.8 0  3.96 × 10−4  3.68 × 10−4  2.43 × 10−4  1.04 × 10−4  4.66 × 10−4 
1 0  0  0  0  0  0 
 

Table 3: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 1 over Ω with 𝜔 = 1.5. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  5.76 × 10−4  4.44 × 10−4  2.56 × 10−3  1.12 × 10−3  8.50 × 10−4 
0.4 0  1.62 × 10−3  5.25 × 10−4  1.93 × 10−3  1.06 × 10−3  4.10 × 10−4 
0.6 0  3.97 × 10−4  4.42 × 10−4  1.71 × 10−3  1.27 × 10−3  1.11 × 10−3 
0.8 0  2.68 × 10−3  3.62 × 10−3  5.41 × 10−4  3.40 × 10−3  7.67 × 10−4 
1 0  0  0  0  0  0 
 

Table 4: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 1 over Ω with 𝜔 = 1.25. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  3.03 × 10−3  3.06 × 10−3  4.81 × 10−3  1.62 × 10−3  7.46 × 10−3 
0.4 0  1.61 × 10−3  5.03 × 10−3  4.54 × 10−3  1.40 × 10−3  3.44 × 10−3 
0.6 0  1.41 × 10−3  9.14 × 10−3  3.55 × 10−3  1.64 × 10−3  2.35 × 10−3 
0.8 0  1.27 × 10−3  4.05 × 10−3  2.04 × 10−3  1.19 × 10−3  4.63 × 10−3 
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1 0  0  0  0  0  0 
 

Table 5: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 2 over Ω with 𝜔 = 2. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  9.19 × 10−5  1.49 × 10−4  6.75 × 10−5  4.51 × 10−5  1.34 × 10−4 
0.4 0  2.32 × 10−4  1.26 × 10−4  9.14 × 10−5  4.01 × 10−5  1.15 × 10−4 
0.6 0  3.41 × 10−5  1.15 × 10−4  5.17 × 10−5  3.00 × 10−5  1.05 × 10−4 
0.8 0  2.59 × 10−5  5.02 × 10−5  2.36 × 10−4  2.41 × 10−4  8.05 × 10−5 
1 0  0  0  0  0  0 
 

Table 6: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 2 over Ω with 𝜔 = 1.75. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  4.37 × 10−4  1.25 × 10−4  1.36 × 10−4  5.61 × 10−4  4.29 × 10−4 
0.4 0  3.84 × 10−4  1.71 × 10−4  1.06 × 10−4  6.24 × 10−4  3.80 × 10−4 
0.6 0  2.89 × 10−4  2.91 × 10−4  9.57 × 10−5  6.47 × 10−5  3.56 × 10−4 
0.8 0  2.23 × 10−4  7.83 × 10−5  6.85 × 10−4  6.02 × 10−4  3.38 × 10−4 
1 0  0  0  0  0  0 
 

Table 7: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 2 over Ω with 𝜔 = 1.5. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  2.51 × 10−3  4.78 × 10−4  2.48 × 10−3  1.31 × 10−3  4.88 × 10−4 
0.4 0  2.35 × 10−3  5.48 × 10−4  2.19 × 10−3  1.73 × 10−3  5.78 × 10−4 
0.6 0  2.20 × 10−3  4.85 × 10−4  1.25 × 10−3  1.10 × 10−3  4.43 × 10−3 
0.8 0  2.79 × 10−3  3.99 × 10−3  1.70 × 10−3  1.01 × 10−3  3.02 × 10−4 
1 0  0  0  0  0  0 
 

Table 8: Pointwise numerical outcomes for state variable 𝜙𝑛(𝜅𝑙, 𝜏𝑚) in Application 2 over Ω with 𝜔 = 1.25. 
𝜅𝑙/𝜏𝑚 0  0.2  0.4  0.6  0.8  1 
0 0  0  0  0  0  0 
0.2 0  2.13 × 10−3  1.04 × 10−3  8.49 × 10−3  4.86 × 10−3  1.93 × 10−3 
0.4 0  1.76 × 10−3  5.48 × 10−3  5.14 × 10−3  4.75 × 10−3  1.31 × 10−3 
0.6 0  1.56 × 10−3  6.87 × 10−3  4.09 × 10−3  3.56 × 10−3  1.35 × 10−3 
0.8 0  1.39 × 10−3  9.36 × 10−3  8.15 × 10−3  3.01 × 10−3  1.21 × 10−3 
1 0  0  0  0  0  0 

Of the results acquired, one can be observed that perfect precisions of error estimations for pointwise 

numerical solutions of the source term functions 𝜙(𝜅𝑙 , 𝜏𝑚) are closely concerned with stuffing time as well as to 

order of the CTFPDs used, whereas additional precisions solutions can be acquired employing more partitions and 

iterations. 

5.4 Graphical debates 

Now, three-dimensional geometric attitudes over memory-heritage merits of the RKHA are elaborated. Closest, 

schematic plot outcomes are discussed and utilized to assure both theoretical framework and RKHA.  

Following, pointwise numerical effectiveness of (𝜅𝑙, 𝜏𝑚) will be offered for Applications (1-2) as next: 

• Figure 1 (a-d) relates to Application 1 and plots 𝜙𝑛(𝜅𝑙, 𝜏𝑚) for pointwise numerically approximating the source 

term function 𝜙(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {2,1.75,1.5,1.25} over Ω. 

• Figure 2 (a-d) relates to Application 2 and plots 𝜙𝑛(𝜅𝑙, 𝜏𝑚) for pointwise numerically approximating the source 

term function 𝜙(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {2,1.75,1.5,1.25} over Ω. 
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Figure 1: The 3D plots of pointwise numerical solutions of TFSGM in Application 1 on Ω: (a) 𝜔 = 2, (b) 𝜔 = 1.75, 

(c ) 𝜔 = 1.5, and (d) 𝜔 = 1.25. 
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Figure 2: The 3D plots of pointwise numerical solutions of TFSGM in Application 2 on Ω: (a) 𝜔 = 2, (b) 𝜔 = 1.75, 

(c ) 𝜔 = 1.5, and (d) 𝜔 = 1.25. 

From the previous plots, one can show that all graphs are nearly matched, identical in their attitudes, and nice 

agreement with each other, particularly, when integer-order derivatives are considered. Indeed, the CTFPDs have 

strong effects on TFSGM profiles. 

Following, two-dimensional geometric attitudes over memory-heritage merits of the RKHA are elaborated in 

terms effect of contour plots regarding 𝜅𝑙 and 𝜏𝑚. Anyhow, pointwise numerical effectiveness plots of (𝜅𝑙 , 𝜏𝑚) will 

be offered for Applications (1-2) as next: 

• Figure 3 (a-d) relates to Application 1 and utilized the contour plots for pointwise numerically approximating 

the source term function 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {1,0.75,0.5,0.25} over [0.5,1] × [0.5,1]. 

• Figure 4 (a-d) relates to Application 2 and utilized the contour plots for pointwise numerically approximating 

the source term function 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {1,0.75,0.5,0.25} over [0.5,1] × [0.5,1]. 
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Figure 3: The 2D contour plots of pointwise numerical solutions of TFSGM in Application 1 on [0.5,1] × [0.5,1]: 

(a) 𝜔 = 2, (b) 𝜔 = 1.75, (c ) 𝜔 = 1.5, and (d) 𝜔 = 1.25. 
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Figure 4: The 2D contour plots of pointwise numerical solutions of TFSGM in Application 2 on [0.5,1] × [0.5,1]: 

(a) 𝜔 = 2, (b) 𝜔 = 1.75, (c ) 𝜔 = 1.5, and (d) 𝜔 = 1.25. 

We point out right here that, the contour plot generates colorized grayscale output, wherein large values are 

shown lighter, while in return its treats 𝜅𝑙 and 𝜏𝑚 as local and effectively using block. In addendum, the contour 

plot computes 𝜙𝑛 only after specifying fixed values to 𝜅𝑙 and 𝜏𝑚. 

Ultimately, two-dimensional geometric attitudes over memory-heritage merits of the RKHA are elaborated in 

terms effect of density plots regarding 𝜅𝑙 and 𝜏𝑚. Anyhow, pointwise numerical effectiveness plots of (𝜅𝑙 , 𝜏𝑚) will 

be offered for Applications (1-2) as next: 

• Figure 5 (a-d) relates to Application 1 and utilized the density plots for pointwise numerically approximating 

the source term function 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {1,0.75,0.5,0.25} over [0.5,1] × [0.5,1]. 

• Figure 6 (a-d) relates to Application 2 and utilized the density plots for pointwise numerically approximating 

the source term function 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) with 𝜔 ∈ {1,0.75,0.5,0.25} over [0.5,1] × [0.5,1]. 
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Figure 5: The 2D density plots of pointwise numerical solutions of TFSGM in Application 1 on [0.5,1] × [0.5,1]: 

(a) 𝜔 = 2, (b) 𝜔 = 1.75, (c ) 𝜔 = 1.5, and (d) 𝜔 = 1.25. 
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Figure 6: The 2D density plots of pointwise numerical solutions of TFSGM in Application 2 on [0.5,1] × [0.5,1]: 

(a) 𝜔 = 2, (b) 𝜔 = 1.75, (c ) 𝜔 = 1.5, and (d) 𝜔 = 1.25. 

We point out right here that, the density plot generates colorized output, wherein large values are shown 

lighter, while in return its treats 𝜅𝑙 and 𝜏𝑚 as local and effectively using block. In addendum, the density plot 

computes 𝜙𝑛 only after specifying fixed values to 𝜅𝑙 and 𝜏𝑚. 

6  Highlight, concluding, and future 

This utilization and discussion goals to perform a numerical algorithm in the RK Hilbert approach to take out a 

pointwise numerical solution of the TFSGM regarding the DBC in which the CTFPD approach for non-integer order 

basis is applied. This goal has been carried out by beneficiating and extending the applications of the RKHA for 

treating these types of fractional models without any linearization or limitations. The most remarkable features of 

the RKHA are pointwise numerical solutions converge uniformly to the exact one and its partial derivatives, whilst, 

frame of numerical programming is natural and the computations are very swift. Utilizing this algorithm, a visible 

truncated sequence of 𝜙𝑛(𝜅𝑙 , 𝜏𝑚) solutions has been shown and found to converge to exact solutions uniformly in 

‖⋅‖Υ. Ultimately, a couple of numerical trials were outrighted to advocate the potentiality and generality of the 

RKHA. The gained results show the full reliability and execution of such adaptation, which can be presented 

efficiently as a substitutional approach in solving various kinds of fractional models emerging in scientific matters.  

Our near-future research will focus on the solvability of TFSGM regarding the integral condition in which the 

CTFPD approach is used. 
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