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Abstract

Background: Allergic asthma (AA) in childhood is characterized by a dominance of type 2 immunity and inefficient counter-

regulation by type 1 immunity and/or Tregs among other mechanisms. However, a detailed analysis of T cells associated

with paediatric AA is still needed. Methods: High-dimensional mass cytometry, algorithmic analysis and manual gating were

applied to define the peripheral T-cell signature in treatment-näıve childhood AA. Results: The analysis revealed a changed

T-cell profile in children with AA in comparison to healthy controls (HC) consisting of: (i) a lower frequency of memory CD8+ T

cells, (ii) an overrepresentation of TIGIT+ICOS+ Th2 cells connected to a more symptomatic disease with allergic comorbidity

and eosinophilia, and (iii) an altered Treg compartment. Within Tregs, the näıve/resting fraction was enriched in children

with AA vs HC, it associated inversely with memory CD8+ T cells, and was linked to a lung function decline. Moreover,

the ratio of TIGIT+ICOS+ Th2 cells to dysbalanced effector (e)Treg clusters significantly associated with eosinophilia. Thus,

dysregulated Treg fractions were linked to a lung function and, on the other hand, to eosinophilia via TIGIT+ICOS+Th2 cells.

The association of altered Treg clusters with the AA phenotype in ROC analysis underscored the importance of changes in the

Treg compartment. Conclusions: Our approach identifies a unique T-cell signature of childhood AA and provides insights for

pathophysiological involvement of dysbalanced Tregs, TIGIT+ICOS+ Th2 cells and CD8+ T memory cells. This can be useful

for immunomonitoring, immunomodulation and for further studies in childhood AA.
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Abstract  

Background: Allergic asthma (AA) in childhood is characterized by a dominance of type 2 

immunity and inefficient counter-regulation by type 1 immunity and/or Tregs among other 

mechanisms. However, a detailed analysis of T cells associated with paediatric AA is still 

needed. 

Methods: High-dimensional mass cytometry, algorithmic analysis and manual gating were 

applied to define the peripheral T-cell signature in treatment-naïve childhood AA.  

Results: The analysis revealed a changed T-cell profile in children with AA in comparison to 

healthy controls (HC) consisting of: (i) a lower frequency of memory CD8+ T cells, (ii) an 

overrepresentation of TIGIT+ICOS+ Th2 cells connected to a more symptomatic disease with 

allergic comorbidity and eosinophilia, and (iii) an altered Treg compartment. Within Tregs, the 

naïve/resting fraction was enriched in children with AA vs HC, it associated inversely with 

memory CD8+ T cells, and was linked to a lung function decline. Moreover, the ratio of 

TIGIT+ICOS+ Th2 cells to dysbalanced effector (e)Treg clusters significantly associated with 

eosinophilia. Thus, dysregulated Treg fractions were linked to a lung function and, on the other 

hand, to eosinophilia via TIGIT+ICOS+Th2 cells. The association of altered Treg clusters with 

the AA phenotype in ROC analysis underscored the importance of changes in the Treg 

compartment.  

Conclusions: Our approach identifies a unique T-cell signature of childhood AA and provides 

insights for pathophysiological involvement of dysbalanced Tregs, TIGIT+ICOS+ Th2 cells and 

CD8+ T memory cells. This can be useful for immunomonitoring, immunomodulation and for 

further studies in childhood AA.  
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Introduction  

Asthma is a chronic inflammatory disease leading to airway hyperresponsiveness, shortness of 

breath, wheezing and cough. This complex disorder affects more than 300 million people 

worldwide and can be classified into several endotypes based on the inflammatory cell profile 

and presence or absence of allergy.1,2 Approximately 40% of patients with severe asthma 

develop a type 2 pattern of inflammation with activation of mast cells, mucus hyperproduction, 

infiltration and activation of eosinophils as well as increased production of IgE by B cells.3,4 

This type of asthma is driven by CD4+ T helper 2 (Th2) cells expressing the transcription factor 

(TF) GATA3 and producing IL-4, IL-5 and IL-13.1 Type 2 mediated allergic asthma (AA) starts 

frequently during early childhood occurring in more than 80% of asthmatic children in 

association with comorbidities including sensitization to environmental allergens, clinical 

manifestations of atopy, food allergy and/or allergic rhinoconjunctivitis.5 Besides Th2 cells also 

regulatory CD4+ T cells (Tregs) expressing the TF FOXP3 are involved in the pathogenesis of 

childhood asthma, however the mechanisms are controversial.6-10  

The origin of asthma is influenced by environmental, epigenetic and genetic factors. 

Thus, children living in microbe-rich environments, have lower risk for development of asthma 

and allergy.11 Furthermore, analysis of DNA methylation revealed that paediatric asthmatics 

display hypomethylation of Th2 associated genes, including IL-13, IL-4 and the T cell 

associated molecule TIGIT.12 Genome-wide association study (GWAS) revealed single-

nucleotide polymorphisms (SNPs) in several genetic loci including the TF Interferon 

Regulatory Factor 1 (IRF1) in childhood asthma.6,13 Consistent with regulating Th1 versus Th2, 

Th9 and Tregs14-18 differentiation as well as myeloid cell driven inflammation19,20, IRF1 SNPs 

associate with allergy and childhood AA21,22 involving regulation of pro-inflammatory genes23.  

To identify the T-cell phenotypes and compositional changes associating with AA in 

childhood, we applied a 42-antibody mass cytometry panel in combination with unsupervised 
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computational analyses and manual gating in a group of well-characterized treatment-naïve 

children with AA and healthy (HC) from the CLARA/CLAUS study.8,23-25 Deep profiling of T-

cell phenotypes combined with bioinformatic analyses of the high-dimensional data resulted in 

an identification of a T-cell profile in childhood AA, which was related to the disease course 

and clinical parameters. The key features of childhood AA related T-cell aberrations are (i) 

lower frequency of memory CD8+ T cells, (ii) overrepresented TIGIT+ICOS+ Th2 cells 

connected to eosinophilia and (iii) changes within Tregs characterized by an enrichment of 

naïve/resting Tregs and dysregulated effector (e)Tregs. The altered Treg compartment was 

linked to a lung function and memory CD8+ T cells and, on the other hand, to eosinophilia via 

TIGIT+ICOS+Th2 cells. These data provide new insights that improve our understanding of 

childhood AA pathophysiology, and thereby guide new opportunities for disease monitoring 

and potentially therapy decision. 

 

Materials and methods  

Study Population. 

This study analyzed data of N=23 (N=14 allergic asthmatic, N=9 healthy) children (Table 

S1,S3,S4) of the cross-sectional CLARA/CLAUS cohort, comprising N=273/361 4-15-year-

old children with mild-to-moderate asthma and healthy controls, that were recruited since 

01/2009 in the LMU children´s hospital.8,24,25 Children were selected based on complete 

epidemiological data, treatment naivety, availability of IRF1 genotyping and cell availability 

for CyTOF. Allergic asthmatics were phenotyped based on a doctor´s diagnosis of asthma 

following the GINA-Guidelines26, classical asthma symptoms, treatment-naivety in terms of 

asthma medication and a lung function indicating a significant reversible airflow obstruction 

(ATS/ERS guidelines)27 and specific IgE-levels ≥ 0.35 IU/mL to at least one of 30 common 

aero- and food-allergens. Allergic comorbidity was defined as additional presence of atopic 
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dermatitis (AD), food allergy or allergic rhinitis. The course of disease was described as stable 

or with intermittent symptoms according to GINA guidelines26. Exclusion criteria included 

other chronic diseases, prematurity and infections, fever or use of steroids in the last 14 days 

before inclusion. Healthy controls had no pulmonary diseases including asthma, no allergic 

symptoms and were recruited in the LMU children´s hospital prior to outpatient daily 

procedures (e.g. fracture, hernia operation). Detailed questionnaires on general health, 

socioeconomic status and written informed consent was answered and obtained from the 

parents. Ethical approval was obtained by the local ethics board, LMU Munich, Germany (Nr. 

379-08). 

 

Cell staining and mass cytometry acquisition 

PBMCs were isolated from Na-Heparin blood within 24h after blood withdrawal by Ficoll 

density gradient centrifugation, resuspended in freezing medium and stored in liquid nitrogen. 

For CyTOF experiment, samples were thawed, stained, barcoded and analysed in one batch in 

a Helios mass cytometer (Fluidigm) as described before28.  

 

Mass cytometry data analysis 

Raw mass cytometry data were converted to Flow Cytometry Standard (FCS) 3.0 files during 

acquisition. Data normalization, compensation and processing for further analysis were done as 

previously described28. From each of the resulting individual samples, single, live, CD45+ 

PBMC were gated in OMIQ according to 103Rh-mDOTA for dead cell exclusion, DNA and 

event length parameters and CD45 expression (Figure S1). FlowSOM29 clustering and 

subsequent meta-clustering, data visualization and opt-SNE plots30 were performed in OMIQ. 

Data plotting and statistical analysis was performed using GraphPad Prism version 8.1.1. 

Heatmaps, principal component analysis and ROC curves were plotted with RStudio (Version 

1.4.1103, packages gplots v3.1.0, factoextra, pROC). 
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Additional methods can be found in the Supplementary Material. 

 

Results  

Decreased total and central memory CD8+ T cell frequency in children with AA.  

We collected peripheral blood mononuclear cells (PBMC) from 23 children at the age from 

four to fifteen years, among them 14 suffering from allergic asthma (AA), which were treatment 

naïve and 9 healthy controls (HC) (Table S1). For the “Cytometry by Time of Flight” (CyTOF) 

analysis, frozen PBMC were thawed, barcoded and stained using a 42-antibody panel to identify 

T-cell populations as well as their activation and differentiation status based on the expression 

of lineage-specific markers, chemokine receptors and transcription factors (Table S2). The 

analysis workflow integrated manual gating, computational analysis and statistical association 

of the extracted T-cell features with clinical parameters (Figure S1, Table S1-S4). After gating 

on the intact, live, single cells, we applied a t-distributed stochastic neighbour embedding 

(tSNE) integrating the information from 12 lineage-markers to classify the major cell 

populations within PBMC. Based on the tSNE representation we identified and manually gated 

seven distinct major cell populations (Figures 1A,B,S2A,B): CD3+CD8+ (CD8+ T), CD3+CD4+ 

(CD4+ T), CD3+CD4+CD45RA-CD25+FOXP3+ (effector (e)Treg), CD56+CD16+ (NK), 

CD3+CD56+ (NKT), CD3+CD161+TCRVα7.2+ (MAIT), CD3+TCRγ+ (γT) cells, for 

downstream evaluation. Analysis of the distribution of the detected T- and NK-cell populations 

in each individual and comparison of the frequency revealed that CD8+ T-cell abundance was 

significantly changed in AA (Figure 1C,D).  

Since the frequency of total CD8+ T cells was lower in AA vs HC, we sought to 

understand which subpopulation best described this difference. For this, we subdivided CD8+ 

T cells into naïve, central memory (CM), effector memory (EM) and EM cells (re-)expressing 
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CD45RA (TEMRA) based on the expression of CD45RA and CCR7 by manual gating (Figure 

1E). There was a significantly lower frequency of CM and a similar trend for EM cells in AA 

versus HC (Figure 1F). Because CD8+ T cells were previously associated with lung function in 

adult asthma31, we correlated the ratio of total CD8+ T cells to CM and EM frequencies of AA 

children with lung function as measured by percent-predicted ratio of forced expiratory volume 

in 1 sec to vital capacity (FEV1/VC). We observed a non-significant tendency for EM cells 

(Figure S3A), indicating that a CD8+ T-cell association with lung function decline is a feature 

of adult asthma. However, the CD8+ T-cell dysbalance occurs already in the childhood and is 

an early immunological phenomenon.  

FlowSOM clustering was applied to further characterize CD8+ T cells.29 We computed 

30 clusters (Figure S3B,C), of which only cluster c10 with a CD127+CD45RA- memory 

phenotype was significantly downregulated in AA (Figure S3D-F). Cluster c10 expressed 

CD28 and high levels of the chemokine receptor CXCR3, suggesting a preserved capacity to 

proliferate32, and to migrate to sites of inflammation33.  

These data reveal a CD8+ T-cell dysbalance in AA children, characterized by underrepresented 

memory cells.  

 

Elevated frequency of a novel TIGIT+ICOS+Th2-cell cluster in children with AA.  

Consistent with the decreased CD8+ T-cell abundance, the CD4+/CD8+ T-cell ratio was elevated 

in AA vs HC and positively correlated with blood eosinophil frequencies, a determinant of AA 

severity34,35, which was also enhanced in AA of our cohort (Figure 2A-C).  

CD4+ T cells are considered as main regulators in type 2 asthma and eosinophilia1-3,5,6. 

To address potential disease-associated changes within CD4+ T cells, we computed 30 CD4+ T 

cell FlowSOM clusters (Figures 2D, S4A,B), of which c6 and c30 were significantly expanded 
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in AA vs HC children (Figures 2E). The heat map visualisation of the 30 markers mean-

expression levels revealed that the significantly regulated clusters belonged to different clades, 

indicating specific phenotypic profile and function (Figure 2F). 

Based on the highest expression of the Th2-specific TF GATA336 as well as the Th2-

specific chemokine receptors CRTH2 and CCR437,38, cluster c6 and the neighbouring cluster 

c1 represented Th2-cells (Figure 2F,G). Cluster c6 differed from c1 by unique co-expression of 

TIGIT and ICOS. In the setting of malignant diseases and infection, TIGIT is a CD8+ T-cell 

inhibitory molecule39,40, while consistent with its hypomethylated state in childhood asthma12, 

it enhances Th2 activation and Th2-driven allergic airway inflammation in the mouse model41. 

ICOS is required for IL-4 production and humoral immune responses in the mouse model of 

AA,42 and accordingly enhances human Th2 responses43. The frequency of the TIGIT+ICOS+-

expressing cluster c6, but not of c1, correlated with eosinophilia (Figure 2H, S4C,D), which 

specifically applied to children with additional presence of atopic dermatitis, food allergy or 

allergic rhinitis (Figure 2I), suggesting its involvement in AA associated with allergic 

comorbidities in connection with eosinophilia. Moreover, TIGIT+ICOS+ c6 cell frequencies 

positively correlated with the CD4/CD8 T-cell ratio in children with intermittent disease 

symptoms, while inversely in children with stable disease (Figure 2J), indicating its 

involvement in a more symptomatic AA.  

The second CD4+ T-cell cluster c30, is described in the Treg section below. 

Summarizing, a TIGIT+ICOS+ Th2 cluster was enriched in children with AA, and 

associated with more symptomatic disease including allergic comorbidity linked to 

eosinophilia. 
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Altered ratio of the TIGIT+ICOS+ Th2 to Th1 cells in children with AA.  

In childhood AA, the ratio between Th2 and Th1 cells is increased and low IFN- production 

during infancy is associated with an increased risk for allergy and asthma44,45, and wheezing46 

development. To interrogate the Th2/Th1 balance in more detail, we analysed Th1 clusters and 

their relation to the TIGIT+ICOS+Th2 cells (c6). Based on the expression of the lineage specific 

TF T-BET47, we identified 8 different Th1 clusters within CD4+ T-cells, which were organized 

by hierarchical clustering into three different clades termed Th1-I, Th1-II, and Th1-III, showing 

distinct phenotypes (Figure 3A-C). They differed in the expression of CD127, the inhibitory 

receptors CTLA-4 and PD-1, as well as of ICOS, suggesting specific states of Th1-cell 

activation/dysfunction. The frequency of all clades was similar in AA vs HC (Figure 3D).  

 The ratio between the TIGIT+ICOS+ Th2 cluster and all T-BET+ Th1 cells was increased 

in AA children vs HC, whereby clade Th1-II with the CD127+ memory precursor phenotype48, 

mainly contributed to this effect and was partially linked to eosinophilia (Figure 3E,F). Thus, 

in childhood AA TIGIT+ICOS+ Th2/Th1 ratio partly associated with eosinophilia.  

 

Enrichment in circulating resting/naïve Tregs in children with AA.  

The involvement of Tregs in childhood AA has been described, however without close 

characterization of Treg subpopulations.7-10 Therefore, we next asked if the Treg composition 

is altered in paediatric AA. Among CD4+ T-cells, the significantly enriched cluster c30 (Figure 

2D,E), was visible as a distinct population in the t-SNE plot and expressed FOXP3, CD25, 

CD45RA, CCR7 and CD27 (Figure 4A) indicative of a naïve Treg phenotype.49 Using manual 

gating (Figure S5), differential expression of FOXP3 and CD45RA permits sub-setting of 

FOXP3+CD4+ T cells into three main populations: fraction-I (Fr-I) CD45RA+FOXP3low 

resting/naïve Tregs, Fr-II CD45RA-FOXP3high eTregs and Fr-III CD45RA-FOXP3low cells, 
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which mostly are not bona fide Tregs.49 We confirmed the location of cluster 30 within Treg 

Fr-I (Figure 4B,C), and also the overrepresentation of Fr-I in AA vs HC, while the abundance 

of Fr-II and Fr-III was similar in paediatric AA patients vs HC (Figure 4D). Manually gated 

FOXP3+CD25+CD45RA- eTregs matched with Fr-II, confirming the identification of eTregs 

by different gating strategies (Figure 4E). Consistent with the linear development model of Treg 

Fr-I towards Treg Fr-II49, the abundance of Fr-I inversely correlated with Fr-II (Figure 4F). 

Moreover, there was a tendency for a negative correlation between the frequency of Fr-I and 

lung function as assessed by percent-predicted Tiffeneau index (FEV1/FVC) (Figure 4G). 

Finally, the abundance of Fr-I negatively correlated with the abundances of vs CM and EM 

CD8+ T cells (Figure 4H). 

Taken together, an overrepresentation of resting/naïve Tregs, inversely correlated with 

eTregs, suggesting an impaired eTregs differentiation in children with AA. The accumulating 

naïve/resting Tregs were linked to impaired lung function and negatively associated with 

memory CD8+ T cells.  

 

Altered TIGIT+ICOS+Th2/eTreg ratio associates with eosinophilia.  

To better understand if the FOXP3+CD25+CD45RA- eTregs (Fr-II) compartment is 

qualitatively changed in childhood AA, FlowSOM was employed to identify and characterize 

two major clades within a total of 10 clusters (Figure 5A, S6A,B). Two clusters were 

underrepresented in children with AA, whereby c2 was more (>20% of total eTregs), and c10 

less (<2% of total eTregs) abundant (Figure 5B,C). Cluster c10 was characterized by high IRF4, 

ICOS, CTLA-4 and CD28 expression indicating activated eTregs49,50, while cluster c2 

expressed all these molecules at average levels (Figure 5D). Considering the suggested 

impaired differentiation of eTregs and an overrepresentation of TIGIT+ICOS+Th2 cells in 
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childhood AA, we asked if the two phenomena were correlated, or were independent features 

of AA. In children with AA, the TIGIT+ICOS+ Th2/eTreg ratio was higher as compared to HC 

but failed to correlate with eosinophilia. In contrast, the TIGIT+ICOS+ Th2-cell ratio to 

eTreg_c2 and eTreg_c10, correlated significantly suggesting that their underrepresentation was 

statistically related to the TIGIT+ICOS+Th2 associated eosinophilia. 

 

Integrated T cell signature distinguishes children with AA from HC. 

To investigate if the T-cell signature obtained from our high-dimensional data analysis 

distinguishes AA from HC, we performed principal component analysis (PCA) based on 

frequencies of T-cell populations, clusters and ratios that were significantly changed in 

paediatric AA. The PCA of these parameters separated AA from HC children at the first 

principal component (PC1), indicating that the detected dysbalanced T-cell composition allows 

a discrimination between AA and HC (Figure 6A). The analysis of the contribution of 8 

variables to the first two principal components revealed that the frequency of naïve/resting 

Tregs (CD4_c30), together with the CD4/CD8 ratio and CD8+ T cell frequency were mainly 

driving this effect (Figure 6B). To further understand the association of the differentially 

regulated cluster abundances with the AA phenotype, we performed ROC analyses which 

revealed a relation of resting/naïve Tregs (CD4_c30), eTreg_c2 and eTreg_c10 to the childhood 

AA phenotype (sensitivity, true positive rate) (Figure 6C), further supporting the relevant 

involvement of the Treg dysbalance in childhood AA. 

Finally, we tested whether the obtained T cell profiles were associated, and explainable by the 

presence of distinct IRF1-SNPs21,23. For this, we determined the presence of four IRF1-SNPs 

associating with childhood AA: rs10035166, rs2706384, rs2070721 and rs1762265623. A 

mutually adjusted risk score for IRF1-dependent asthma was calculated and correlated with the 
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abundance of all significantly altered T-cell populations. Among these, the IRF1-score 

inversely correlated with the frequency of CD8+ T cells (Figure 6D) in HC, but remarkably not 

in children with AA. Considering that lower CD8+ T-cell frequencies were associated with AA 

(Figure 1D), IRF1-SNPs might contribute to the AA-like perturbances in CD8+ T-cell 

compartment already in health. However, in AA probably more prominent other genetic drivers 

impose the AA phenotype.  

 

Discussion 

Most adult cases of asthma begin in childhood and approximately 10% of children in the 

European Union and North America are affected, with the vast majority suffering from type 2 

AA.51 Our understanding of this disorder is complicated by the overlap of the disease with 

development and maturation of the immune system during childhood. Therefore, a deeper 

understanding of immunologic aberrations may serve as a framework to identify target-directed 

treatment options, and to guide the use of existing options to control AA in childhood. 

To systematically analyse T-cell subpopulations associated with childhood AA, and their 

phenotypes we performed deep single-cell profiling of PBMCs by mass cytometry, which 

revealed a T-cell signature characterized by a lower frequency of memory CD8+ T cells, 

increased abundance of TIGIT+ICOS+Th2 cells and naïve/resting Tregs as well as by 

disturbances within eTregs in comparison to HC.  

While a mechanistic contribution of CD8+ T cells to childhood AA is elusive, their 

involvement in adult asthma was already reported.5,31,52 Our analysis revealed a significantly 

decreased frequency of total and in particular of memory CD8+ T cells in children with AA, 

which only weekly associated with impaired lung function. Moreover, the abundance of 

CXCR3high memory CD8+ T cells was reduced in the peripheral blood. Since CXCR3 directs 
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cell recruitment to sites of inflammation and consecutive bystander activation33, the decrease 

in circulating memory CD8+ T cells may reflect their enhanced recruitment to inflamed lung, 

where they may contribute to lung pathology over time. In line with that, the accumulation of 

CD8+ T cells in the lung tissue is associated with lung function impairment in adult AA.31 Thus, 

our data establish a disturbed peripheral CD8+ T cell homeostasis as an early feature of AA. 

An increased CD4/CD8 T-cell ratio has previously been described for asthma in young 

adults.53 Our data extend this observation towards childhood AA and reveal its association with 

increased eosinophilia, which is linked to poorer asthma control.34,35 Among CD4+ T cells, a 

TIGIT+ICOS+Th2 cluster was significantly expanded in AA and correlated with eosinophilia, 

in particular in AA children with allergic comorbidities, suggesting its association with rather 

complex, polysymptomatic disease. Considering that PBMC for the analysis were obtained 

from treatment-naïve children, this result suggests that the correlation of TIGIT+ICOS+Th2 

cells with the CD4/CD8 T-cell ratio may indicate subsequent poorer AA control. 

A TIGIT+ICOS+Th2 population has not been detected in AA so far and could be specific 

for childhood, since a decreased TIGIT methylation status has been described only for 

childhood AA.12 The ratio of TIGIT+ICOS+Th2 cells to Th1 cells and Th1-clades as well as to 

dysbalanced eTregs was higher in children with AA vs HC and associated partially with 

eosinophilia, suggesting the overriding contribution of this Th2 cluster to eosinophilic 

inflammation. Thus, the expansion of TIGIT+ICOS+Th2 cluster is an early immunological 

event, which contributes to an eosinophilic bias in paediatric AA. 

Tregs in childhood asthma seem to play a critical role and different controversial reports 

describe qualitative or quantitative dysbalances or no alterations7-10, however without closer 

examination of Treg phenotype/subpopulations. Our data show an accumulation of 

resting/naïve Tregs. Together with the inverse correlation with eTregs, this finding may indicate 

a block in the differentiation towards eTregs. The pathophysiological implication of 
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disturbances within the Treg compartment seems to involve following features of AA:(i) a 

declined lung function and an inverse correlation of naïve/resting Tregs to memory CD8+ T 

cells and (ii) eosinophilia, which significantly associated with the TIGIT+ICOS+Th2 ratio to the 

two downregulated eTreg clusters (eTreg_c2 and eTreg_c10). Consistent with this notion, ROC 

analysis revealed that all differentially regulated Treg clusters CD4_c30 (Fr-I, naïve/resting 

Tregs), eTreg_c2 and eTreg_c10 associate with the phenotype and can be included as markers 

for a prediction model. Thus, we add a new level of complexity to the appreciated role of Tregs 

in AA revealing distinct regulation of specific Treg subsets including probable disturbance in 

the development of naïve towards eTregs and demonstrating their involvement in disease 

pathophysiology. Therefore, our results may help to reconcile the previous inconsistency 

regarding the role of Tregs in childhood AA. 

Integration of the significantly regulated T-cell populations and ratios, allowed a clear 

separation of children with AA from HC, indicating that the described T-cell signature 

associates with the disease phenotype and can be used for further mechanistic and biomarker 

analysis including bigger cohorts. Mechanistically, our analysis revealed an association of 

IRF1-SNPs with CD8+ T-cell frequencies in health but not in disease, suggesting a partial IRF1-

contribution to the CD8+ T-cell dysbalance, which could be overruled by a prevailing 

involvement of other main genetic drivers.13 

Summarizing, our results have implications for our understanding of the involvement of 

T-cell subpopulations in childhood AA, including the pathophysiology considering the 

aberrances in the Treg compartment, for immune monitoring using the described perturbances 

and probably for the disease course prediction based on the presence of TIGIT+ICOS+ Th2 cells. 

The majority of the described AA-associated aberrations including CD8+ T cells, TIGIT+ICOS+ 

Th2 cells and eTregs were detected in non-naïve compartment indicating an already fixed 

immunological imprinting. This implies a need for an early diagnosis to pre-empt the 



17 

 

establishment of these disturbances and for treatment options to consider the non-naïve nature 

of the T-cell aberrations. 
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Figure 1. Decreased total and central memory CD8+ T cell frequency in children with AA. 

A. To the left t-distributed stochastic neighbour embedding (tSNE) plot on concatenated live 

cells from all 23 samples with manually gated main T-cell populations and NK cells based on 

the expression of individual molecules depicted in the tSNE plots in B. To the right, heat map 

of color coded z-scores of the mean marker expression values after row normalization. B. tSNE 

visualization of indicated marker expression of concatenated all files. C. Distribution of main 

T-cell populations and NK cells in each individual (AA n=14 and HC n=9). D. Comparison of 

main populations between AA and HC samples (mean ± SD, P value by Mann-Whitney test). 

E. Dot plot shows gating strategy on concatenated all files to identify CD8+  T central memory 

(CM, CCR7+CD45RA-), effector memory (EM, CCR7-CD45RA-), TEMRA (CCR7-CD45RA+) 

and naïve (CCR7+CD45RA+) cells F. Scatter bar graphs represent the frequency in each sample 

for the indicated CD8+ T-cell subpopulation (mean, P value by Mann-Whitney test).  

 

Figure 2. Elevated frequency of a novel TIGIT+ICOS+ Th2-cell cluster in children with 

AA A. Comparison of CD4/CD8 T-cell ratio in HC and AA samples (mean, P value by Mann-

Whitney test). B. Linear regression analysis of CD4/CD8 T-cell ratio versus blood eosinophil 

frequency in children with AA. Each dot represents one individual. C. Scatter bar graph 

represents the eosinophil frequency in each sample (mean, P value by Mann-Whitney test). D. 

tSNE visualization of 30 FlowSOM clusters in CD4+ T-cell population (left) and of clusters c6, 

and c30 (to the right). The plots display concatenated all samples. E. Scatter bar graphs 

represent the cluster frequency in each sample for c6 and c30 (mean, P value by Mann-Whitney 

test). F. Heat map of color coded z-scores of the mean marker expression values after row 

normalization. G. Histograms display the mean expression of depicted markers by the cluster 

c6 (dark blue), c1 (light blue) and all other clusters (black) of concatenated all samples. H. 

Linear regression analysis of c6(TIGT+ICOS+) cluster frequency within CD4+ T cells versus 
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blood eosinophil frequency. Each dot represents one individual. I. Linear regression analysis 

of c6(TIGT+ICOS+) cluster frequency versus eosinophil frequency in children with AA. Left 

graph depicts the samples from AA children with comorbidity (at least one allergic 

comorbidity), right graph without comorbidity. Each dot represents one individual. J. Linear 

regression analysis of CD4/CD8 T-cell ratio versus c6(TIGT+ICOS+) cluster frequency. Left 

graph depicts AA children with intermittent symptoms, right graph with a stable disease. Each 

dot represents one individual.  

 

Figure 3. Altered ratio of the TIGIT+ICOS+ Th2 cluster to Th1 cells in children with AA. 

A. Heat map of color coded z-scores of the mean marker expression values after column 

normalization. Indicated are three clades of Th1 cells: Th1-I (c26 and c28), Th1-II (c21, c22 

and c8) and Th1-III (c27, c19 and c18). Th1 cluster were selected from Figure 2F based on the 

T-BET positivity. B. Overlay tSNE plots of CD127, CTLA4, PD1 and ICOS expression for 

clades Th1-I-III, shown in heat map in A. The cells of concatenated all samples are shown. C. 

tSNE visualization of Th1 clades within CD4+ T cells: Th1-I (light blue), Th1-II (red) and Th1-

III (purple). D. Scatter bar graphs show the respective Th1 clade frequency in each sample, 

(mean, P value by Mann-Whitney test). E. Scatter bar graphs represent the respective 

c6(TIGIT+ICOS+)/ Th1 or Th1-clade ratios (mean, P value by Mann-Whitney test). F. Linear 

regression analysis of the c6(TIGIT+ICOS+)/ Th1 ratio versus blood eosinophil frequency in 

children with AA. Each dot represents one individual.  

 

Figure 4. Increased frequency of resting/naïve Tregs in children with AA. A. Expression 

of the indicated molecules visualized in the tSNE plots by total CD4+ T cells (all samples 

concatenated), spatial location of CD4+ T-cell cluster c30 is highlighted by red circle. B. 
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Representative example of the gating strategy to identify Treg fractions (Fr)-I-III. C. Dot plot 

of concatenated all samples with an overlay of CD4+ T-cell cluster c30. D. Scatter bar graphs 

represent the frequency of indicated Treg fractions in each sample (mean, P value by Mann-

Whitney test). E. tSNE visualization of CD4+ T cells and eTregs of concatenated all files (left) 

and manually gated Treg Fr-I (middle) and Fr–II (right). F. Linear regression analysis of Treg-

Fr-II versus Treg-Fr-I in children with AA. Each dot represents one individual. G. Linear 

regression analysis of CD4_c30 versus Tiffenau index forced expiratory volume in 1s vs forced 

vital capacity (FEV1/FVC, % of predicted) in children with AA. Each dot represents one 

individual. H. Linear regression analysis of the CM and EM CD8+ T cells versus Treg-Fr-I in 

children with AA. Each dot represents one individual.  

 

Figure 5. Significantly regulated Treg clusters associate with the AA phenotype. A. Heat 

map of color coded z-scores of the mean marker expression values normalized per column of 

ten FlowSOM based eTreg clusters. B. tSNE visualization of FlowSOM eTreg clusters c2 (red), 

c10 (blue) and background (grey) of concatenated all samples. C. Scatter bar graph represents 

the frequency in each sample for eTreg clusters c2 and c10 (mean, P value by Mann-Whitney 

test). D. Histograms display the mean expression of depicted markers by the cluster c2 (red), 

c10 (blue) and all other clusters (black). E. Scatter bar graph represents the frequency in each 

sample for the c6(TIGIT+ICOS+)/eTreg ratio (mean, P value by Mann-Whitney test). F. Linear 

regression analysis of the respective ratios versus blood eosinophil frequency in children with 

AA. Each dot represents one individual.   

 

Figure 6. Integrated T cell signature distinguishes children with AA from HC. A. Principal 

component analysis (PCA) of the 14 AA and 9 HC samples based on the significantly regulated 
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subpopulations (CD8+ T cells, CM CD8+ T cells, CD8+ T-cell_c10, CD4+ T-cell_c6, CD4+ T-

cell_c30, eTreg_c2, eTreg_c10 and CD4/CD8 T-cell ratio). AA are shown in red, HC in blue. 

B. Correlation circle represents the contributions of the subpopulations to the variability. C. 

Receiver operating characteristic (ROC) curves were calculated for CD4+ T cell cluster c30 

(CD4_c30), eTreg cluster c2 (eTreg_c2) and eTreg c10 (eTreg_c10) in AA vs HC. D. Linear 

regression analysis of CD8+ T cells for children with AA (left), HC (middle) and for all samples 

(right) versus IRF1 risk score. Each dot represents one individual.  
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