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The explicit formula for solution of wave differential equation
with fractional derivatives in the multi-dimensional space

1Durdiev D.K., 2Shishkina E.L., 3Rahmonov A.A.

Abstract. This paper devoted to the obtaining the explicit solution of n-dimensional wave equation
with Gerasimov–Caputo fractional derivative in the infinite domain with non-zero initial condition and
vanishing condition at infinity. It is shown that this equation can be derived from the classical homogeneous
hyperbolic integro-differential equation with memory in which the kernel is t1−αE2−α,2−α(−t2−α), α ∈
(1, 2), where Eα,β is the Mittag-Liffler function. Based on Laplace and Fourier transforms the properties of
the Fox H-function and convolution theorem, explicit solution for the solution of the considered problem
is obtained.

Keywords: fractional wave equation; Gerasimov–Caputo fractional derivative; Laplace transform;
Fourier transform; convolution theorem; explicit solution.

1 Introduction to the problem and its setting
The rapid development of fractional differential equations with various fractional derivatives was largely
due to the discovered practical applications of fractional calculus, primarily in the physics of complex
inhomogeneous media. Fractional differential equations are ideally suited for modeling anomalous processes
occurring in systems with a fractal structure or having a power-law memory.

The study of dynamical systems that have fractal properties or power memory have important
theoretical and practical value. The presence of memory in a dynamic system indicates the dependence of
its the current state from a finite number of its previous states. It leads to nonlocal properties of dynamical
systems, for example, in mechanics when describing the effect of aftereffect is known in viscoelastic media
[1, 2], in materials science - fatigue of materials, characterized by the gradual accumulation of defects
under the action of stresses, which leads to the destruction of the material [3], in the economy - the effects
of dynamic memory in economic theory [4] and even in medicine [5].

Hereditary processes or processes with memory are dedicated to hereditary mechanics in the description
of viscoelastic media and materials These processes characterize a state of a mechanical system that
depends on its previous conditions. The mathematical apparatus for describing hereditary mechanics is
the apparatus of integro-differential equations with a convolution integral terms, in which kernels are
called functions of memory [6]. In papers [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] (see also the
list of references in them), a wide class of inverse problems of determining these kernels from hyperbolic
integro-differential equations was studied on the basis of an additional condition on the solution of the
direct problem.

If the memory functions are given and are power-law, then we can go to other types of equations that
are based on derivatives of fractional orders, properties of which are considered in books on fractional
calculus [5, 20, 21]. The solvability of Cauchy problems and initial-boundary value problems for various
types of linear fractional differential equations were investigated in the works [20, 22, 23, 24, 25, 26, 27].
To construct a solution of linear fractional differential equations of diffusion type, various methods and
algorithms based on the Green’s function, Fourier, Laplace, and Mellin integral transforms, a generalization
of the method of separation of variables, reduction to Volterra-type integral equations, and several others
were proposed. At the same time, there are practically no methods for obtaining analytical solutions of
fractional wave differential equations with fractional derivatives.

In this paper, we consider the following n−dimensional integro-differential equation of the (modified)
fractional wave equation

utt(x, t) + C
0 D

α
t u−∆u(x, t) = f(x, t), (1.1)
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2Belgorod State National Research University (BelGU), Belgorod, Russia, E-mail: shishkina@amm.vsu.ru
3Bukhara State University, Bukhara, Uzbekistan, E-mail: araxmonov@mail.ru
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which satisfies the initial and boundary conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), lim
|x|→∞

(u,∇u) (x, t) = 0, t > 0, x = (x1, x2, ..., xn) ∈ Rn, (1.2)

where the Gerasimov–Caputo fractional differential operator C0 Dα
t of order α ∈ (1, 2) is defined by [28]

C
0 D

α
t u(x, t) :=

1

Γ(2− α)

t∫
0

uττ (x, τ)

(t− τ)α−1
dτ,

∆ is the n-dimensional Laplace operator with respect to x and ∇ =
(

∂
∂x1

, ..., ∂
∂xn

)
.

The main goal of this article is to obtain an analytical formula that gives a solution to problem (1.1)
- (1.2).

Remark 1. In Section 4, it will be shown that, under certain conditions, all the equations considered
in the works [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] are reduced to the equation of the form (1.1)
with f(x, t) = 0.

2 Preliminaries
In this section, we present well known definitions, lemmas and theorems that will be used for proof of
main results.

Definition 1. The Fox H−function is a generalized hypergeometric function, defined by means of the
Mellin-Barnes type contour integral [29]

Hm,n
p,q

[
z
∣∣∣(aj ,Aj)p1
(bj ,Bj)

q
1

]
=

1

2πi

∫
Ω

Hm,np,q (s)z−sds, (2.1)

where

Hm,np,q (s) =

m∏
j=1

Γ(bj +Bjs)
n∏
i=1

Γ(1− ai −Ais)

q∏
j=m+1

Γ(1− bj −Bjs)
p∏

i=n+1

Γ(ai +Ais)

with complex variable z 6= 0 and a contour Ω in the complex domain; the orders (m,n, p, q) are non-
negative integers so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters Ai > 0, Bj > 0 are positive and
ai, bj , i = 1, ..., p; j = 1, ..., q are arbitrary complex such that

Ai(bj + l) 6= Bj(ai − l′ − 1), l, l′ = 0, 1, 2, ..., i = 1, ..., n, j = 1, ...,m. (2.2)

The details on the properties of the Fox’s H−function and types of contour Ω can be found in [37],
where its behavior is described in terms of the following parameter:

κ :=

q∑
j=1

Bj −
p∑
i=1

Ai.

Theorem 1. Let κ is given and let the condition (2.2) be satisfied. If κ ≤ 0, then the H−function
has the asymptotic expansion at infinity given by [29]

Hm,n
p,q (z) = O(zd), |z| → ∞,

where
d := min

1≤j≤n

[R(aj)− 1

Aj

]
.
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R(aj)−denote the real part of the complex number aj.
The Mittag-Leffler functions Eα(z) and Eα,β(z) are defined by the following series:

Eα(z) :=

∞∑
n=0

zn

Γ(αn+ 1)
=: Eα,1(z) and Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
,

respectively, where α, z, β ∈ C, R(α) > 0. These functions are natural extensions of the exponential,
hyperbolic and trigonometric functions, since

E1(z) = ez, E2(z2) = cosh z, E2(−z2) = cos z, E1,2(z) =
ez − 1

z
, E2,2(z2) =

sinh z

z
.

The three-parameter Mittag-Leffler function or Prabhakar function is [30]:

Eγα,β :=

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, (2.3)

where α, β, γ, z ∈ C, R(α) > 0 and (γ)n denotes the Pochammer symbol or the shifted factorial defined
by

(γ)0 = 1, (γ)n = γ(γ + 1)...(γ + n− 1), γ 6= 0.

Also we can write (γ)n ≡ Γ(γ + n)/Γ(γ), where Γ(γ) is the Gamma function. We have following special
cases: E1

α,β(z) = Eα,β(z) and E1
α,1 = Eα(z).

Recall that the function (2.3) can be rewritten in terms of the Fox H-function as [29, 30]:

Eγα,β(z) =
1

Γ(γ)
H1,1

1,2

[
−z
∣∣∣(1−γ,1)
(0,1),(1−β,α)

]
, R(γ) > 0. (2.4)

We define the integral operator Eγα,β,ω;a+ as follows [29, 31]:

(
Eγα,β,ω;a+ϕ

)
(t) :=

(
tβ−1Eγα,β(ωtα)

)
∗ ϕ(t) =

t∫
a

(t− τ)β−1Eγα,β(ω(t− τ)α)ϕ(τ)dτ. (2.5)

Note the integral operator (2.5) is nowadays known in literature as Prabhakar fractional integral.
Lemma 1. The following Laplace transform of a three-parameter Mittag-Leffler function is true

[29, 32]:

L
[
tβ−1Eγα,β(±ωtα)

]
(s) =

∞∫
0

e−sttβ−1Eγα,β(±ωtα)dt =
sαγ−β

(sα ∓ ω)γ
,

where |ω/sα| < 1.
Lemma 2. The Laplace transform of e−λttβ−1Eγα,β(±ωtα) is given by the following formula [32]:

L
[
e−λttβ−1Eγαβ(±ωtα)

]
(s) =

(s+ λ)αγ−β

((s+ λ)α ∓ ω)γ
,

where λ ≥ 0, |ω/(s+ λ)α| < 1.
In the case λ = 0, Lemma 2 coincides with Lemma 1.
Lemma 3. For arbitrary α > 0, β is an arbitrary complex number, µ > 0 and a ∈ R, the following

formula is valid [33]:∫
Rn

eiξ·xE
(m)
α,β (−a|ξ|µ)dξ = (2π)n/2|x|1−n/2

∞∫
0

|ξ|n/2E(m)
α,β (−a|ξ|µ)Jn

2−1(|x||ξ|)d|ξ|.

Here Jn
2−1(·) is a Bessel function and E(m)

α,β (z) denotes m-th derivatives of the Mittag-Leffler function.
m-th derivatives of the Mittag-Leffler function can be expressed in terms of the Fox H-function as

E
(m)
α,β (z) = H1,1

1,2

[
−z
∣∣∣(−m,1)
(0,1),(1−(αm+β),α)

]
.
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For solvability of an integral equation of the Volterra type with difference kernel it is true the following
assertion [34]:

Lemma 4. If {k(t), r(t)} ∈ L1[0, T ] for a fixed T > 0 and k(t), r(t) are connected by the integral
equation

r(t) = k(t) +

t∫
0

k(t− τ)r(τ)dτ, t ∈ [0, T ], (2.6)

then the solution of the integral equation

ϕ(t) =

t∫
0

k(t− τ)ϕ(τ)dτ + f(t), f(t) ∈ L1[0, T ] (2.7)

is expressed by formula

ϕ(t) =

t∫
0

r(t− τ)f(τ)dτ + f(t). (2.8)

Now, we present definitions of multidimensional Fourier, one-dimensional Laplace transforms and
Riemann-Lebesgue lemma.

Definition 2. The n−dimensional Fourier transform of a function f(x, ·) of x ∈ Rn is defined by
[20]

F [f(x, ·)](ξ) = f̃(ξ, ·) :=

∫
Rn

f(x, ·)e−iξ·xdx, ξ ∈ Rn

where

x ∈ Rn, ξ ∈ Rn, ξ · x =

n∑
j=1

ξi · xi, dx = dx1dx2...dxn

while the corresponding inverse Fourier transform is given by the formula

F−1[f(ξ, ·)](x) =
1

2π
f̃(−x, ·) :=

1

(2π)n

∫
Rn

f(ξ, ·)eiξ·xdξ, x ∈ Rn.

Definition 3. The Laplace transform of a function u(·, t) with respect to the variable t ∈ R+ := (0,∞)
is defined by [20]

L[u(·, t)](s) = û(·, s) :=

∞∫
0

e−stu(·, t)dt, s ∈ C.

The inverse Laplace transform is given for t ∈ R+ by the formula

L−1[u(·, s)](t) :=
1

2πi

∫ γ+i∞

γ−i∞
estu(·, s)ds, γ = R(s) > γ0 =: inf |s|.

where dξ = dξ1dξ2...dξn.
Lemma 5. If f is L1 integrable on Rn, then the Fourier transform of f satisfies [20]

f̃(ξ, ·) :=

∫
Rn

f(x, ·)e−iξ·xdx→ 0, as |ξ| → ∞.

We will use these above notations everywhere in this paper.
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3 Explicit solution of the problem (1.1) and (1.2)
The unknown function u(x, t) is required to be sufficiently well behaved to be treated with its derivatives
ut(x, t), utt(x, t), uxixi(x, t), i = 1, . . . , n by technique of Laplace (in t) and Fourier (in x) transforms. The
given functions ϕ(x), ψ(x) and f(x, t) are also assumed to have such properties, in addition, they are
such that the integrals and the series in (3.1) converge.

Theorem 2. The explicit solution of the problem (1.1) and (1.2) can be expressed by formula

u(x, t) =
1

(2π)n

∫
Rn

∞∑
j=0

(−1)j
(
Ej+1

2, (2−α)j+2,−|ξ|2; 0+f̃
)

(ξ, t)eiξ·xdξ+

+

∫
Rn

G0(x− ξ, t)ϕ(ξ)dξ +

∫
Rn

G1(x− ξ, t)ψ(ξ)dξ, , (3.1)

where the Green functions Gk(x, t), k = 0, 1, are given by

G0(x, t) =
1

2πn/2|x|n
∞∑
j=0

(−1)j

j!

(
t(2−α)jH2,0

1,2

[
|x|
2t

∣∣∣∣ (1 + (2− α)j, 1)
(n/2, 1/2), (1 + j, 1/2)

]

+t(2−α)(j+1)H2,0
1,2

[
|x|
2t

∣∣∣∣ (1 + (2− α)(j + 1), 1)
(n/2, 1/2), (1 + j, 1/2)

])
,

G1(x, t) =
1

2πn/2|x|n
∞∑
j=0

(−1)j

j!

(
t(2−α)j+1H2,0

1,2

[
|x|
2t

∣∣∣∣ (2 + (2− α)j, 1)
(n/2, 1/2), (1 + j, 1/2)

]

+t(2−α)(j+1)+1H2,0
1,2

[
|x|
2t

∣∣∣∣ (2 + (2− α)(j + 1), 1)
(n/2, 1/2), (1 + j, 1/2)

])
.

where x ∈ Rn, ξ ∈ Rn.
Proof. Let F [u(x, t)] := ũ(ξ, t) be the Fourier transform of u(x, t) with respect to variable x, and

L[u(x, t)] := û(x, s) be the Laplace transform of u(x, t) with respect to variable t. In sequence, applying
to the equation (1.1) the Laplace transform with respect to the time variable t and the Fourier transform
with respect to the spatial variable x, we obtain the following equation:

s2 ˆ̃u(ξ, s)− ũ(ξ, 0)s− ũt(ξ, 0) + sα−2
[
s2 ˆ̃u(ξ, 0)− ũ(ξ, 0)s− ũt(ξ, 0)

]
= −|ξ|2 ˆ̃u(ξ, s) +

ˆ̃
f(ξ, s), ξ ∈ Rn.

Taking into account the initial conditions from (1.2), this equation yields

ˆ̃u(ξ, s) =
1

s2 + sα + |ξ|2
ˆ̃
f(ξ, s) +

s+ sα−1

s2 + sα + |ξ|2
ϕ̃(ξ) +

1 + sα−2

s2 + sα + |ξ|2
ψ̃(ξ)

=: F (ξ, s) + Φ(ξ, s) + Ψ(ξ, s). (3.2)

We calculate the inverse Laplace and Fourier transforms of the function ˆ̃u(ξ, s) defined by (3.2). First,
these operations we carry out for F (ξ, s). It may be performed by using the equality

1

s2 + sα + |ξ|2
=

s−α

s2−α + 1
· 1

1 + |ξ|2s−α
s2−α+1

(3.3)

and expanding the second factor on the right side of this expression into an infinitely decreasing geometric
series:

1

1 + |ξ|2s−α
s2−α+1

=

∞∑
n=0

(−|ξ|2)n
s−αn

(s2−α + 1)n

5



for
∣∣∣ |ξ|2s−αs2−α+1

∣∣∣ < 1. On bases of (3.3) from last equality we have

1

s2 + sα + |ξ|2
=

∞∑
n=0

(−|ξ|2)n
s−α(n+1)

(s2−α + 1)n+1
. (3.4)

Then, according to Lemma 1, we note

s−α(n+1)

(s2−α + 1)(n+1)
= L

[
t2n+1En+1

2−α,2(n+1)(−t
2−α)

]
and

1

s2 + sα + |ξ|2
= L

[ ∞∑
n=0

(−|ξ|2)nt2n+1En+1
2−α,2n+1(−t2−α)

]
.

Taking these formulae into account, eventually F (ξ, s) can be expressed as

F (ξ, s) = L

[ ∞∑
n=0

(−|ξ|2)nt2n+1En+1
2−α,2(n+1)(−t

2−α)

]
L
[
f̃(ξ, t)

]
. (3.5)

We now transform the functions Φ(ξ, s) and Ψ(ξ, s). For this we note that the fractions at these
functions as seen from (3.2) differ from (3.3) only by numerators. Because of this

s+ sα−1

s2 + sα + |ξ|2
=

∞∑
n=0

(−|ξ|2)n
[

s−α(n+1)+1

(s2−α + 1)n+1
+

s−αn−1

(s2−α + 1)n+1

]
,

1 + sα−2

s2 + sα + |ξ|2
=

∞∑
n=0

(−|ξ|2)n
[

s−α(n+1)

(s2−α + 1)n+1
+

s−αn−2

(s2−α + 1)n+1

]
.

In view of the last relations, applying Lemma 1 to the functions Φ(ξ, s) and Ψ(ξ, s), we obtain

Φ(ξ, s) = L

[ ∞∑
n=0

(−|ξ|2)nt2nEn+1
2−α,2n+1(−t2−α)

]
(s)ϕ̃(ξ)+

+L

[ ∞∑
n=0

(−|ξ|2)nt2(n+1)−αEn+1
2−α,2n+3−α(−t2−α)

]
(s)ϕ̃(ξ); (3.6)

Ψ(ξ, s) = L

[ ∞∑
n=0

(−|ξ|2)nt2n+1En+1
2−α,2(n+1)(−t

2−α)

]
(s)ψ̃(ξ)+

+L

[ ∞∑
n=0

(−|ξ|2)nt(2n+3−α)−αEn+1
2−α,2(n+2)−α(−t2−α)

]
(s)ψ̃(ξ). (3.7)

Further, in accordance with the Mittag-Leffler function definition (2.3), from equation (3.4) we get

∞∑
n=0

(−|ξ|2)nt2n+1En+1
2−α,2(n+1)(−t

2−α) =

∞∑
n=0

(−|ξ|2)nt2n+1
∞∑
j=0

(n+ 1)j
Γ((2− α)j + 2(n+ 1))

(−t2−α)j

j!

=

∞∑
n=0

∞∑
j=0

(−1)jt(2−α)j+1 (j + 1)n
Γ((2− α)j + 2(n+ 1))

(−|ξ|2t2)n

n!
=

∞∑
j=0

(−1)jt(2−α)j+1Ej+1
2,(2−α)j+2(−|ξ|2t2).

By virtue of this fact we continue converting of the function F (ξ, s) as

F (ξ, s) = L

 ∞∑
j=0

(−1)jt(2−α)j+1Ej+1
2,(2−α)j+2(−|ξ|2t2)


6



×L
[
f̃(ξ, t)

]
= L

 ∞∑
j=0

(−1)jt(2−α)j+1Ej+1
2,(2−α)j+2(−|ξ|2t2)

 ∗ f̃(ξ, t)

 .
Taking into consideration the convolution property of the Laplace transform and the definition of integral
operator Eγα,β,ω;a+ϕ by (2.4), the inverse Laplace transform of the function F (ξ, s) from last relations can
be obtained as follows:

L−1 [F (ξ, s)] (t) =

∞∑
j=0

(−1)j
(
Ej+1

2, (2−α)j+2,−|ξ|2; 0+f̃
)

(ξ, t). (3.8)

Analogically, the inverse Laplace transform of functions Φ(ξ, s) and Ψ(ξ, s) by virtue of (3.6) and
(3.7) can be expressed as

L−1 [Φ(ξ, s)] (t) =

=

∞∑
j=0

(−1)jt(2−α)jEj+1
2, (2−α)j+1(−|ξ|2t2)ϕ̃(ξ) +

∞∑
j=0

(−1)jt(2−α)(j+1)Ej+1
2, (2−α)(j+1)+1(−|ξ|2t2)ϕ̃(ξ),

L−1 [Ψ(ξ, s)] (t) =

=

∞∑
j=0

(−1)jt(2−α)j+1Ej+1
2, (2−α)j+2(−|ξ|2t2)ϕ̃(ξ) +

∞∑
j=0

(−1)jt(2−α)(j+1)+1Ej+1
2, (2−α)(j+1)+2(−|ξ|2t2)ψ̃(ξ).

Considering the relationship between the generalized Mittag-Leffler function and the Fox-H function
(2.4), the last equalities can be rewritten in the form [29]

L−1 [Φ(ξ, s)] =

∞∑
j=0

(−1)j
(
t(2−α)j 1

Γ(j + 1)
H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j, 2)

]

+t(2−α)(j+1) 1

Γ(j + 1)
H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1),2)

])
ϕ̃(ξ)

=

∞∑
j=0

(−1)j

j!

(
t(2−α)jH1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j, 2)

]
+ t(2−α)(j+1)H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1),2)

])

×ϕ̃(ξ) =:

∞∑
j=0

(−1)j

j!

(
t(2−α)jΦ̃1j(ξ, t) + t(2−α)(j+1)−1Φ̃2j(ξ, t)

)
ϕ̃(ξ); (3.8)

L−1 [Ψ(ξ, s)] =

∞∑
j=0

(−1)j
(
t(2−α)j+1 1

Γ(j + 1)
H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j−1, 2)

]
+t(2−α)(j+1)+1 1

Γ(j + 1)
H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1)−1,2)

])
ψ̃(ξ)

=

∞∑
j=0

(−1)j

j!

(
t(2−α)j+1H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j−1, 2)

]
+ t(2−α)(j+1)+1×

×H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1)−1, 2)

])
ψ̃(ξ) =

=

∞∑
j=0

(−1)j

j!

(
t(2−α)j+1Ψ̃1j(ξ, t) + t(2−α)(j+1)+1Ψ̃2j(ξ, t)

)
ψ̃(ξ). (3.9)

In (3.8), (3.9) we introduced the following notations:

Φ̃1j(ξ, t) = H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j, 2)

]
, Φ̃2j(ξ, t) = H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1),2)

]
, (3.10)
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Ψ̃1j(ξ, t) = H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j−1, 2)

]
, Ψ̃2j(ξ, t) = H1,1

1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1)−1, 2)

]
. (3.11)

We also denote

G̃0(ξ, t) :=

∞∑
j=0

(−1)j

j!

(
t(2−α)jΦ̃1j(ξ, t) + t(2−α)(j+1)Φ̃2j(ξ, t)

)
, (3.12)

G̃1(ξ, t) :=

∞∑
j=0

(−1)j

j!

(
t(2−α)j+1Ψ̃1j(ξ, t) + t(2−α)(j+1)+1Ψ̃2j(ξ, t)

)
. (3.13)

Now we compute the inverse Fourier transform of relations (3.8) and (3.9). For this applying the
inverse transform F−1 to equalities (3.10) and (3.11), we have

Φ1j(x, t) =
1

(2π)n

∫
Rn

H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j, 2)

]
eiξ·xdξ, (3.14)

Φ2j(x, t) =
1

(2π)n

∫
Rn

H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1),2)

]
eiξ·xdξ; (3.15)

Ψ1j(x, t) =
1

(2π)n

∫
Rn

H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j−1, 2)

]
eiξ·xdξ, (3.16)

Ψ2j(x, t) =
1

(2π)n

∫
Rn

H1,1
1,2

[
|ξ|2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1)−1, 2)

]
eiξ·xdξ. (3.17)

Using Lemma 3, we obtain the following results from formulae (3.14)-(3.17)

Φ1j(x, t) =
1

(2π)n/2
|x|1−n2

∞∫
0

yn/2H1,1
1,2

[
y2t2

∣∣∣(−j,1)
(0,1),(−(2−α)j, 2)

]
Jn

2−1(|x|y)dy,

Φ2j(x, t) =
1

(2π)n/2
|x|1−n2

∞∫
0

yn/2H1,1
1,2

[
y2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1),2)

]
Jn

2−1(|x|y)dy;

Ψ1j(x, t) =
1

(2π)n/2
|x|1−n2

∞∫
0

yn/2H1,1
1,2

[
y2t2

∣∣∣(−j,1)
(0,1), (−(2−α)j−1,2)

]
Jn

2−1(|x|y)dy,

Ψ2j(x, t) =
1

(2π)n/2
|x|1−n2

∞∫
0

yn/2H1,1
1,2

[
y2t2

∣∣∣(−j,1)
(0,1), (−(2−α)(j+1)−1, 2)

]
Jn

2−1(|x|y)dy.

Taking into account a Hankel transform [29](p. 57) and the properties Fox-H function [29](pp. 11-13),
the first function of the last ones can be written as

Φ1j(x, t) =
1

πn/2|x|n
H2,1

2,3

[
|x|2

4t2

∣∣∣∣ (1, 1), (1 + (2− α)j, 2)
(n/2, 1), (1 + j, 1), (1, 1)

]
=

=
1

πn/2|x|n
H2,0

1,2

[
|x|2

4t2

∣∣∣∣ (1 + (2− α)j, 2)
(n/2, 1), (1 + j, 1)

]
=

=
1

2πn/2|x|n
H2,0

1,2

[
|x|
2t

∣∣∣∣ (1 + (2− α)j, 1)
(n/2, 1/2), (1 + j, 1/2)

]
. (3.18)

By same arguments for Φ2j , Ψ1j and Ψ2j we have
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Φ2j(x, t) =
1

2πn/2|x|n
H2,0

1,2

[
|x|
2t

∣∣∣∣ (1 + (2− α)(j + 1), 1)
(n/2, 1/2), (1 + j, 1/2)

]
, (3.19)

Ψ1j(x, t) =
1

2πn/2|x|n
H2,0

1,2

[
|x|
2t

∣∣∣∣ (2 + (2− α)j, 1)
(n/2, 1/2), (1 + j, 1/2)

]
, (3.20)

Ψ2j(x, t) =
1

2πn/2|x|n
H2,0

1,2

[
|x|
2t

∣∣∣∣ (2 + (2− α)(j + 1), 1)
(n/2, 1/2), (1 + j, 1/2)

]
. (3.21)

Now, applying the inverse Fourier transform to both sides of (3.12) and (3.13), and substituting into
resulting equalities formulae (3.18)-(3.21), we get

G0(x, t) =
1

2πn/2|x|n
∞∑
j=0

(−1)j

j!

(
t(2−α)jH2,0

1,2

[
|x|
2t

∣∣∣∣ (1 + (2− α)j, 1)
(n/2, 1/2), (1 + j, 1/2)

]
+

+t(2−α)(j+1)H2,0
1,2

[
|x|
2t

∣∣∣∣ (1 + (2− α)(j + 1), 1)
(n/2, 1/2), (1 + j, 1/2)

])
, (3.22)

G1(x, t) =
1

2πn/2|x|n
∞∑
j=0

(−1)j

j!

(
t(2−α)j+1H2,0

1,2

[
|x|
2t

∣∣∣∣ (2 + (2− α)j, 1)
(n/2, 1/2), (1 + j, 1/2)

]
+

+t(2−α)(j+1)+1H2,0
1,2

[
|x|
2t

∣∣∣∣ (2 + (2− α)(j + 1), 1)
(n/2, 1/2), (1 + j, 1/2)

])
. (3.23)

Continuing to convert the equalities (3.6) and (3.7) we can write formally

L−1 [Φ(ξ, s) + Ψ(ξ, s)] = L−1

(
F [G0(x, s)] (ξ)ϕ̃(ξ) + F [G1(x, s)] (ξ)ψ̃(ξ)

)
. (3.24)

In view of (3.8) and (3.24), applying an inverse Laplace transform to equation (3.2) we finally obtain

ũ(ξ, t) =

∞∑
j=0

(−1)j
(
Ej+1

2,(2−α)j+2,−|ξ|2;0+f̃
)

(ξ, t) + F [G0(x, t)] (ξ)ϕ(ξ) + F [G1(x, t)] (ξ)ψ(ξ). (3.25)

To equation (3.25) can be further applied inverse Fourier transform and Fourier convolution property in
sequence. Accordingly, the Theorem 2 is proven.

Asymptotic of the function (3.1) at infinity. From the Theorem 1 and Lemma 5 implies following
asymptotic expansion at infinity for the solution of the (1.1)-(1.2) Cauchy problem:

u(x, t) ∼ |x|3−α−ne−|x|
2−α

, (3.26)

where n ∈ N, α ∈ (1, 2), t > 0.

4 The integro-differential wave equation with the Mittag-Leffler
function in the kernel

In this section we show the equivalence of one integro-differential wave equation with the Mittag-Leffler
function in the kernel to the fractional wave equation.

Theorem 2. The integro-differential wave equation

utt −4u+

t∫
0

k(t− τ)4u(x, τ)dτ = 0, x ∈ Rn, t > 0 (4.1)
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with memory k(t) = t1−αE2−α, 2−α
(
−t2−α

)
, α ∈ (1, 2), is equivalent to the time-fractional wave equation

utt + C
0 D

α
t u−4u(x, t) = 0. (4.2)

Proof. Considering equation (4.1) as the Volterra integral equation of the second kind with respect
to 4u for fixed x and applying Lemma 4, we have

4u = utt +

t∫
0

r(t− τ)uττ (x, τ)dτ, (4.3)

where r(t) is resolvent of k(t) and it satisfies the integral equation (2.6)
We apply to both sides of (2.5) the Laplace and denoting by K(s) and R(s) the imagines of origins

k(t) and r(t), respectively, obtain
R(s) = K(s) +K(s)R(s).

From this relation we get

K(s) =
R(s)

1 +R(s)
=

1

s2−α + 1
, R(s) > 1.

Applying the inverse Laplace transformation to last equality (see [28])

k(t) = L−1 [K(s)] = L−1

[
1

s2−α + 1

]
= t1−αE2−α, 2−α

(
−t2−α

)
. (4.4)

Thus, if we choose k(t) by formula (4.4) then, (4.3) yields (4.2).
Remark 2. Thus, the equation (4.1) with memory kernel k(t) = t1−αE2−α, 2−α

(
−t2−α

)
describes

the homogeneous time-fractional wave equation (1.1).
From this remark it follows that the solution of equation (4.1) with conditions (1.2) can be given by

formula (3.1) for f(x, t) = 0.

5 Conclusions
In practices, using the different types of a memory kernel k(t) in equation (4.1) it can be described a
wide variety of physical phenomena with memory effects. In this work, it is shown that n-dimensional
wave equation with Gerasimov–Caputo fractional derivative (1.1) with f(x, t) = 0 can be derived from
the hyperbolic integro-differential equation (4.1) with memory kernel t1−αE2−α, 2−α

(
−t2−α

)
. Based on

the Laplace transform method to the time variable and Fourier transform to the spatial variable, the
analytical explicit solution of initialЏboundary problem for the equation (1.1) is obtained. This solution
includes the Prabhakar fractional integral and Fox H-functions.
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