The gliptin: one type of potential drug for the treatment of fibrotic diseases

zhongyao liang¹

¹Sichuan University

March 07, 2024

Abstract

Fibrosis is a common terminal state of many chronic diseases and there are few effective treatments at present. The gliptin is a class of DPP4 inhibitors used in the treatment of type 2 diabetes. At present, many studies show that it may have the effect of inhibiting fibrosis. In order to explore the role of the gliptin in different fibrotic diseases, we searched the related literature about the fibrotic diseases and the gliptin. In our review, we found that the gliptin can inhibit the fibrotic process through a variety of mechanisms. The evidence for the inhibition of atherosclerosis by the gliptin is strong. For pulmonary, renal and cardiac fibrosis, more clinical studies are needed to support it. However, there is no benefit in the treatment of liver fibrosis with the gliptin. To sum up, it is true that the gliptin has the broad-spectrum anti-fibrotic effects.

The gliptin: one type of potential drug for the treatment of fibrotic diseases

Zhongyao Liang^{1,*}

1,*: West China clinical college, Sichuan University

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.

Abstract

Fibrosis is a common terminal state of many chronic diseases and there are few effective treatments at present. The gliptin is a class of DPP4 inhibitors used in the treatment of type 2 diabetes. At present, many studies show that it may have the effect of inhibiting fibrosis. In order to explore the role of the gliptin in different fibrotic diseases, we searched the related literature about the fibrotic diseases and the gliptin. In our review, we found that the gliptin can inhibit the fibrotic process through a variety of mechanisms. The evidence for the inhibition of atherosclerosis by the gliptin is strong. For pulmonary, renal and cardiac fibrosis, more clinical studies are needed to support it. However, there is no benefit in the treatment of liver fibrosis with the gliptin. To sum up, it is true that the gliptin has the broad-spectrum anti-fibrotic effects.

Key Word

Gliptins Fibrosis DPP4 Atheroscler	osis Linagliptin Sitagliptin
------------------------------------	------------------------------

Introduction

Fibrotic disease is a general term for the process of chronic diseases caused by improper repair of connective tissue after the tissue damage. Tissue damage can occur in various parts of the body, which also suggests that fibrosis can occur in almost every tissue and organ system. There are two kinds of fibrotic diseases: One is the fibrotic disease confined to specific organs, such as liver fibrosis, kidney fibrosis, myocardial fibrosis, skin fibrosis and so on. The other is the fibrotic disease involving multiple system organs, such as systemic sclerosis, chronic graft vs host disease, etc.

In the pathogenesis of fibrosis, the core element is that fibroblasts are stimulated by various factors to transform into myofibroblasts and secrete excessive extracellular matrix.^{1,2} As the T cell surface antigen, DPP4 is a serine protease on the surface of cell membrane which is widely distributed on various cell surfaces including fibroblasts.³ DPP4 is mainly related to immune regulation, cytokine digestion and T cell activation. Many studies have shown that DPP4 positive fibroblasts are the main effector cells that secrete extracellular matrix and participate in the process of fibrosis, so DPP4 may be a potential target for the treatment of fibrotic diseases.⁴⁻¹⁰

At present, the DPP4 inhibitor that have been used in clinic is the gliptin, which are widely used in the treatment of type II diabetes. The gliptin reduces the inactivation of GLP-1 by inhibiting DPP4 activity and increased levels of GLP-1 enhance insulin secretion. The gliptin is a kind of safe, effective and convenient

antihyperglycemic drug because of no weight gain and few hypoglycemic events.

According to the mechanism of action, the existing gliptins can be divided into two categories and their relevant information is described in Table 1. The existing studies have found that the gliptin has an inhibitory effect on a variety of fibrotic diseases. This study aims to summarize and explore the anti-fibrotic effects of the gliptin by searching the literature related to the gliptin used in the fibrosis. (Fig 1)

Pulmonary fibrosis

Pulmonary fibrosis is the end-stage change of many lung diseases, characterized by the proliferation of fibroblasts, the accumulation of extracellular matrix and the destruction of tissue structure. A variety of irritant factors can cause lung inflammation and damage, and further cause pulmonary fibrosis. Idiopathic fibrosis is one of the most important diseases in fibrosis which etiology is unknown and there is no effective treatment at present.

DPP4 is widely distributed on various cell surfaces of the lung, which is considered to be an important antigen deeply involved in lung immune and inflammatory response.^{11,12} It has been found that the expression of DPP4 in bronchial epithelial cells increases significantly after lung injury.¹³ Inhibition of DPP4 activity can prevent inflammation and vascular injury.¹⁴

Uncontrolled inflammatory response is also an important cause of initiating pulmonary fibrosis. In the pathogenesis of pulmonary fibrosis, not only the involvement of fibrosis-related TGF- β pathway, but also the epithelial-mesenchymal transition plays an important role.Epithelial-mesenchymal transition is a process in which epithelial cells are transformed into fibroblasts and the abundant epithelial cells in the lung become an important source of fibroblasts in the process of pulmonary fibrosis.¹⁵

At present, most of the researches on the relationship between the gliptin and pulmonary fibrosis are basic researches. Among them, the studies of vildagliptin and sitagliptin accounts for the highest proportion. Vildagliptin and sitagliptin were found to inhibit pulmonary fibrosis in mice induced by injection of lipopolysaccharide or bleomycin.^{15, 17}In the case of alogliptin, it is currently found that it may not have a mitigating effect on pulmonary fibrosis.²¹ At present, there are few clinical studies on the relationship between gliptin and pulmonary fibrosis. Vildagliptin and sitagliptin are the most likely potential drugs to treat pulmonary fibrosis.¹⁷

The different gliptin inhibits pulmonary fibrosis through different mechanisms of action. The effect of sitagliptin is mainly through the regulation of TGF- β signaling pathway.^{16, 18, 20} It inhibits pulmonary fibrosis by inhibiting the TGF- β pathway to reduce the inflammatory response and the degree of activity of fibroblasts. Vildagliptin can further reduce extracellular matrix deposition by inhibiting epithelial-to-mesenchymal transition, thus alleviating the process of pulmonary fibrosis. One of the most important findings in these studies is that the antifibrotic effect of gliptin is also found in animal models without diabetes, showing that gliptin has a direct inhibitory effect on fibrosis partly independent of the regulation of diabetes.Of course, given that diabetes may be one of the risk factors for pulmonary fibrosis,²² the gliptin may suppress pulmonary fibrosis of diabetic rats in part by inhibiting diabetes.

It is worth noting that asthma is also a type of lung disease that can cause pulmonary fibrosis. It has been shown in the literature that saxagliptin and sitagliptin can inhibit asthma by inhibiting the inflammatory response in the airway and the production of related cytokines.^{16,19}

In general, the inhibitory effect of gliptin on pulmonary fibrosis is mainly reflected in basic research and more clinical studies are needed to prove it.(Table 2)

Liver fibrosis

Liver fibrosis is a common terminal state of many liver diseases. Many kinds of injury factors lead to liver over-repair and eventually lead to liver fibrosis.^{23,24,25} Hepatic stellate cell (HSC) is a unique and

important factor in the development of hepatic fibrosis. Hepatic stellate cell are the mesenchymal cell of the liver, which are in a resting state under the normal condition. In that proces of liver fibrosis, the hepatic stellate cell are activated by various factors to transform into myofibroblasts, which participate in the synthesis of extracellular matrix and structure remodeling , and finally lead to the formation of liver fibrosis.^{26,27,28} Nonalcoholic fatty liver disease (NAFLD) is an important cause of liver fibrosis, which affects more than 70% of patients with type-2 diabetes.²⁹ Currently, there is a lack of drug that can reverse liver fibrosis.

At present, there are many studies on the relationship between the gliptin and liver fibrosis, but the conclusions of basic research and clinical research are obviously different or even contrary. In that basic study, liver fibrosis is induce in mice by carbon tetrachloride, pig serum or streptozotocin, regardless of whether the mice also have diabetes or non-alcoholic liver disease, the gliptins are able to inhibit liver fibrosis in mice.^{30,31,33-36,41,43-46,48} The combination of gliptin with pioglitazone [31], oleanolic acid (TGR5 agonist),^{32, 43} Emmagliflozin (an SGLT2 inhibitor),³³ Canagliflozin³⁷ or Silymarin⁴⁴ can produce a synergistic effect.

But the results of the clinical studies are far from satisfactory. Current clinical studies have mainly been associated with sitagliptin, but most ^{40, 41, 47} have shown that sitagliptin does not inhibit liver fibrosis and non-steatoalcoholic hepatitis in patients with or without diabetes. There is even a literature³⁹ that suggests that gliptins increase the incidence of hepatic decompensation in cirrhotic patients.

The anti-fibrotic effect of the gliptin is mainly through inhibiting hepatic stellate cells, inflammatory reaction, TGF- β pathway and NF-kB pathway. Secondly, some studies have shown that GLP-1 can inhibit liver fibrosis and inflammatory reaction, thus playing a protective role in liver. GLP-1 receptor agonists may be potential drugs to inhibit liver fibrosis.^{49,50} Therefore, the inhibition of liver fibrosis by the gliptin may be partly mediated by the effect on GLP-1.

Given the reliability of the clinical evidence, we believe that the gliptin may not be able to inhibit liver fibrosis in patients.(Table 2)

Renal fibrosis

Renal fibrosis is the end stage of many renal diseases, which is mainly manifested by the reduction of intrinsic cells, the deposition of extracellular matrix and the inevitable renal failure. When the kidney is stimulated by a variety of injury factors, a series of inflammatory response factors can transform the intrinsic cells and fibroblasts of the kidney into myofibroblasts which lead to the excessive secretion of collagen and other extracellular matrix. TGF- β pathway and epithelial-mesenchymal transition are the main processes involved in renal fibrosis.

In all organ, the expression level of DPP4 is the highest in the kidney. It is widely expressed on the cell membrane of podocytes, mesangial cells, proximal tubule cells and deeply participate in the process of the tissue structure remodeling and epithelial-mesenchymal transformation of kidney.⁷⁰⁻⁷³ Crescent is an important marker of nephritis formation. It has been found that DPP4 is highly expressed in the crescents in different nephritis models.⁵²

Most of the current studies on the role of gliptins in renal fibrosis are basic studies, with the largest number of studies on sitagliptin and linagliptin. Renal fibrosis is induced in mice by injection of streptomycin ^{57, 61, 62, 64, 67}, unilateral ureteral ligation^{54, 65, 68} and other methods^{54-56, 58-60, 63, 65, 66, 68, 69}. It is then found that the gliptin can inhibit the process of renal fibrosis or renal interstitial fibrosis and this inhibition is greater than that of telmisartan^{59, 61}.

The inhibitory effect of gliptin on the progression of renal fibrosis is mainly through the inhibition of inflammatory injury, TGF- β pathway and epithelial-mesenchymal transition. Diabetes is one of the

important factors causing renal injury and is closely related to the occurrence of renal fibrosis⁷⁴. By inhibiting the progression of diabetes, the gliptin inevitably slow the progression of renal fibrosis partly dependent on the regulation of GLP-1⁶⁶. However, the inhibitory effect of the gliptin on renal fibrosis can be independent of the regulation of blood glucose^{54, 55, 56, 58, 59, 60, 66, 69}. Linagliptin inhibits the formation of the crescent and inhibits the process of renal fibrosis by modulating the immune response⁵².

On the whole, sitagliptin and linagliptin may be effective enough to inhibit renal fibrosis, but more clinical studies are needed to prove it.(Table 2)

Cardiac fibrosis

Insufficient blood supply of coronary artery leads to repeated ischemia and anoxia of myocardial cells, which will eventually lead to myocardial fibrosis. Myocardial fibrosis can lead to decreased cardiac compliance, which in turn causes ventricular diastolic and systolic dysfunction, and even arrhythmia.

Normally, fibroblasts located in the interstitial and perivascular spaces secrete a small amount of collagen for maintaining the basic mechanical strength and cytoskeleton of the cardiovascular tissue. Myocardial fibrosis occurs when collagen accumulation is caused by excessive secretion or decreased degradation of collagen.

The unique and important pathogenesis of cardiac fibrosis is the mechanism of angiotensin II . Angiotensin II increases and combines with its receptor, which promotes the transformation of myofibroblasts and the activation of TGF- β 1 pathway and finally accelerates cardiac fibrosis^{75, 99, 100}.

GLP-1 receptors are widely distributed in the cardiovascular system including cardiomyocytes and endothelial cells and GLP-1 is thought to have protective effects on heart injury, which is mainly mediated by mechanisms such as PIK3, AKT and p38¹⁰¹⁻¹⁰⁴. The protective effect of GLP - 1 on the heart naturally has some inhibitory effect on myocardial fibrosis.

At present, most of the studies on the relationship between the gliptin and cardiac fibrosis are basic studies. Studies have shown that linagliptin⁷⁷⁻⁸², sitagliptin⁹¹⁻⁹⁸, saxagliptin⁸³⁻⁸⁵ and vildagliptin⁸⁶⁻⁹⁰ can inhibit cardiac fibrosis. The inhibitory effect of gliptin on myocardial fibrosis seems to be partly independent of blood glucose regulation. The inhibitory effect of vildagliptin on cardiac fibrosis is similar to that of enalapril ^{88,89}.

Firstly, the inhibition of cardiac fibrosis by gliptin acts by inhibiting the initial factors. Gliptin can inhibit the production of reactive oxygen species^{76, 77, 81, 92, 95} and inflammatory factors^{78, 92}, thereby reducing the stress damage caused by ischemia and hypoxia and finally slowing down the occurrence of cardiac fibrosis. Secondly, the effect of angiotensin II on the acceleration of cardiac fibrosis is inhibited by the gliptin^{80, 82, 85}. Finally, the gliptin can increase the level of GLP-1 and exert the cardioprotective effect through the downstream pathways of AKT, PIK3 and p38, and finally inhibit the fibrosis of the heart^{82, 87, 88, 91, 96, 97}. (Table 2)

Atherosclerosis

The main characteristics of vascular fibrosis are excessive deposition of extracellular matrix, hardening of vascular wall and thickening of vascular wall. Vascular fibrosis can cause a range of clinical diseases, the most important of which is atherosclerosis^{124 - 126}. Under the action of a variety of stimulating factors, smooth muscle cells, macrophages, T cells and endothelial cells participate in the process of arteriosclerosis, resulting in excessive collagen and relatively lack of elastin in the vascular wall¹²⁷⁻¹²⁹.

The main pathological mechanisms involved in atherosclerosis are abnormal activation of the TGF- β pathway, activation of the RAAS system and increased levels of oxidative damage, which ultimately contribute to the development of vascular fibrous hyperplasia¹³⁰.

At present, there are many basic and clinical studies on atherosclerosis and the gliptin.

Basic studies have shown that the gliptin can inhibit atherosclerosis in diabetic mice^{105, 106, 108, 111, 120} and non-diabetic mice^{109, 113, 114, 116, 117}. Clinical studies have shown that the gliptin can prevent the occurrence of atherosclerosis in patients with diabetes^{107, 115, 118, 119, 121-123}, which is rarely reported in non-diabetic patients. In the prevention of atherosclerosis, the combination of gliptin and insulin or metformin has a synergistic effect^{118, 121, 123}. For patients who have already developed atherosclerotic plaques, the gliptin may not have the effect of reducing the plaque¹²².

This inhibition is mediated mainly by two important pathways. The first is the GLP - 1 pathway, in which a statin can up-regulate GLP - 1 in the blood. On the one hand, GLP-1 has a direct protective effect on blood vessels and can directly inhibit inflammation of blood vessels¹³¹. On the other hand, GLP-1 can slow down the progression of diabetes, thus indirectly slowing down the vascular damage caused by diabetes¹³².

Next is the inhibitory effect of the gliptin by promoting the polarization of macrophage. Macrophage is an important subpopulation of cell involved in a variety of inflammatory responses¹³³. First of all, one of the most important initiation factors in the development of atherosclerosis is the occurrence of inflammatory damage. Macrophage is divided into M1 and M2¹³⁴, the former promotes inflammatory reaction, the latter inhibits inflammatory reaction. Up-regulation of the proportion of M1-type macrophages can promote the occurrence of vascular fibrosis and up-regulation of the proportion of M2 type macrophages could inhibit the occurrence of atherosclerosis^{135, 136}. Secondly, macrophage is involved in the formation of foam cells, an important event in the early stages of atherosclerosis. DPP4 is an important molecule involved in the immune response and DPP4 inhibitors are found to up-regulate the proportion of M2-type macrophages in the liver and abdominal cavity of mice¹³⁷. The studies we collected suggest that the gliptin can inhibit the development of atherosclerosis by increasing the proportion of M2-type macrophages and inhibiting macrophage-related functions^{109, 124, 127, 120}.

On the whole, sitagliptin may be the best drug to inhibit atherosclerosis among the gliptins.(Table 2)

Other fibrosis

In addition to the common fibrotic diseases, there is currently a small amount of researches on the use of the gliptin for other fibrotic diseases.

Basic studies have shown that the gliptin inhibits catheter-related peritoneal fibrosis after dialysis138, ovarian fibrosis¹³⁹, fatty fibrosis¹⁴⁴, hypertrophic scars¹⁴³ and systemic sclerosis¹⁴². Some clinical studies have shown that the gliptin can also reduce the occurrence of cystic fibrosis¹⁴⁰, keloids¹⁴⁶ and chronic graft vs host disease¹⁴⁵. The major pathophysiological processes of chronic graft vs host disease also involve vascular fibrosis.

The inhibitory effect of the gliptin on these fibrotic diseases is mainly through inhibiting the immune function of DPP4 and TGF- β pathway. The risk of hypoglycaemia associated with the use of gliptin is low. Therefore, the gliptin may be effective in the treatment of these fibrotic diseases alone or in combination ¹⁴⁷⁻¹⁴⁹ with other drugs. Although there are few studies at present, it provides some enlightenment for the further clinical study on the application of gliptin in the treatment of fibrotic diseases.(Table 2)

The most promising drug candidates

Based on our statistical results, we found that sitagliptin and linagliptin are the most promising gliptins in terms of anti-fibrosis.

There is a lack of literature on licagliptin in pulmonary fibrosis, but it has been shown to be effective in inhibiting other types of fibrosis except liver fibrosis. In addition, linagliptin has the unique anti-fibrotic mechanism and advantage. DPP4, as a kind of important cell surface marker, can promote the activation of TGF- β pathway and its downstream epithelial-stromal transformation by binding with integrin β , thus

accelerating the development of fibrosis²⁴. Linagliptin can inhibit the activation of TGF- β pathway by inhibiting the integrin β pathway, which is the unique mechanism of linagliptin⁶⁵. Moreover, linagliptin is the only type of gliptin that does not need to be adjusted according to the liver and kidney function of the patient. Therefore, we consider it an important candidate for anti-fibrosis drug.

Sitagliptin is also an important drug candidate. Not only does sitagliptin account for the largest proportion of the literature, but sitagliptin can inhibit all types of fibrosis except liver fibrosis. Moreover, more than 80% of the clinical research literature is about sitagliptin, indicating that it has the greatest anti-fibrotic potential.(Fig 2)

Conclusion

In general, that evidence for the inhibition of a variety of fibrotic disease, especially in the inhibition of atherosclerosis, is strong. In lung, kidney and heart fibrosis, more clinical studies are needed to prove it. It is important to note that the gliptin may have no significant effect on inhibiting liver fibrosis.

The inhibition of fibrotic disease by statin drugs works through a variety of mechanisms, such as TGF- β , ECM, antioxidant damage, GLP-1 and so on. The anti-fibrotic drugs currently in development work mainly through seven mechanisms¹⁵⁰ and five of them are related to the mechanism of action of the gliptin. Not only that, the antifibrotic range of the gliptin encompasses almost all of the drugs currently in the R & D phase.¹⁵⁰ These suggest that the role of the gliptin in the field of anti-fibrotic therapy cannot be underestimated.(Fig 3)

Basic researches suggest that the inhibitory effect of the gliptin on the fibrotic diseases can be independent of diabetes. Our study identified sitagliptin and linagliptin were the most promising anti-fibrotic drugs. However, most of the clinical studies on the relationship between the gliptin and fibrotic diseases involve patients with diabetes mellitus, which leads to the need for more clinical evidences or trials to show that the gliptin also has an inhibitory effect on fibrotic disease in non-diabetic patients.

	Peptide Mimetic	Non-Peptide Mimetic
Representative Drugs	Sitagliptin, Saxagliptin, Vildagliptin	Alogliptin,Linagliptin
the Mechanism of Action	Mimic the DPP4 enzyme substrate structure and bind to the DPP4 site competitively.	Specifically binding to the DPP4 active site, thereby inactivating DPP4.
Characteristics of Function	Low selectivity, non-covalent binding and low specificity.	High selectivity, high specificity, and thus long-lasting drug effect without multiple administration

Table 1 Classification of the gliptins

Table 2 Literatures on the study of gliptins in fibrotic diseases

		Pulmonary Fibrosis	5			
	Object	Result	Mechanism	Size*	Drug	Diabetic or HG-treatment
Manar G. Helal,2019[19]	Rats with acute allergic asthma	Marked antiasthmatic effect	NF-ĸB	10	Sa	N
Toshio Suzuki,2017[15]	Rats with lung	Ameliorate pulmonary fibrosis	EMT, DPP4	5	Vi	Ν

	injury					
	Rats with idiopathic	A promising therapeutic candidate	2024 5014			
Yang Liu,2020[17]	pulmonary fibrosis	for idiopathic pulmonary fibrosis.	DPP4,ECM	9	Vi	Ν
	TGF $\boldsymbol{\beta}$ -activated					
Xiuwu Liu,2020[18]	human lung	Inhibits fibroblasts	TGF-β	≥3	Si	Ν
	fibroblasts					
Manar A. Nader,2015[16]	Mice with	Relieve asthma	Inflammation,TGF-	10	Si	N
Manar A. Nuuci,2015[10]	chronic asthma	Nelleve astrinia	β ,ROS	10	51	N
	Rats with	Inhibit pulmonary arterial adventitia				
Jian Xu,2018[20]	pulmonary	fibrosis	EMT, inflammation	8	Si	Ν
	hypertension					
Shota Hodono,2018[21]	Rats with	Don't ameliorate pulmonary fibrosis		7	Al	N
	pulmonary fibrosis	after lung injury				
		Liver Fibrosis				
	Rats with					
Hanyan Zhang,2019[30]	CCl ₄ -induced liver	Alleviate liver fibrosis	Stellate cell	7	Al	N
	fibrosis					
	Rats with modified	Combination therapy				
Vuichiro Amono 2019[21]	choline-deficient	(pioglitazone+Al) can inhibit		16	A1	v
Yuichiro Amano,2018[31]	L-amino	nonalcoholic fatty liver disease and		16	Al	Y
	acid-defined diet	its fibrotic process				
		Inhibit liver fibrosis.				
Daisuke Kaya,2019[32]	Diabetic rats	A synergistic effect when used in	Stellate cell	10	An	Y
Duisuke kuyu,2019[32]	with liver fibrosis	combination with oleanolic	Stellate tell	10		I
		acid(TGR5 agonist)				
	Diabetic rats with	Inhibit liver fibrosis.				
Teruo Jojima,2016[33]	non-alcoholic	A synergistic effect when used in		6	11	v
10100 50,1110,2010[55]	steatohepatitis	combination with Empagliflozin (an		0	Li	Y
	steatonepatitis	SGLT2 inhibitor)				
	Rats with		DPP4,macrophage,i			
Thomas Klein,2014[34]	non-alcoholic	Inhibit liver fibrosis.	nflammation	7	Li	Ν
	steatohepatitis					
Yara M.	Obesity rats with	Inhibit liver fibrosis.	Inflammation,ECM	6	Li	Y
Aboulmagd,2020[35]	diabetes					
	Rats with		ROS,macrophage,inf			
Xiaoyu Wang,2016[36]	non-alcoholic	Mild direct anti-fibrotic properties	lammation	7	Si, Li	Ν
	steatohepatitis					
	Rats with liver	Inhibit liver fibrosis.				
Takahiro Ozutsum,2020[37]	fibrosis	A synergistic effect when used in	TGF- β ,ECM	10	Те	Ν
		combination with Canagliflozin				
	Rats with	A hopeful candidate for adjuvant	ERK1/2, p38 a ,NF-			
Rania Khalil,2020[38]	CCI ₄ -induced liver	treatment of liver fibrosis.	к В	15	Vi	Ν
	fibrosis					

Fu- Shun Yen,2021[39]	Diabetic patients with liver cirrhosis	Accelerate cirrhosis Decompensation.		2828	Gliptins	Y
Jeffrey Cui,2016[40]	Prediabetic patients with nonalcoholic fatty liver disease	Safe but not better than placebo in reducing liver fibrosis in patients.		50	Si	Y
Kosuke Kaji,2012[41]	Pigs with serum-induced liver fibrosis	May represent a potential new therapeutic strategy against liver fibrosis	ERK1/2, p38,TGF- β , stellate cell,ECM	10	Si	N
Mark M. Smits,2016[42]	Patients with hepatic steatosis and fibrosis	Do not reduce hepatic steatosis or fibrosis in type 2 diabetes patients.		52	Si	Y
Naotaka Shimozato,2019[43]	Nonalcoholic fatty liver disease in rats with liver fibrosis	Combination therapy (OCA+Si)imay be more beneficial for reducing atherosclerosis	stellate cell	50	Si	N
Samia Salem Sokar,2017[44]	Rats with CCI₄-induced liver fibrosis	Inhibit liver fibrosis. A synergistic effect when used in combination with Silymarin	TGF- β ,ROS,inflammatio n	8	Si	Ν
Shahinul Alam,2018[45]	Patients with nonalcoholic fatty liver disease	Ameliorates steatosis and ballooning, irrespective of diabetes.		40	Si	N
TAKUMI ONOYAMA,2015[46]	Rats with non-alcoholic steatohepatitis	Attenuate hepatic fibrosis	Inflammation,ROS,s tellate cell	10	Si	Y
Tisha R Joy,2017[47]	Patients with non-alcoholic steatohepatitis	Does not improve fibrosis score or NAS after 24 weeks of therapy.		6	Si	Ν
Yun-A. Jung,2014[48]	Rats with steatohepatitis	Decreased liver fibrosis.		5	Si	N
		Kidney Fibro	sis			
Takahiro Uchida,2017[54]	Rats with acute renal injury	Alleviate renal fibrosis	Macrophage, inflam mation, TGF- β .	9	AI	N
Jung Beom Seo, 2018[55]	Rats with acute renal injury	Alleviate renal fibrosis	Inflammation(NLRP 3), TGF- β	6	Ge	N
Anna-Lena Mayer,2016[56]	Rats with nephritis	Alleviate renal fibrosis	Macrophage,inflam mation	11	Li	N
Keizo Kanasaki,2014[57]	Diabetic-2 rats with renal fibrosis	Alleviate renal fibrosis	EMT	6	Li	Y
Muralikrishna,2015[58]	Rats	Inhibition expression of fibronectin	TGF-β	9	Li	Ν
Oleg Tsuprykov,2016[59]	Rats with chronic renal disease	Ameliorate interstitial fibrosis(no less than that of telmisartan). No		14	Li	Ν

		obvious effect on perivascular fibrosis of kidney								
Masako Uchii,2016[60]	Hypertensive rats	Reduce renal fibrosis caused by renal injury	Inflammation,DPP4	10	Sa	Ν				
Muralikrishna,2016[61]	Diabetic-1 rats	Alleviate renal fibrosis(better than telmisartan)	TGF- β	8	Sa	Y				
Wei Jing Liu,2011[62]	Diabetic-2 rats	Delay glomerular and tubulointerstitial fibrosis	TGF- β ,DPP4	8	Vi	Y				
Cristina Mega,2011[63]	Diabetic-2 rats	Ameliorate interstitial fibrosis,long-term use of lower doses is better		8	Si	Ŷ				
Dongdong Wang,2018[64]	Diabetic-2 rats	Inhibit progressive renal fibrosis.	TGF-β,ECM	8	Si	Y				
Esther Civantos, 2017[65]	Diabetic-2 rats	Ameliorate interstitial fibrosis	ROS	6	Si	Y				
Jian Xu,2018[66]	Kidney-damaged rats	Alleviate renal fibrosis(same as liraglutide(GLP-1R agonist))	GLP-1	8	Si	N				
LUXIN LI,2019[67]	Diabetic-1 rats	Significantly inhibit renal fibrosis.	TGF- β	7	Si	Y				
Md. Ashraful Alam,2015[68]	Diabetic nephropathy and renal hypertension rats	Prevent renal fibrosis	ROS	6	Si	Y				
Chor Ho Jo,2018[69]	Rats with hypertension and renal injury	Ameliorate interstitial fibrosis	Inflammation(NLRP 3)	5,5	Si,Li	N				
		Cardiac Fibro	Cardiac Fibrosis							
xiaowei Zhang,2018[76]	Rabbits	Alleviate interstitial fibrosis	ROS	10	Al	N				
Xiaowei Zhang,2018[76] Annayya R. Aroor,2013[77]	Rabbits Obesity rats	Alleviate interstitial fibrosis Alleviate cardiac fibrosis	ROS	10 11	Al	N				
Annayya R. Aroor,2013[77] Annayya R.	Obesity rats	Alleviate cardiac fibrosis Inhibit the production of collagen	ROS	11	Li	N				
Annayya R. Aroor,2013[77] Annayya R. Aroor,2017[78]	Obesity rats Obesity rats Autoimmune	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac	ROS	11	Li Li	N				
Annayya R. Aroor,2013[77] Annayya R. Aroor,2017[78] Hiroyuki Hirakawo,2015[79]	Obesity rats Obesity rats Autoimmune myocarditis rats	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac fibrosis	ROS Inflammation Inflammation	11 10 19	u u u	N N N				
Annayya R. Aroor,2013[77] Annayya R. Aroor,2017[78] Hiroyuki Hirakawa,2015[79] Li-Hui Zhang,2015[80]	Obesity rats Obesity rats Autoimmune myocarditis rats AngII-infused rats	Alleviate cardiac fibrosis Alleviate cardiac fibrosis and cardiac fibrosis Remarkably suppressed cardiac fibrosis Inhibit cardiac fibrosis	ROS Inflammation Inflammation Ang II	11 10 19 6	Li Li Li	N N N N				
Annayya R. Aroo; 2013[77] Annayya R. Aroor, 2017[78] Hiroyuki Hirakawa, 2015[79] Li-Hui Zhang, 2015[80] Tazuru Igarashi, 2018[81]	Obesity rats Obesity rats Autoimmune myocarditis rats AngII-infused rats Atrial fibrillation dogs Mouse cardiac	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac fibrosis Inhibit cardiac fibrosis Inhibit the myocardial fibrosis	ROS Inflammation Inflammation Ang II ROS ERK/NF- × B	11 10 19 6 8	u u u u u	N N N N N				
Annayya R. Aroor,2017[78] Hiroyuki Hirakawa,2015[79] Li-Hui Zhang,2015[80] Tazuru Igarashi,2018[81] Xian-wei WANG,2016[82] Jessica A.	Obesity rats Obesity rats Autoimmune myocarditis rats AngII-infused rats Atrial fibrillation dogs Mouse cardiac fibroblasts	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac fibrosis Inhibit cardiac fibrosis Inhibit cardiac fibrosis Inhibit collagen formation	ROS Inflammation Inflammation Ang II ROS ERK/NF- K B pathway.	11 10 19 6 8 5	u u u u u	N N N N N Y				
Annayya R. Aroor, 2013[77] Annayya R. Aroor, 2017[78] Hiroyuki Hirakawa, 2015[79] Li-Hui Zhang, 2015[80] Tazuru Igarashi, 2018[81] Xian-wei WANG, 2016[82] Jessica A. Hiemstra, 2016[83]	Obesity rats Obesity rats Autoimmune myocarditis rats AngII-infused rats AngII-infused rats Mouse cardiac fibroblasts Heart failure rats Myocardial fibrosis	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac fibrosis Inhibit cardiac fibrosis Inhibit cardiac fibrosis Inhibit collagen formation Inhibit collagen formation Suppress myocardial	ROS Inflammation Inflammation Ang II ROS ERK/NF- K B pathway.	11 10 19 6 8 5 8	Li Li Li Li Li Sa	N N N N Y N				
Annayya R. Aroo; 2013[77] Annayya R. Aroor, 2017[78] Hiroyuki Hirakawa, 2015[79] Li-Hui Zhang, 2015[80] Tazuru Igarashi, 2018[81] Xian-wei WANG, 2016[82] Jessica A. Hiemstra, 2016[83]	Obesity rats Obesity rats Autoimmune myocarditis rats AnglI-infused rats Artial fibrillation dogs Mouse cardiac fibroblasts Heart failure rats Myocardial fibrosis mouse	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac fibrosis Inhibit cardiac fibrosis Inhibit cardiac fibrosis Inhibit collagen formation Suppress myocardial fibrosis	ROS Inflammation Inflammation Ang II ROS ERK/NF- κ B pathway. DPP4	11 10 19 6 8 5 8 8	Li Li Li Li Sa Sa	N N N N Y N				
Annayya R. Aroo; 2013[77] Annayya R. Aroo; 2017[78] Hiroyuki Hirakawa, 2015[79] Li-Hui Zhang, 2015[80] Tazuru Igarashi, 2018[81] Jassica A. Hiemstra, 2016[83] Junichi Ikeda, 2016[84] Scott M. Brown, 2017[85]	Obesity rats Obesity rats Autoimmune myocarditis rats AnglI-infused rats Atrial fibrilation dogs Atrial fibrilation dogs fibroblasts Heart failure rats Myocardial fibrosis mouse AnglI-infused rats	Alleviate cardiac fibrosis Inhibit the production of collagen and cardiac fibrosis Remarkably suppressed cardiac fibrosis Inhibit cardiac fibrosis Inhibit cardiac fibrosis Inhibit collagen formation Suppress myocardial fibrosis Attenuat periarterial fibrosis May not have a positive impact	ROS Inflammation Inflammation Ang II ROS ERK/NF- κ B pathway. DPP4	11 10 19 6 8 5 8 15 6	Li Li Li Li Sa Sa Sa	N N N N N N N N N N N N N N N N N N N				

Tharnwimol Inthachai,2015[89]	Rats with cardiac infarction	Inhibit cardiac fibrosis (same as enalapril)		6	Vi	N
Toru Miyoshi,2014[90]	Isoproterenol-treat ed rats	Attenuat the hypertrophy and perivascular fibrosis		20	Vi	N
Belén Picatoste,2013[91]	Diabetic-2 rats	Alleviate cardiac fibrosis	GLP-1	10	Si	Y
Grazia Esposito,2016[92]	Hypertension rats	Alleviate cardiac fibrosis	NOS, ROS	35	Si	Ν
Kim Alexander Connelly,2012[93]	Diabetic-1 rats	Inhibit collagen formation		6	Si	Y
M. Lenski,2011[94]	Diabetic-2 rats	Prevented myocardial fibrosis	TGF-β	7	Si	Y
Md. Ashraful Alam,2015[95]	Diabetic nephropathy and hypertension rats	Prevented cardiac fibrosis	ROS	6	Si	Ŷ
Nouf M Al-Rasheed,2016[96]	Diabetic-2 rats	Attenuates cardiomyopathy and fibrosis	JAK/STAT	8	Si	Y
Nouf T. Al-Damry,2018[97]	Diabetic-2 rats with cardiomyopathy	Alleviate cardiac fibrosis	LKB-1/AMPK/Akt, apoptosis	8	Si	Y
Yu-Sheng Liu,2015[98]	Diabetic-2 rats	Alleviate cardiac fibrosis		20	Si	Y
		Atherosclero	sis			
Michishige Terasaki,2017[105]	ApoE-/- rats(diabetic)	Combination therapy (SGLT2i+Al)imay be more beneficial for reducing atherosclerosis		8	AI	Y
Nga N. Ta, MS,2011[106]	ApoE-/- rats(diabetic)	Inhibit atherosclerosis	Monocyte,Inflamma tion	8	AI	Y
Tomoya Mita,2016[107]	Patients with atherosclerosis	Inhibit atherosclerosis		172	Al	Y
Zubair Shah,2011[108]	LDLR-/- rats fed with a high fat diet	Inhibit atherosclerosis	Monocyte	15	AI	Y
Tsutomu Hirano,2016[109]	Cholesterol-fed rabbit	Can substantially suppress plaque formation in coronary arteries	Inflammation,Macr ophage	16	An	N
Hwan-Jin Hwang,2015[110]	Human umbilical vein endothelial cells and THP-1 cells.	Inhibit atherosclerosis	NF-ĸB , JNK,	3	Ge	Ν
Camila Manrique,2016[111]	Rats with vascular abnormalities	Inhibit atherosclerosis		10	Li	Y
Haoran Wang,2020[112]	Oxidized LDL-Induced THP-1 Macrophage Foam Cell	Prevent foam cell formation in vitro		5	Li	N
Hotimah Masdan Salim, 2016[113]	ApoE-/- rats(no diabetic)	Inhibit atherosclerosis	ROS,DPP4, Endothelial cells	16	Li	N
Shuhei Nishida,2020[114]	High fat diet	Inhibit atherosclerosis	DPP4,Macrophage	21	Li	Y

	(HFD)-fed					
	Apoe/ mice					
Stefanie A. de	Early diabetes					
Boer,2017[115]	patients with	Inhibit arterial stiffness.		22	Li	Y
560,2017 [115]	atherosclerosis					
	ApoE-/- rats(no	to be the the state of the state of the				
Kunduziayi Aini,2019[116]	diabetic)	Inhibit atherosclerosis	GLP-1	11	Vi	Ν
Michishige	ApoE-/- rats(no	Significantly suppressed total aortic				
Terasaki,2012[117]	diabetic)	atherosclerotic lesions	Macrophage	21	Vi	Ν
	Patients with type	Combination therapy				
Rehab Werida,2020[118]	II diabetes	(DMBG+Vi)imay be more beneficial				
	mellitus	for reducing		40	Vi	Y
		atherosclerosis				
	Diabetic patients					
Bo Li,2020[119]	with coronary	Inhibit atherosclerosis significantly.		74	Si	Y
	artery sclerosis	с ,				
	ApoE-/-	Stabilise	GLP-1,Monocyte,M			
F.Vittone,2012[120]	rats(diabetic)	arteriosclerotic lesions	acrophage,MMP	10	Si	Y
		Combination therapy				
	Patients with type	(insulin+Si)imay be more beneficial				
Tomoya Mita,2017[121]	II diabetes			137	Si	Y
		for reducing				
	Disketes estimate	atherosclerosis				
	Diabetes patients					
	undergone	Do not significantly reduce coronary				
Tsuyoshi Nozue,2016[122]	coronary	plaque volume.		28	Si	Y
	intervention					
		Combination thereas:				
	Patients with type	Combination therapy				
Xiaojie Liu,2017[123]	II diabetes	(DMBG+Si)imay be more beneficial		44	Si	Y
		for reducing				
		atherosclerosis				
		Other Fibros	IS			
Takuo Nagai,2016[138]	Rats with	Ameliorate peritoneal fibrosis.	TGF-β,GLP-1	6	Li	N
	peritoneal fibrosis					
Fang Wang,2019[139]	Rats with ovarian	Delays the process of ovarian	TGF- β	10	Si	Y
	fibrosis	fibrosis				
SamuelT.Olatunbosun,2021[Patients with cystic		Be related to			
140]	fibrosis	Delay the progress of cystic fibrosis	diabetes control,	3	Si	Y
140]	1010315		not a direct effect			
Vi Cha- U 2025 (111)	Patients with	Reduce the incidence of fibrosis	EN AT	10020	c:	v
Yi-Chen Li,2021[141]	Peritoneal dialysis	after peritoneal dialysis	EMT	19828	Si	Y
	Dermal fibroblasts					
Alina Soare,2020[142]	from human	Inhibit fibroblasts	TGF-β	6	Si, Vi	Ν
	systemic sclerosis					

Yan Li,2019[143]	Fibroblasts derived from hypertrophic scar	inhibits high glucose-induced transdifferentiation of hypertrophic scar-derived fibroblasts to myofibroblasts	IGF/Akt/mTOR	6	Li	Y
Ana Patrícia,2018[144]	Obese rats	Prevents fibrosis formation in adipose tissue.		10	Vi	Y
Sherif S. Farag,2021[145]	Patients undergone allogeneic hematopoietic stem cell transplantation	Combination therapy (tacrolimus/sirolimus+Si) resulted in a low incidence of grade II to IV acute GVHD	DPP4	36	Si	Ν
Hirotsugu Suwanai,2020[146]	Sternotomy patients	Suppress the onset of hypertrophic scars or keloids after surgery in humans		5430	Gliptins	Y

Li:Linagliptin; An: Anagliptin; Te:Teneligliptin;Sa:Saxagliptin; Vi:Vildagliptin; Si:Sitagliptin; Al:Alogliptin; Ge:Gemigliptin;Y:Yes; N:No; HG: High glucose ; NAS:NAFLD Activity Score; ROS:reactive oxygen species;Size*:Sample size of experimental group;ApoE:apolipoprotein E gene; LDLR: Low-Density Lipoprotein Receptor

The red portion represents the study which is the clinical literature or in which result doesn't suggest gliptins can inhibit the fibrosis.

Figure 1: the Roadmap of the research

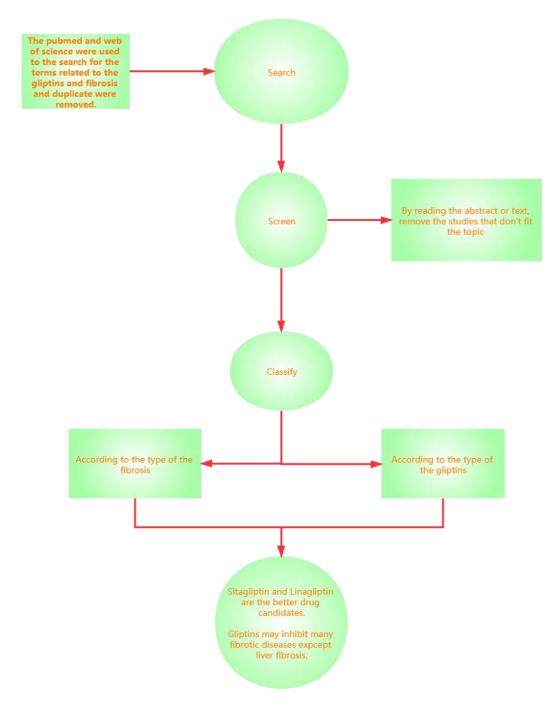


Figure 2: Statistical diagram of the distribution of the researches

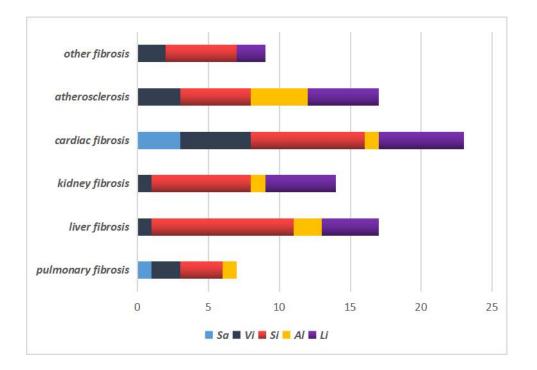
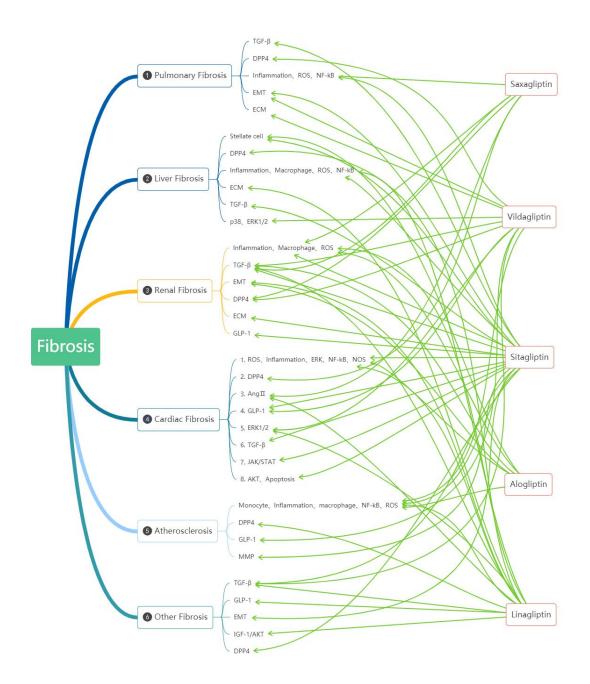



Figure 3: Statistical diagram of anti-fibrotic mechanisms of gliptins

Reference

1. Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases.J. Pathol. 200, 500-503 (2003).

2. Kalluri, R., Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392-401(2006).

3.Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function[J]. Trends Immunol, 2008,29(6):295-301.

4 Rinkevich Y, Walmsley GG, Hu MS, et ah Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J]. Science, 2015,348(6232):aaa2151.

5.CD26 Identifies a Subpopulation of Fibroblaststhat Produce the Majority of Collagen during Wound Healing in Human Skin Journal of Investigative Dermatology 2020,doi:10.1016/j.jid.2020.04.010

Kin Y, Wang X, Zhu M et al. Expansion of CD26 positive fibroblast population promotes keloid progression. Exp Cell Res 2017: 356: 104–113.

7 Thielitz A, Vetter R W, Schultze B et al. Inhibitors of dipeptidyl peptidase IV-like activity mediate antifibrotic effects in normal and keloid-derived skin fibroblasts. J Invest Dermatol 2008: 128: 855–866.

8 Mah W, Jiang G, Olver D et al. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. Am J Pathol 2017: 187: 1717–1735

9 Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015;348:aaa2151

10.Kikkawa F, Kajiyama H, Shibata K, et al. Dipeptidyl peptidase JV in tumor progression[J]. Biochim Biophys Acta, 2005,1751(1): 45-51.

11 F. Zhuge, Y. Ni, M. Nagashimada, N. Nagata, L. Xu, N. Mukaida, et al., DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization, Diabetes 65 (10) (2016)2966–2979.

12 Y. Sun, L. Ma, Role of dipeptidyl peptidase-4 and its inhibitor in the respiratory diseases . Zhong nan da xue xue bao Yi xue ban, J. Cent. South Univ. Med. Sci.42 (1) (2017) 108–112.

13 T. Shiobara, K. Chibana, T. Watanabe, R. Arai, Y. Horigane, Y. Nakamura, et al., Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells, Respir. Res. 17 (2016) 28.

14 S. Steven, K. Jurk, M. Kopp, S. Kroller-Schon, Y. Mikhed, K. Schwierczek, S. Roohani, F. Kashani, M. Oelze, T. Klein, S. Tokalov, S. Danckwardt, S. Strand, P. Wenzel, T. Munzel, A. Daiber, Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation inendotoxaemic mice, Br. J. Pharmacol. 174 (2017) 1620–1632.

15 Toshio Suzuki, Yuji Tada, Santhi Gladson Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition Respiratory Research (2017) 18:177

16 Manar A. Nader Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma International Immunopharmacology 29 (2015) 761–769 17 Yang Liu, Yongchao Qi Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix International Immunopharmacology 87 (2020) 106774

18 Xiuwu Liu, Tao Zhang, Chengcai Zhang Sitagliptin Inhibits Extracellular Matrix Accumulation and Proliferation in Lung Fibroblasts Med Sci Monit, 2020; 26: e922644

19 Manar G. Helal Saxagliptin mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4 Life Sciences 239 (2019) 117017

20 Jian Xu Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension Laboratory Investigation (2018) 98:1333–1346

21 Shota Hodono Ethyl Pyruvate Improves Pulmonary Function in Mice with Bleomycin-induced Lung Injury as Monitored with Hyperpolarized 129Xe MR Imaging Magn Reson Med Sci 2018; 17; 331–337

22 Enomoto, T., Usuki, J., Azuma, A., Nakagawa, T., and Kudoh, S. (2003) Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest 123, 2007–2011.

23 D.C. Rockey, Current and future anti-fibrotic therapies for chronic liver disease, Clin. Liver Dis. 12 (2008) 939e962 (xi).

24 V. Hernandez-Gea, S.L. Friedman, Pathogenesis of liver fibrosis, Annu. Rev.Pathol. 6 (2011) 425e456.

25 J.A. Fallowfield, Therapeutic targets in liver fibrosis, Am. J. Physiol. Gastrointest. Liver Physiol. 300 (2011) G709eG715.

26 C. Yin, K.J. Evason, K. Asahina, D.Y. Stainier, Hepatic stellate cells in liver development, regeneration, and cancer, J. Clin. Invest. 123 (2013) 1902e1910.

27 L. Cordero-Espinoza, M. Huch, The balancing act of the liver: tissue regeneration versus fibrosis, J. Clin. Invest. 128 (2018) 85e96.

28 T. Fujita, S. Narumiya, Roles of hepatic stellate cells in liver inflammation: a new perspective, Inflamm. Regen. 36 (2016) 1.

29 N.C. Leite, G.F. Salles, A.L. Araujo, C.A. Villela-Nogueira, C.R. Cardoso, Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus, Liver Int. 29 (2009) 113e119.

30 Hanyan Zhang , Dandan Sun, Guanzhen Wang Alogliptin alleviates liver fibrosis via suppression of activated hepatic stellate cell Biochemical and Biophysical Research Communications 511 (2019) 387e393

31 Yuichiro Amano a, Shuntarou Tsuchiya, Mayumi Imai Combination effects of alogliptin and pioglitazone on steatosis and hepatic fibrosis formation in a mouse model of non-alcoholic steatohepatitis Biochemical and Biophysical Research Communications 497 (2018) 207e213

32 Daisuke Kaya, Kosuke Kaji , Yuki Tsuji TGR5 Activation Modulates an Inhibitory Effect on Liver Fibrosis Development

Mediated by Anagliptin in Diabetic Rats Cells 2019, 8, 1153

33 Teruo Jojima, Takanori Tomotsune, Toshie Iijima Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes Diabetol Metab Syndr (2016) 8:45

34 Thomas Klein, Masato Fujii, Jan Sandel Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis Med Mol Morphol (2014) 47:137–149

35 Yara M. Aboulmagda, Alshaymaa A.Z. El-Bahya, Esther T. Menze Role of linagliptin in preventing the pathological progression of hepatic fibrosis in high fat diet and streptozotocin-induced diabetic obese rats European Journal of Pharmacology 881 (2020) 173224

36XiaoyuWang,MichaelHausding,ShiYenWengGliptins suppress inflammatory macrophage activation to mitigate inflammation, fibrosis, oxidative stress and vascular dysfunction in models of non-alcoholic steatohepatitis and liver fibrosisAntioxidants and Redox Signaling DOI: 10.1089/ars.2016.695337TakahiroOzutsumi , Tadashi Namisaki, Naotaka Shimozato Combined Treatment with Sodium-GlucoseCotransporter-2Inhibitor (Canagliflozin) and Dipeptidyl Peptidase-4 Inhibitor (Teneligliptin) Alleviates NASH Progression in A Non-DiabeticRat Model of Steatohepatitis Int. J. Mol. Sci. 2020, 21, 2164

38 Rania Khalila, Ahmed Shatab, Eman M. Abd El-Kader Vildagliptin, a DPP-4 inhibitor, attenuates carbon tetrachloride-induced liver fibrosis by targeting ERK1/2, p38 α , and NF- κ B signaling. Toxicology and Applied Pharmacology 407 (2020) 115246

39 Fu-Shun Yen James, Cheng-Chung Wei, Hei Tung Yip Dipeptidyl peptidase-4 inhibitors may accelerate cirrhosis decompensation in patients with diabetes and liver cirrhosis: a nationwide population-based cohort study in Taiwan Hepatology International (2021) 15:179–190

40 Jeffrey Cui, Len Philo, Phirum Nguyen Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial Journal of Hepatology 2016 vol. 65 j 369–376

41 Kosuke Kaji,Hitoshi Yoshiji,Yasuhide Ikenaka Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats J Gastroenterol DOI 10.1007/s00535-013-0783-4

42 Mark M. Smits, Lennart Tonneijck, Marcel H. A. Muskiet Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: a randomised placebo-controlled trial Diabetologia DOI 10.1007/s00125-016-4100-7

43 Naotaka Shimozato, Tadashi Namisaki, Kosuke Kaji Combined effect of a farnesoid X receptor agonist and dipeptidyl

peptidase-4 inhibitor on hepatic fibrosis Hepatology Research 2019; 49: 1147-1161

44 Samia Salem Sokara, Magda El-Sayed El-Sayada, Mai El-Sayed Ghoneim Combination of Sitagliptin and Silymarin ameliorates liver fibrosis induced by carbon tetrachloride in rats Biomedicine & Pharmacotherapy 89 (2017) 98–107

45 Shahinul Alam, Jhumur Ghosh, Golam Mustafa Effect of sitagliptin on hepatic histological activity and fibrosis of nonalcoholic steatohepatitis patients: a 1-year randomized control trial Hepatic Medicine: Evidence and Research 2018:10 23–31

46 Takumi Onoyama, Masahiko Koda, Toshiaki Okamoto Therapeutic effects of the dipeptidyl peptidase-IV inhibitor, sitagliptin, on non-alcoholic steatohepatitis in FLS-ob/ob male mice Molecular Medicine Reports 12: 6895-6902, 2015

47 Tisha R Joy, Charles A McKenzie, Rommel G Tirona Sitagliptin in patients with non-alcoholic steatohepatitis: A randomized, placebo-controlled trial World J Gastroenterol 2017 January 7; 23(1): 141-150

48 Yun-A. Jung1, Yeon-Kyung Choi b, Gwon-Soo Jung Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis diabetes research and clinical practice 105 (2014)47–57

49 Kawaguchi, T., Nakano, D., Koga, H., Torimura, T., 2019. Effects of a DPP4 inhibitor on progression of NASH-related HCC and the p62/Keap1/Nrf2-pentose phosphate pathway in a mouse model. Liver Cancer 8, 346–359.

50 Seghieri, M., Christensen, A.S., Andersen, A., Solini, A., Knop, F.K., Vilsbøll, T., 2018. Future perspectives on GLP-1 receptor agonists and GLP-1/glucagon receptor coagonists in the treatment of NAFLD. Front. Endocrinol. 9, 649.

51 Yuki Tanaka, Shinji Kume Renoprotective effect of DPP-4 inhibitors against free fatty acid-bound albumin-induced renal proximal tubular cell injury Biochemical and Biophysical Research Communications 470 (2016) 539e545

52 Anna-Lena Mayer The DPP4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis

53 Mentlein, R., 1999. Dipeptidyl-peptidase IV (CD26) – role in the inactivation of regulatory peptides. Regul. Pept. 85, 9–24.
54 Takahiro Uchida, Takashi Oda, Hidehito Matsubara Renoprotective effects of a dipeptidyl peptidase 4 inhibitor in a mouse model of progressive renal fibrosis RENAL FAILURE, 2017 VOL. 39, NO. 1, 340–349

55 Jung Beom Seo, Yeon-Kyung Choi, Hye-In Woo Gemigliptin Attenuates Renal Fibrosis Through DownRegulation of the NLRP3 Inflammasome Diabetes Metab J 2019;43:830-839

56 Mayer, A., Scheitacker, I., Ebert, N., Klein, T., Amann, K., & Daniel, C The DPP4 inhibitor linagliptin ameliorated renal injury and accelerated resolution in a rat model of crescentic nephritis. British Journal of Pharmacology, 178(4), 878–895.

57 Keizo Kanasaki, Sen Shi, Megumi Kanasaki Linagliptin-Mediated DPP-4 Inhibition Ameliorates Kidney Fibrosis in StreptozotocinInduced Diabetic Mice by Inhibiting Endothelial-toMesenchymal Transition in a Therapeutic Regimen Diabetes 2014;63:2120-2131

58 Muralikrishna Gangadharan Komala, Simon Gross, Amgad Zaky, Carol Pollock Linagliptin Limits High Glucose Induced Conversion of Latent to Active TGF^B through Interaction with CIM6PR and Limits Renal Tubulointerstitial Fibronectin PLOS ONE | DOI:10.1371/journal.pone.0141143

59 Oleg Tsuprykov, Ryotaro Ando, Christoph Reichetzeder The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy Kidney International (2016) 89(5), 1049–1061.

60 Masako Uchii, Naoya Kimoto, Mariko Sakai Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats European Journal of Pharmacology 783 (2016) 56–63 61 MURALIKRISHNA GANGADHARAN KOMALA, SIMON GROSS, AMGAD ZAKY Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes Nephrology 21 (2016) 423–431

62 Wei Jing Liu, Shu Hua Xie, Yu Ning Liu Dipeptidyl Peptidase IV Inhibitor Attenuates Kidney Injury in Streptozotocin-Induced Diabetic Rats The Journal Of Pharmacology And Experimental Therapeutics 340:248–255, 2012

63 Cristina Mega, Edite Teixeira de Lemos, Helena Vala Diabetic Nephropathy Amelioration by a Low-Dose Sitagliptin in an Animal Model of Type 2 Diabetes (Zucker Diabetic Fatty Rat) Experimental Diabetes Research Volume 2011, Article ID 162092, 12 pages

64 Dongdong Wang, Guanying Zhang, Xiao Chen Sitagliptin ameliorates diabetic nephropathy by blocking TGF-β1/Smad signaling pathway INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 41: 2784-2792, 2018

65 Esther Civantos, Enrique Bosch, Elisa Ramirez Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2017:10 207–222

66 Jian Xu, Jingjing Wang, Yusheng Cheng Glucagon-Like Peptide-1 Mediates the Protective Effect of the Dipeptidyl Peptidase IV Inhibitor on Renal Fibrosis via Reducing the Phenotypic Conversion of Renal Microvascular Cells in Monocrotaline-Treated Rats BioMed Research International Volume 2018, Article ID 1864107, 14 pages

67 LUXIN LI, XU LIAN, ZHILONG WANG The dipeptidyl peptidase-4 inhibitor sitagliptin ameliorates renal injury in type 1 diabetic mice via inhibiting the TGF-β/Smad signal pathway Pharmazie 74: 239-242 (2019)

68 Md. Ashraful Alam, Mohammed Riaz Hasan Chowdhury DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats Diabetol Metab Syndr (2015) 7:107

69 Chor Ho Joa,Sua Kima,Joon-Sung Parkb Anti-Inflammatory Action of Sitagliptin and Linagliptin in Doxorubicin Nephropathy Kidney Blood Press Res 2018;43:987-999

70 Mentlein R. Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept 1999;85:9–24
71 Ghersi G, Dong H, Goldstein LA, et al. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase
complex. J Biol Chem 2002;277:29231–29241

72 Broxmeyer HE, Hoggatt J, O'Leary HA, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 2012;18:1786–1796

73 Arscott WT, LaBauve AE, May V, Wesley UV. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene 2009;28:479–491

74 Pettitt, D. J., Saad, M. F., Bennett, P. H., Nelson, R. G., and Knowler, W. C. (1990) Familial predisposition to renal disease in two generations of Pima Indians with type-2 (non-insulin dependent) diabetes mellitus. Diabetologia 33, 438–443.

75 Michel, J.-B., Lattion, A.-L., Salzmann, J.-L., Cerol, M. L., Philippe, M., Camilleri, J.-P., and Corvol, P. (1988) Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ. Res. 62, 641–650.

76 Xiaowei Zhang, Zhiwei Zhang, Yajuan Yang Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits Cardiovasc Diabetol (2018) 17:160

77 Annayya R. Aroor, James R. Sowers, Shawn B. Bender Dipeptidylpeptidase Inhibition Is Associated with Improvement in Blood Pressure and Diastolic Function in Insulin-Resistant Male Zucker Obese Rats Endocrinology, July 2013, 154(7):2501–2513

78 Annayya R. Aroor, Javad Habibi, Hemanth Kumar Kandikattu Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression,infammation and fbrosis in female mice Cardiovasc Diabetol (2017) 16:61

79 Hiroyuki Hirakawa, Hirofumi Zempo, Masahito Ogawa A DPP-4 Inhibitor Suppresses Fibrosis and Inflammation on Experimental Autoimmune Myocarditis in Mice PLOS ONE | DOI:10.1371/journal.pone.0119360

80 Li-Hui Zhang, Xue-Fen Pang, Feng Bai Preservation of Glucagon-Like Peptide-1 Level Attenuates Angiotensin II-Induced Tissue Fibrosis by Altering AT1/AT2 Receptor Expression and Angiotensin-Converting Enzyme 2 Activity in Rat Heart Cardiovasc Drugs Ther (2015) 29:243–255

81 Tazuru Igarashi,Shinichi Niwano,Hiroe Niwano Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fbrillation Heart and Vessels https://doi.org/10.1007/s00380-018-1170-0

82 Xian-wei WANG, Fen-xi ZHANG, Fen YANG Effects of linagliptin and liraglutide on glucoseand angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in Vitro Acta Pharmacologica Sinica (2016) 37: 1349–1358

83 Jessica A. Hiemstra, BS; Dong I. Lee, PhD; Khalid Chakir Saxagliptin and Tadalafil Differentially Alter Cyclic Guanosine Monophosphate (cGMP) Signaling and Left Ventricular Function in Aortic-Banded Mini-Swine Journal of the American Heart Association DOI: 10.1161/JAHA.116.003277

84 Junichi Ikeda, Naoya Kimoto, Tetsuya Kitayama Cardiac DPP-4 inhibition by saxagliptin ameliorates isoproterenol-induced myocardial remodeling and cardiac diastolic dysfunction in rats Journal of Pharmacological Sciences 132 (2016) 65e70

85 Scott M. Brown, Cassandra E. Smith, Alex I. Meuth Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II–Induced Cardiac Diastolic Dysfunction in Male Mice Endocrinology, October 2017, 158(10):3592–3604

86 Ahmed A.M. Abdel-Hamida, Alaa El-Din L. Firgany Impact of vildagliptin on vascular and fibrotic remodeling of myocardium in experimental diabetic cardiomyopathy Acta Histochemica 122 (2020) 151499

87 Ayako Takahashi, Masanori Asakura, Shin Ito Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice Am J Physiol Heart Circ Physiol 304: H1361–H1369, 2013

88 Nattayaporn Apaijai, Tharnwimol Inthachai, Suree Lekawanvijit Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction Journal of Endocrinology (2016) 229, 245–258

89 Tharnwimol Inthachai, Suree Lekawanvijit, Sirinart KumfuDipeptidyl peptidase-4 inhibitor improves cardiac function by attenuating adverse cardiac remodelling in rats with chronic myocardial infarction Exp Physiol 100.6 (2015) pp 667–679

90 Toru Miyoshi, Kazufumi Nakamura, Masashi Yoshida Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats Cardiovascular Diabetology 2014, 13:43

91 Picatoste B, Ramírez E, Caro-Vadillo A, Iborra C, Egido J, et al. (2013) Sitagliptin Reduces Cardiac Apoptosis, Hypertrophy and Fibrosis Primarily by Insulin-Dependent Mechanisms in Experimental type-II Diabetes. Potential Roles of GLP-1 Isoforms. PLoS ONE 8(10): e78330. doi:10.1371/journal.pone.0078330

92 Grazia Esposito, Donato Cappetta, Rosa Russo Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction British Journal of Pharmacology (2017) 174 4070–4086

93 Kim Alexander Connelly, Yanling Zhang, Andrew Advani DPP-4 Inhibition Attenuates Cardiac Dysfunction and Adverse Remodeling Following Myocardial Infarction in Rats with Experimental Diabetes Cardiovascular Therapeutics 31 (2013) 259–267 94 M. Lenski, A. Kazakov, N. Marx Effects of DPP-4 inhibition on cardiac metabolism and function in mice Journal of Molecular and Cellular Cardiology 51 (2011) 906–918

95 Md. Ashraful Alam, Mohammed Riaz Hasan Chowdhury, Preeti Jain DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) Rats Diabetol Metab Syndr (2015) 7:107

96 Nouf M Al-Rasheed,Nawal M Al-Rasheed,Iman H Hasan Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats Drug Design, Development and Therapy 2016:10 2095–2107

97 Nouf T. Al-Damry, Hala A. Attiaa, Nawal M. Al-Rasheed Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy Biomedicine & Pharmacotherapy 107 (2018) 347–358

98 Yu-Sheng Liu, Zhi-Wei Huang, Lin Wang Sitagliptin alleviated myocardial remodeling of the left ventricle and improved cardiac diastolic dysfunction in diabetic rats Journal of Pharmacological Sciences 127 (2015) 260e274

99 Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease.Pharmacol Ther. 2008;120:292–316.

100 Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T. AT2 receptor and tissue injury: therapeutic implications. Curr Hypertens Res. 2014;16:416–26.

101 Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptordependent and -independent pathways. Circulation 117: 2340 –2350,2008.

102 Bhashyam S, Fields AV, Patterson B, Testani JM, Chen L, Shen YT, Shannon RP. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3:512–521, 2010.

103 Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagonlike peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54: 146-151, 2005.

104 Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5=-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144: 1444-1455, 2003.

105 Michishige Terasaki, Munenori Hiromura, Yusaku Mori Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice International Journal of Endocrinology Volume 2017, Article ID 1365209, 9 pages http://dx.doi.org/10.1155/2017/1365209

106 Nga N. Ta, MS, Corinne A. Schuyler, Yanchun Li DPP-4 (CD26) Inhibitor Alogliptin Inhibits Atherosclerosis in Diabetic
 Apolipoprotein E - Deficient Mice J Cardiovasc Pharmacol Volume 58, Number 2, August 2011

107 Tomoya Mita,Naoto Katakami,Hidenori Yoshii Alogliptin, a Dipeptidyl Peptidase 4 Inhibitor, Prevents the Progression of Carotid Atherosclerosis in Patients With Type 2 Diabetes:The Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A) Diabetes Care 2016;39:139 - 148 | DOI: 10.2337/dc15-0781

108 Zubair Shah, Thomas Kampfrath, Jeffrey A. Deiuliis Chronic DPP-4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis Circulation. 2011 November 22; 124(21): 2338 - 2349. doi:10.1161/Circulationaha.111.041418.

109 Tsutomu Hirano, Satoko Yamashitab, Masaki Takahashi Anagliptin, a dipeptidyl peptidase-4 inhibitor,decreases macrophage infiltration and suppresses atherosclerosis in aortic and coronary arteries in cholesterol-fed rabbits Metabolism Clinical And Experimental 65 (2016) 893 - 903

110 Hwan-Jin Hwang, Hye Soo Chung, Tae Woo Jung The dipeptidyl peptidase-IV inhibitor inhibits the expression of vascular adhesion molecules and inflammatory cytokines in HUVECs via Akt- and AMPK-dependent mechanisms Molecular and Cellular Endocrinology 405 (2015) 25 - 34

111 Camila Manrique, Javad Habibi, Annayya R. Aroor Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice Cardiovasc Diabetol (2016) 15:94

112 Haoran Wang, Yue Li, Xiaoliang Zhang DPP-4 Inhibitor Linagliptin Ameliorates Oxidized LDL-Induced THP-1 Macrophage Foam Cell Formation and Inflammation Drug Design, Development and Therapy 2020:14 3929 - 3940

113 Hotimah Masdan Salim, Daiju Fukuda, Yasutomi Higashikuni Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice Vascular Pharmacology 79 (2016) 16 - 23

114 Shuhei Nishida, Takeshi Matsumura, Takafumi Senokuchi Inhibition of inflammation-mediated DPP-4 expression by linagliptin increases M2 macrophages in atherosclerotic lesions Biochemical and Biophysical Research Communications 524 (2020) 8e15

115 Stefanie A. de Boer, Hiddo J. L. Heerspink, Luis E. Juárez Orozco Effect of linagliptin on pulse wave velocity in early type 2 diabetes: A randomized, double-blind, controlled 26-week trial (RELEASE) Diabetes Obes Metab. 2017;19:1147 - 1154.

116 Kunduziayi Aini, Daiju Fukuda, Kimie Tanaka Vildagliptin, a DPP-4 Inhibitor, Attenuates Endothelial Dysfunction and Atherogenesis in Nondiabetic Apolipoprotein E-Deficient Mice Int Heart J 2019; 60: 1421-1429

117 Michishige Terasaki, Masaharu Nagashimaa, Takuya Watanabe Effects of PKF275-055, a dipeptidyl peptidase - 4 inhibitor, on the development of atherosclerotic lesions in apolipoprotein E - null mice METABOLISM CLINICAL AND EXPERIMENTAL 61 (2012) 974 - 977

118 Rehab Werida, Mahmoud Kabel, Gamal Omran Comparative clinical study evaluating the effect of adding Vildagliptin versus Glimepiride to ongoing Metformin therapy on diabetic patients with symptomatic coronary artery disease diabetes research and clinical practice 170 (2020) 108473

119 Bo Lia, Yan-Rong Luo, Feng Tian Sitagliptin attenuates the progression of coronary atherosclerosis in patients with coronary disease and type 2 diabetes Atherosclerosis 300 (2020) 10 - 18

120 F. Vittone, A. Liberman, D. Vasic Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe-/- mice Diabetologia (2012) 55:2267 - 2275 DOI 10.1007/s00125-012-2582-5

121 Tomoya Mita,Naoto Katakami,Toshihiko Shiraiwa Dose-Dependent Effect of Sitagliptin on Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus Receiving Insulin Treatment: A Post Hoc Analysis Diabetes Ther (2017) 8:1135 - 1146 DOI 10.1007/s13300-017-0309-9

122 Tsuyoshi Nozue, Kazuki Fukui, Yutaka Koyama Effects of sitagliptin on coronary atherosclerosis in patients with type 2 diabetes-A serial integrated backscatter-intravascular ultrasound study Am J Cardiovasc Dis 2016;6(4):153-162

123 Xiaojie Liu, Tao Mei, Wei Chen Comparison of Antidiabetic Medications during the Treatment of Atherosclerosis in T2DM Patients Mediators of Inflammation Volume 2017, Article ID 5032708, 6 pages https://doi.org/10.1155/2017/5032708

124 Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 2005;90: 449–55.

125 Shirwany NA, Zou MH. Arterial stiffness: a brief review. Acta Pharmacol Sin2010;31:1267-76.

126 Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003;10:267-74.

127 Arteaga-Solis E, Gayraud B, Ramirez F. Elastic and collagenous networks in vascular diseases. Cell Struct Funct 2000;25:69–72.

128 Jacob MP. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother 2003;57:195–202.

129 Arribas SM, Hinek A, Gonzalez MC. Elastic fibres and vascular structure in hypertension. Pharmacol Ther

2006;111:771-91.

130 Tao-Hua Lan, Xiong-Qing Huang, Hong-Mei Tan Vascular fibrosis in atherosclerosis , Cardiovascular Pathology (2013), http://dx.doi.org/10.1016/j.carpath.2013.01.003

131 Y. Hirata, H. Kurobe, C. Nishio, K. Tanaka, D. Fukuda, E. Uematsu, S. Nishimoto, T.Soeki, N. Harada, H. Sakaue, T. Kitagawa, M. Shimabukuro, Y. Nakaya, M. Sata, Exendin-4, a glucagon-like peptide-1 receptor agonist, attenuates neointimal hyperplasia after vascular injury, Eur. J. Pharmacol. 699 (1 - 3) (2013) 106 - 111.

132 Terasaki M, Nagashima M, Nohtomi K, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin' s actions in nondiabetic and diabetic apolipoprotein E-null mice. PLOS ONE 2013; 8: e70933.
133R. Ross, Atherosclerosis d an inflammatory disease, N. Engl. J. Med. 340(1999) 115e126, https://doi.org/10.1056/NEJM199901143400207.

134 D. Tugal, X. Liao, M.K. Jain, Transcriptional control of macrophage polarization, Arterioscler. Thromb. Vasc. Biol. 33 (2013)
1135e1144, https://doi.org/10.1161/ATVBAHA.113.301453.

135 G. Chinetti-Gbaguidi, M. Baron, M.A. Bouhlel, et al., Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARg and LXRa pathways, Circ. Res. 108 (2011) 985e995, https://doi.org/10.1161/CIRCRESAHA.110.233775.

136 K.J. Moore, F.J. Sheedy, F.A. Fisher, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol. 13 (2013) 709e721, https://doi.org/10.1038/nri3520.

137 F. Zhuge, Y. Ni, M. Nagashimada, et al., DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization, Diabetes 65 (2016) 2966e2979, https://doi.org/10.2337/db16-0317.

138 Nagai T, Doi S, Nakashima A, Irifuku T, Sasaki K, Ueno T, et al. (2016) Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice. PLoS ONE 11(8): e0160993. doi:10.1371/journal.pone.0160993

139 Fang Wang, Zhi-Fen Zhang, Yi-Ran He Effects of dipeptidyl peptidase-4 inhibitors on transforming growth factor-β1 signal transduction pathways in the ovarian fibrosis of polycystic ovary syndrome rats J. Obstet. Gynaecol. Res. Vol. 45, No. 3: 600–608, March 2019

140 Samuel T. Olatunbosun Chronic incretin-based therapy in cystic fibrosis-related diabetes: A tale of 3 patients treated with sitagliptin for over 5 years Journal of Cystic Fibrosis March 10, 2021;16:23

141 Yi-Chen Li, Pei-Hsun Sung, Yao-Hsu Yang Dipeptidyl peptidase 4 promotes peritoneal fibrosis and its inhibitions prevent failure of peritoneal dialysis communications biology | https://doi.org/10.1038/s42003-021-01652-x

142 Alina Soare,Hermina A. Györfi,Alexandru E. Matei Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis Arthritis & Rheumatology Vol. 72, No. 1, January 2020, pp 137–149

143 Yan Li,Julei Zhang,Qin Zhou Linagliptin inhibits high glucose-induced transdifferentiation of hypertrophic scar-derived fibroblasts to myofibroblasts via IGF/Akt/mTOR signalling pathway Experimental Dermatology. 2019;28:19–27

144 Ana Patrícia Marques, Janete Cunha-Santos, Helena Leal Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice BBA - General Subjects 1862 (2018) 403–413

145 Sherif S. Farag, Mohammad Abu Zaid, Jennifer E. Schwartz, Dipeptidyl Peptidase 4 Inhibition for Prophylaxis of Acute Graft-versus-Host Disease N Engl J Med 2021; 384:11-19 DOI: 10.1056/NEJMoa2027372

146 Hirotsugu Suwanai, Ryo Watanabe, Munemori Sato Dipeptidyl Peptidase-4 Inhibitor Reduces the Risk of Developing Hypertrophic Scars and Keloids following Median Sternotomy in Diabetic Patients: A Nationwide Retrospective Cohort Study Using the National Database of Health Insurance Claims of Japan Plastic and Reconstructive Surgery DOI: 10.1097/PRS.0000000000006904

147 Bergman AJ, Stevens C, Zhou Y, et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: A double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther. 2006;28:55–72.

148 Long M, Cai L, Li W, et al. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes 2018;67:518–531.

149 Hu MS, Longaker MT. Dipeptidyl peptidase-4, wound healing, scarring, and fibrosis. Plast Reconstr Surg. 2016;138:1026–1031.

150 Thomas A Wynn, Thirumalai R Ramalingam. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. nature medicine Volume 18 | Number 7 | July 2012