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Abstract

Host-directed therapies (HDT) that modulate host-pathogen interaction offer an innovative strategy to combat Mycobacterium
tuberculosis (Mtb) infections. When combined with conventional anti-tuberculosis regimens, HDT strategies could contribute to
improving treatment outcomes, reducing treatment duration, and preventing resistance development. It is however challenging
to evaluate the interplay of host-pathogen interaction events in response to HDT strategies, and to translate experimental
findings towards patients. Quantitative understanding of the multi-faceted nature of the host-pathogen interactions is vital
to rationally design HDT strategies. Here, we (1) provide an overview of key host-pathogen interactions as basis for HDT
strategies, (2) discuss experimental models to characterize host-pathogen interactions relevant for HDTs, and (3) discuss the
utility and approaches of quantitative systems pharmacology (QSP) models to inform design of HDT strategies against Mtb
infections. QSP models can be used to identify and optimize treatment targets, to facilitate preclinical to humans translation,

and to design combination treatment strategies.

Introduction

Mycobacterium tuberculosis (Mtb) infections are associated with approximately 1.5 - 2 million deaths annu-
ally worldwide[1]. The current first-line treatments for tuberculosis (TB) disease include a combination of
antibiotics (rifampicin, isoniazid, pyrazinamide, and ethambutol) for at least six months[2]. However, the
ongoing emergence of multidrug resistant Mtb threatens the effectiveness of the treatment with conventional
antibiotics[3]. Host-directed therapy (HDT) strategies targeting the host immune response against Mtb to
complement conventional antibiotic treatment strategies have received increasing attention[4-11] to enhance
treatment outcomes, shorter treatment durations, and avoidance of resistance development.

HDTs target interactions between the host immune response and the Mtb pathogen. The host immune
response to Mtb infection is reliant on the cumulative activities of various defence mechanisms such as
macrophage activation, phagocytosis, autophagy, antigen presentation, and cytokine and T-lymphocytes
production. Mtb has several mechanisms to modulate the host response enabling evasion of immune system-
mediated clearance[l,11]. Pharmacological targeting of specific host-pathogen interaction mechanisms re-
flects an important approach for HDTs. Understanding the multiscale nature of host-pathogen interactions
is essential to identify relevant drug targets for HDTs, and design appropriate combination treatments and
dosing schedules.



A major challenge in the discovery and development of HDTs for TB is the prediction of treatment responses
associated with specific pharmacological modulation of an immune response-associated target due to complex
systems-level host-drug-pathogen interactions[4,6,12]. The translation of systems-level responses to HDT
strategies from preclinical models to patients is challenged by inter-species differences in immune responses
to Mtb pathogen. Mathematical modelling, and in particular the use of quantitative systems pharmacology
(QSP) modelling can serve as a valuable tool to identify relevant HDT targets, and to inform subsequent
design of combination drug treatment strategies and dosing schedules[13-18]. The utility of quantitative
modelling to design improved treatment strategies for TB have already been demonstrated extensively for
conventional antibiotic therapies[17-19]. For design of HDTs, however, QSP approaches remain have not yet
been developed.

Here, we discuss the utility of QSP modelling strategies to support discovery and development of HDT
strategies. We summarize high-potential host-pathogen interactions of relevance for HDTs. We then provide
an overview of several relevant infection models to characterize host-pathogen interactions of Mtb. Based
on this, we discuss how QSP models can be developed with a focus on required model components and the
integration with experimental and clinical data, for application in target selection, inter-species translation
and for clinical study design and treatment optimization.

Host -Pathogen Interactions as basis for Host-Directed Therapy Strategies

Several host-pathogen interactions of Mtb involved in its pathogenesis and immune system evasion offer
potential targets for design of HDTs[11] (Figure 1 ), and are of relevance to capture in QSP modelling
approaches.

Induction of Autophagy

Autophagy involves the formation of a double-membrane phagophore, elongation of the phagophore, au-
tophagosome maturation, and fusion with lysosomes for degradation of the selected cellular material, and
requires a complex interplay between various protein complexes. Autophagy plays an essential role in control-
ling Mtb infections[20-23] and has been studied extensively as potential HDT strategy for Mtb[4,11,20,24].
Currently, two therapeutic targets, mammalian target of rapamycin (mTOR) and intracellular cholesterol,
are being studied to induce autophagy.

mTOR Inhibitors

Mammalian target of rapamycin complex 1 (mTORC1) plays a role in regulation of autophagy by two mecha-
nisms, (1) inhibition of unc-51-like kinase 1 (ULK1) and transcription Factor EB (TFEB) phosphorylation[24]
and (2) activation of glycolysis[25]. Mtb activates mMTORC1 and thus inhibits autophagy.

Metformin is the most evaluated mTOR inhibitor as potential HDT treatment for Mtb infections. Metformin
inhibited the growth of intracellular MDR Mtb strains in vitro[26]. Adjunctive treatment of metformin with
isoniazid induced phagosome-lysosome fusion, enhanced the immune response, and reduced intracellular
growth of Mtb in mice[26]. Study of transcriptional changes in healthy human volunteers following metformin
dosing reported that metformin alters mTOR signalling, induces autophagy, and enhances the host response
to Mtb[27]. Multiple reports suggest that metformin adjunctive therapy in diabetic TB patients improved
TB therapy success rate and lowered mortality rate|[26,28,29].

Everolimus, an mTOR inhibitor, showed significant potential against Mtb as an HDT. In a human granuloma
model, everolimus treatment alone or in combination with isoniazid or pyrazinamide showed significant
reduction in Mtb load as compared to the controls.[30] Adjunctive everolimus treatment with rifabutin-
substituted standard TB therapy improved lung functions as measured by forced expiratory volume (FEV1)
when compared to a control group in a randomized clinical trial[31]. A recent study identified that protein
kinase inhibitor ibrutinib as a potential HDT against Mtb. Ibrutinib therapy alone significantly promoted
auto-lysosome fusion in vitro, inhibited the mTOR pathway in vitro, and reduced Mtb load in mice[32].



Overall, induction of autophagy via mTOR inhibitors, especially in combination with conventional Mtb
therapy, holds a potential as an adjunctive HDT strategy for treatment of TB.

HMG-CoA Inhibitors

Autophagy is also dependent on intracellular cholesterol. Key proteins, 1A/1B-light chain 3 (LC3) and
lysosomal associated membrane protein 3 (LAMP3), and Ca?" are essential for autophagosome maturation
and autophagosome-lysosome fusion. LC3, LAMP3, and Ca?" are inhibited by intracellular cholesterol|5,33],
and thus cholesterol inhibits autophagy and promotes Mtb survival.

The HMG-CoA reductase pathway has been associated with intracellular cholesterol reduction, autophagy
induction and improved Mtb clearance. Therapy with HMG-CoA inhibitors, such as simvastatin, pravastatin,
and fluvastatin, as adjunctive therapy to conventional anti-TB drugs improved bacterial clearance by the
host and improved the efficacy of first-line TB drugs by promoting phagosome maturation and autophagy in
macrophage cell cultures and in mice models.[7,34-36] In vitro screening and experiments in mice for eight
HMG-CoA inhibitors discovered that pravastatin, simvastatin, and fluvastatin had the most favourable anti-
TB activity and pravastatin showed the least toxicity and drug-drug interactions when used as an adjunctive
to standard anti-TB treatment|7,33]. On the other hand, a population-based cohort analysis of data from
newly diagnosed TB patients recognized no statistically significant difference in hazard ratio between patients
who were using statins (as a lipid lowering treatment) in addition to standard TB treatment as compared to
patients who did not use statins[37]. Several retrospective clinical studies have identified that chronic use of
statins reduced the risk of developing TB; however, to our knowledge, no studies have evaluated statins as
a treatment in active TB patients alone or in combination with conventional anti-TB therapy[38]. As such,
prospective clinical studies assessing the use of statins, especially pravastatin, at different doses as adjunctive
to standard TB therapy may be needed.

Regulation of Host Epigenetics

Infection with Mtb alters some host gene functions important for the ensuring immune response. Two
key pathways involved in Mtb-induced host epigenetic alterations are histone deacetylasesl (HDACI) and
TLR3-BMP-miR27a pathway both of which can be pharmacologically exploited for HDTs[39-41].

HDAC Inhibitors

Upregulation of HDAC1 was noted in macrophages containing live Mtb and HDAC1 recruitment suppressed
the expression of IL-12B that plays a vital role in initiating type 1 T cell immunity to Mtb. HDACI is
also known to modulate autophagy associated genes[42,43]. Treatment with a broad-spectrum HDAC in-
hibitor (Trichostatin A) decreased bacterial growth in both M1 and M2 macrophage cell cultures, while
selective HDAC inhibitors (TMP195, and TMP269) reduced bacterial growth in M2 macrophage cell cul-
tures. Vorinostat, an HDAC inhibitor, promoted immune response by human macrophage cell cultures|[44].
In zebrafish embryos infected with Mm, HDAC inhibition significantly reduced microbial burden[40]. Addi-
tionally, HDAC inhibition significantly inhibited Mtb growth in lungs and showed increased production of
key cytokines in mice[45].

Abl Tyrosine Kinase Inhibitors

Abl tyrosine kinase is involved in entry and survival of Mtb within macrophages through TLR3-BMP-miR27a
pathway. Abl tyrosine kinase also inhibits expression of vATPase pump-relevant genes, and thus inhibits
acidification of autolysosomes. Pharmacological inhibition of Abl tyrosine kinase using imatinib improved
containment of Mtb within macrophages, induced expressions of iNOS, increased acidification of phagosomes,
and decreased bacterial load in human macrophage cell cultures and in mice[11,41]. A clinical study assessing
effects of imatinib alone and in combination with conventional anti-TB drugs in drug-resistant- and HIV
co-infected- TB patients[46] is currently ongoing.



Modulation of Cytokine Response

The kinetics of the key cytokines, such as interferon gamma (IFN-y) ; tumour necrosis alpha (TNF-a), in-
terleukin (IL)-1B, IL-10, IL-4, IL-12, and IL-2, during the course of Mtb infections have been well studied in
vitro and in vivo[47-51]. IFN-y is one of the most important players to the host immune response and its
main role is activation of macrophages. IFN-y also induces infected macrophage apoptosis via induction of
more than 200 pro-apoptotic genes (i.e. Fas/Fas ligand, cathepsin, protein kinase R, etc.)[52,53]. Activated
macrophage produce reactive nitrogen intermediates (RNIs) and pro-inflammatory cytokines, TNF-a and IL-
183, that possess microbicidal properties against Mtb. Resident macrophages also produce RNIs, TNF-a, and,
IL-1B3- however activated macrophage-mediated production is much more efficient[54-56]. Excessive produc-
tion of pro-inflammatory cytokines, however, can lead to tissue damage[57]. Anti-inflammatory cytokines,
IL-10 and IL-4, are also induced upon macrophage phagocytosis and balance pro-inflammatory cytokine
levels by macrophage deactivation[57]. However, excessive production of anti-inflammatory cytokines may
result in limiting the host immune systems’ microbicidal activities[58]. Thus, the fine balance between the
pro- and anti-inflammatory cytokines may determine the overall outcome of the Mtb infection.

Adjunctive treatment with IFN-y have been evaluated in various clinical studies; however, different patient
conditions, routes of administration (intravenous vs. subcutaneous) and dosing regimen resulted in varying
outcomes[59]. Adjunctive treatment with aerosolized IFN-y showed benefits in reducing cavitary lesions and
induced negative sputum conversion in TB patients in clinical studies[60,61].

Anti-inflammatory agents such as cyclooxygenase (COX) 1/2 inhibitors, corticosteroids, 5-lipoxygenase in-
hibitor (Zileuton), phosphodiesterase (PDE) inhibitors, and matrix metalloproteinases (MMP) inhibitors
have been shown to reduce Mtb burden in vitro or in preclinical species[4]. However, treatments with cor-
ticosteroids and celecoxib (COX1 inhibitor) in combination with conventional anti-TB drugs did not show
significant benefits of these additional HDT in human subjects[4,62]. Adjunctive treatments with PDE
inhibitors and MMP inhibitors have not been evaluated yet in human subjects to our knowledge. Ret-
rospective analysis of existing data where TB patients took approved anti-inflammatory drugs, especially
PDE inhibitors, as concomitant medications for other conditions and their impact on TB outcome can be a
valuable approach.

Enhancing T-cell Mediated Host Response

The overall innate immune reaction play an important role in the initiation of adaptive immune response
by antigen presentation, cytokines, and costimulatory signals[55]. Two to three weeks after the initial infec-
tion, antigen-presenting cells (APCs) that drain into regional lymph nodes initiate adaptive T-lymphocytes
mediated immune response. Upon antigen presentation, the APCs, through antigen presentation via major
histocompatibility molecules (MHC)-I and II , prime CD8+ T cells (cytotoxic T cells) and CD4+ T cells,
respectively to initiate adaptive immune response.[63-65] Both activated CD4+ and CD8+ T cells secrete
IFN-v, IL-2, IL-17A, and IL-10. The production of CD4+ mediated IFN-v is further stimulated by activated
macrophages, whereas the production of CD8+ mediated IFN-y is driven by concentrations of IL-12 and
correlates with bacterial load[50]. Mature dendritic cells secrete IL-12p70 which helps increasing recruitment
of additional CD4+ T cells[66,67]. IL-2 play a role in further proliferation of T cells[57]. CD8+ cells have
direct microbicidal capabilities through perforin, granzymes, and granulysin or induce apoptosis through
Fas/Fas ligand interaction|[68].

Adjunctive cytokine supplementation with IL-12 and IL-2 have been evaluated in clinical studies, but did not
result in significant benefits[4,59]. However, recombinant human IL-2 supplementation showed significant
improvements in negative sputum culture conversion rates and in enhanced X-ray resolution in MDR TB
patients[69]. Therefore, the use of recombinant IL-2 supplementation as HDT strategy for TB should be
further evaluated.



Experimental approaches to inform design of Host-Directed Ther-
apies

Several experimental approaches experimentally modelling (parts of ) Mtb infection are of relevance to inform
design of HDTs. Such experiments can provide quantitative understanding about components of drug-
host-pathogen interactions (Figure 2 ), which can be combined and integrated through the use of QSP
modelling. Key aspects include the immune modulatory effect of therapeutic agents on immune cells that
in turn lead to changes in Mtb inhibition-dynamics of immune cells, immune system evasion strategies
induced by Mtb, and direct pharmacodynamic effects of antimicrobial agents used in combination with
HDTs. Parametrization of QSP models requires quantitative data of both the time course of effects (i.e.,
rates) and the concentration-effect relationships for therapeutic agents studied; as well as the ability to
perform time course measurements. Data to be measured during such experiments both include endpoints
such as Mtb disease burden, cell counts of lymphocytes, and regulatory proteins and biomarkers that can
explain observed treatment response[70]. Here, we discuss key in vitro and in vivo preclinical models that
can be of specific relevance for characterization of HDTs using a QSP modelling approach.

In Vitro Macrophage Infection Models and Advanced Cell Culture Systems

Human-derived macrophage and peripheral blood mononuclear cell (PBMC) cultures are extensively used to
screen for the activity of antimicrobials but also identify potential compounds with HDT potential[27,71-73].
The in vitro setting allows conducting experiments in high-throughput setting including the use of reporter
cell lines to screen for specific effects at the molecular level, e.g., autophagy induction. This approach thus
readily allows characterization of the time course and dose response relationship of compounds.

Several advanced cell culture systems have been increasingly used to study Mtb host-pathogen interactions
and for screening of compounds including HDTs, such as based on 3D cell cultures and organoids|[71,74],
and the development of a lung-on-chip system[75]. Similar to simpler cell culture systems, the longitudinal
measurement of cytokines, chemokines, and bacterial load is possible, and has been used to study HDT
interventions[74]. The use of lung organoids and lung-on-chip and their overall use in drug discovery and
development is yet to be advanced further.

The in vitro hollow fibre infection model (HFIM) is commonly used to study the direct effects of antimi-
crobial agents on Mtb, but it also readily allows to include co-cultures with macrophages to better reflect
aforementioned in vitro intracellular infection systems. In the HFIM, Mtb is cultured in a closed chemostat
system with continuous flow of medium, while it allows simulation of concentration-time profiles that occur in
patients. The corresponding changes in bacterial load over time can be quantified, allowing characterization
of underlying PK/PD relationships of antibiotic and/or HDTs in combination with PK/PD modelling[76].

Whilst all in vitro cell culture-based approaches are attractive for purposes of screening and quantitative
characterization of key mechanisms and phenotypic response profiles, these systems remain a simplified model
system that does not include all aspects related to the host immune response. The use of QSP modelling
could facilitate translation of such in vitro responses based on human host cells towards expected in vivo
response.

Zebrafish Infection Models

Adult zebrafish Mycobacterium marinum (Mm) infection models have gained increasing attention as a pre-
clinical Mtb infection model[77-79]. Zebrafish embryos and larvae are of interest due to their optical trans-
parency and thus allowing the use of advanced imaging methods. Zebrafish possess an innate immune system
that is highly similar to that of mammals; therefore, it has been used in many studies for the analysis of
cellular and systemic responses to infection[78,80,81]. Because infection with various mycobacteria, includ-
ing Mtb leads rapidly to the formation of granuloma structures that are highly similar to those observed in



human tuberculosis patients, it has been a successful model to study the progression of tuberculosis and the
effects of drug treatment[82,83]. It also enables pharmacological screening of drugs, to treat mycobacterial in-
fection at a high throughput level with an emphasis on the measurement of drug uptake characteristics[84].
Knockdown and overexpression experiments in zebrafish combined with QSP modelling would especially
provide insights into contribution of certain component to overall immune response and anti-TB effects. A
recent study provided the proof of concept that use of zebrafish larvae combined with translational PK/PD
modelling can accurately predict effects of anti-TB drugs in humans[85]. Thus, zebrafish is a promising
experimental TB model that can be used to generate the data required for QSP models to evaluate HDT
strategies.

Vertebrate Infection Models

Rodent infection models using mice, rabbits, and guinea pigs are commonly used as infection model for
Mtb[77]. Mice have been used in TB research from a long time due to the small size, availability of humanized
and genetically modified strains, and cost-benefits over other vertebrate in vivo models, such as rabbits,
guinea pigs, and NHPs. Even though rodent infection models such as mice incorporate a full immune
system, differences between the human immune response remain[86] and lead to translational challenges[71].
QSP models could help address some of those translational challenges. Mice infected with ultra-low dose
aerosol Mtb showed heterogeneous disease progression and granuloma formation similar to humans. Analysis
of the transcriptomics data obtained from the ultra-low dose Mtb infected mice and the controls enabled
predictions of risk of progression to active TB disease following Mtb infection in humans.[87] QSP models
can incorporate various doses of Mtb inoculum and findings from the transcriptomics data analysis, and can
enable translational predictions of treatment outcome[88-90].

NHPs have been widely used in immunology research and TB vaccine studies. NHP-Mtb infection models are
of interest to generate HDT-relevant data due to their similarities to humans in basic physiology, immunology,
and disease pathology. The use of these models has been however limited in TB treatment research due
to the requirements of scientific and financial resources as well as safety issues due to highly infectious and
contagious nature of Mtb.[91] QSP models can fill in the gaps between in vitro, zebrafish, smaller vertebrates
such as mice, and humans to overcome the limitations of NHP models. In general, QSP models can link
results from various experimental infection models to enable predictions in humans.

Design of Host-Directed Therapies using Quantitative Systems
Pharmacology Modelling

The overall outcome of Mtb disease and treatment is reliant on the integrated results of the molecular and
cellular events, and their reflection at tissue, organ, and host level dynamics occurring at different time scales.
As such, it can be challenging to predict patient responses to different HDT strategies. Species differences
in immune response characteristics make it more challenging to translate the results from preclinical studies
to clinical scenarios. In addition, determination of the effects of treatments and disease progression in
specific patient populations, can be challenging, i.e., in patients with weakened immune response and/or
other conditions, patients with specific genotype known to affect certain pharmacology. QSP modelling
can address these hurdles through quantitative integration of Mtb host-pathogen interaction mechanisms
with PK and PD aspects of HDTs, making it a relevant tool to guide drug discovery and development
of HDTs for Mtb. Here we discuss three main components of the QSP framework to evaluate HDTs for
Mtb infection, (1) drug PK models, (2) host immune response models, and (3) pathogen dynamic models.
The considerations for identification of drug- and system specific parameters to facilitate scaling, and the
incorporation of variability are also discussed. Lastly, we discuss applications of the QSP models to evaluate
HDTSs. An overview of the QSP framework components and applications is provided inFigure 2 and Figure
3 , respectively.



Pharmacokinetics

Pharmacokinetics describes the concentration-time profile of drugs and is determined by absorption, dis-
tribution, metabolism. and elimination processes, which may differ between organisms. Consideration of
concentration-effect relationships, and therefore the PK, is of essential value for design of HDT strategies.
Mathematical PK models quantitatively characterize PK based on parameters accounting for the underlying
processes.

Physiologically based PK (PBPK) models describe the concentration profiles in specific tissues of interest
and are informed by both drug- and system-specific parameters. PBPK models are of relevance to scale PK
between preclinical species and towards humans in a mechanistic-fashion. For Mtb infection, PBPK models
describing lung exposure are of specific relevance. In addition, their mechanism-based approach allows for
incorporation of drug-drug interactions, which often occur for Mtb combination therapies[92]. In the clinical
phase, quantifying inter-patient variability in PK is important. Here, population PK (PopPK) models are
of relevance, which capture inter-individual variation in underlying PK parameters that can be explained by
specific patient-specific covariates[93]. It is furthermore helpful that because many HDTs involve approved
drugs, often PK models are available already to characterize their PK[94,95].

Immune Responses

Models describing the key immune response components, such as dynamics of macrophage counts, cytokines,
and CD4+ and CD8+ T lymphocytes are essential for QSP models to study HDTs. Systems biology
models describing the host-Mtb interactions within the site of infection (lungs)[56] have been previously
developed, and later linked with lymphatics[50] and blood circulations[96]. The states included in these
models were resting-, activated-, and critically infected-macrophages, cytokines, such as IFN-vy, IL-10, and
IL-12, immature- and mature- dendritic cells, CD4+ lymphocytes, and intra- and extra-cellular Mtb pop-
ulations. The key feature of this model was contributions of various immune components on intra- and
extra-cellular Mtb. The above-developed model was later expanded to include CD8+ cells dynamics in
lungs and lymph[49,97]. The parameters in these models were identified from published human-derived or
non-human primate (NHP) experimental results or model fitting to in vitro or in vivo (mice) data. These
models can be expanded to include key drug targets involved in Mtb HDTs and their downstream effects on
functional immune response changes and the quantitative interaction with Mtb bacteria.

To the best of our knowledge, there are currently no mathematical models available in literature describing
HDT-relevant pathways, such as autophagy in Mtb infections; however, components and parameter esti-
mates from single cell systems biology models[98-103] can be adapted and extended using experimental in
vitro and in vivo data. For example, a HDT model containing key biological features of autophagy[98] in-
cluding HDAC1-related components may be developed. The model parameters can be informed using prior
knowledge available in literature[98] and data from in vitro experiments[40]. The model may describe dy-
namics of the phagocytic cells and zebrafish infection with Mm bacterial load overtime in HDACT inhibitors
exposed macrophage cell cultures as compared to controls, and this would allow estimation of parameters
relevant to HDACI effect. The simulations from the models may be compared with the experimental out-
comes, preferably from different experimental conditions than the original experiments used for parameter
estimation. This allows validation of the model structure and parameter estimates. In the above example,
the simulations from the QSP model including autophagy components may be validated against data from
zebrafish exposed to HDAC1 inhibitors (at various HDACTI levels) experiments[40].

Pathogen Dynamics

Models for the population dynamics of pathogens include the effect of antimicrobial drug on the growth and
inhibition-dynamics of Mtb bacteria and emergence of treatment resistance. In vitro and in vivo kill dynamic
studies have enabled our understanding of parameters of Mtb growth rates[18], bactericidal and bacteriostatic
effects of conventional anti-TB drugs[76], and resistance development rates of bacteria[104,105]. Through



the use of PK/PD modelling, dosing strategies can be designed that optimize dosing schedules for maximal
bacterial control and reduced risk of resistance development. The incorporation of immune cell effects on
pathogen killing is a key required step to study the effects of HDTs on Mtb treatment. Published host-
Mtb interaction models[50] can be updated to include contributions of key HDT components on pathogen
killing, as well as pathogen evasion mechanisms. For example, an autophagy model may contain quantitative
relationship between bacterial load, mTOR, and autophagy. This will allow evaluations and predictions of
various mTOR inhibitors on Mtb clearance by autophagy.

Implementation and Applications of the QSP Modelling Framework

QSP modelling have successfully influenced various decision making processes at different stages starting from
discovery to late phase development in various therapeutic areas[16] and offer potential for the challenges
faced in translation and design of HDT (combination) treatments in Mtb infections. A QSP framework to
translate and optimize optimal HDTs should contain a combination of aforementioned model components
for PK of one or more (investigational) drugs, immune/host response and pathogen dynamics, including
their interactions. Depending on the type of HDT drug studied, QSP models may be parametrized and/or
adapted in specific ways, e.g., to capture the drug-specific parameters for PK, pathogen kill and immune
system effects, and induction of specific immune system effects. Various considerations and applications of
the HDT QSP modelling framework are discussed below.

Target Identification and Drug Discovery

QSP models integrate various host-pathogen interactions and drug PK/PD components; therefore, they can
readily provide assessment of target engagement upon stimulation or inhibition of certain target molecules
at various doses and affinities and its impact on overall treatment outcome. This allows evaluations of
the iterative process of hypotheses generation, designing new experiments, hypotheses validation and/or
generation of new hypotheses. This approach can be applied to evaluate known HDT targets and HDT
candidate molecules, to discover new HDT targets, or to discover and evaluate new HDT molecules. With
advances in technologies, applications of combining QSP modelling and machine learning approaches to
screen virtual drug compounds to enable discovery of drugs with optimal PK/PD characteristics are being
evaluated[106].

Translational Predictions

With increased complexity and innovation in design of new drugs within the last two decades, mechanistic
QSP models are increasingly being applied to inform translation of the results across different experimental
conditions and species[107,108]. The systematic incorporation of system-specific parameters not only for
various species, such as zebrafish, mice and humans, but also incorporation of differences between in vitro
systems and in vivo models, is crucial to enable translation towards clinical HDT treatment designs|77,86].
In some cases, i.e. for scaling from in vitro HFIM to humans, such scaling is already well studied[76],
whilst further studies are needed for the host’s immune response components[109]. Consolidating immune-
relevant differences between preclinical models and humans[109] may be challenging and resource intensive,
as there are varying strains of models used across different experiments depending on the objectives of
the experiments. On the other hand, the shown evolutionary conservation of the metabolic responses to
mycobacterial infection in human patients and mice and zebrafish animal models show that basic disease
symptoms such as wasting syndrome are not depending on species or varying strains[110]. Gene expression
analysis data across species may be used to inform parameters of expressions of genes responsible for certain
immune functions[111]. Such expression data studies can be used to predict metabolism in a whole-genome
metabolic network theoretical modelling approach in various model organisms such as zebrafish[112]. Factors
such as state or severity of infection, intensity of resistance, and sensitivity of drugs to bacterial strains (for
example between Mtb and Mm) may also be applied within the QSP framework.



Variability and Precision Medicine

The presentation and severity of TB is variable amongst patients, and thus treatment responses, especially to
HDTs, are variable. Many factors such as age, sex, genotypes, co-morbid conditions (HIV, type 2 diabetes)
play role in determining the outcome of the disease and treatment. Thus, considering these factors in the
QSP framework is very important. For example, known differences in PK and immune-response components
for HIV co-infected TB patients may be incorporated in the framework, and extrapolate results from studies
in TB patients to HIV-TB co-infected patients[113]. Many PopPK models have evaluated these factors’
impact on variability in PK of conventional anti-TB drugs[114], and thus can be included in QSP simula-
tions framework. In addition to external factors, considering immune-response relevant endotypes is also
important[115,116]. Technological advances within the last century enabled generation of large-scale data,
including omics data. The large-scale omics data may enable us to better understand the inter-individual
variations associated with the parameters of the QSP models[117,118]. For example, parameters, together
with inter-individual variations in them, describing the expression of baseline state of immune response com-
ponents within lymph nodes and blood were estimated using data from a flow cytometry analysis of blood
leukocytes and genome-wide DNA genotyping from 1000 healthy humans[117]. In addition, parameters,
together with inter-individual variations in them, describing fractions of various lymphocytes within tumour
microenvironment were informed using transcriptomics data from cancer patients.[117] Gene expression anal-
ysis of omics datasets from total of 443 TB patients enabled stratification of the patients into two groups.
One of the two groups was characterized by increased gene activity score for inflammatory response and
decreased gene activity score for metabolism-relevant pathways, and patients in this group showed slower
time to negative TB culture conversion and poor clinical outcome[115,116]. Similarly, gene expression data
can be used to include variability in the QSP models and inform outcome of certain HDT treatment.

Selection of Optimal Dosing Regimens and Combination Therapies

QSP models are also suitable to evaluate various combination therapies with optimal dosing regimen ef-
ficiently and can be especially valuable for difficult to treat diseases, such as TB. A QSP model enabled
simulations of multiple combination therapies and identified the most effective dual-drug combination for
the treatment of advanced castration-resistant prostate cancer where effectiveness of immunotherapy was
previously insufficient [119]. In the TB disease space, QSP modelling has recently been applied to pre-
dict patient outcome with intensive dosing regimen and to explore shorter treatment duration scenarios for
conventional anti-TB drug therapy[18]. Overall, the use of QSP modelling can serve as a valuable tool to
efficiently design and develop HDTs for treatment of TB.

Conclusions

HDTs offer a unique treatment strategy to combat Mtb infections, but are challenged by complex and
multiscale interactions between drug, host and pathogen. Several key mechanisms are of interest to be
exploited as HDTs but are facing challenges in translation towards clinically effective treatment strategies.
The combined use of multiple in vitro and in vivo experimental infection models can offer a more complete,
quantitative and predictive understanding of drug-host-pathogen interactions. This should be combined with
QSP modelling strategies that integrate data to enable translation towards patients and to help designing
optimal clinical treatment strategies for HDT's in combination with classical antibiotics.

Figures

Figure 1. The Host-Pathogen Interactions as Basis for Host-Directed Therapy Strategies for the Treatment
of Mtb Infections.



Initiation of the host innate immune response occurs shortly after inhalation of aerosols containing Mtb
bacteria and Mtb implantation in macrophages. Both resident and activated macrophages stimulates the
release of pro-inflammatory cytokines, such as TNF-a and IL-13, following phagocytosis and autophagy.
Antigen presenting cells (macrophages and dendritic cells) that drain into local lymph nodes activate CD4+
and CD8+ T-cell mediated adaptive immune responses. Antigen presenting cells also stimulate the release of
IL-12, which helps recruit additional CD4+ T-cells. CD4+ T-cells secrete IFN-y that stimulates macrophage
activation, IL-2, TNF-qa, and also IL-10 that helps balance the pro-inflammatory response by deactivation of
macrophages. CD8+ cells have cytotoxic activities. CD4+ T-cell secreted 1L-2 drives further proliferation
of CD4+ as well as CD8+ T-cells. Autophagic pathways start with parting of a section from endoplasmic
reticulum, the phagophore, followed by the elongation of phagophore with engulfment of Mtb, autophagosome
formation and maturation, and fusion of the autophagosome with lysosomes. Mtb activates mTORC1 and
thus inhibits autophagy, while mTORCI1 activates aerobic glycolysis. Intracellular cholesterol inhibits LC3,
Ca2+, and LAMP3, and thus inhibits autophagy mediated Mtb killing. Mtb activates HDAC pathway and
thus downregulates various genes responsible for innate and adaptive immune response.

Potential host-directed therapy strategies are presented in green text.
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