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Abstract

Remote sensing is a powerful tool for characterizing ecosystems at large scales. However, the relative importance of leaf traits

and canopy structure in characterizing the spatial distribution of functionally distinct tropical forests – the most diverse,

structurally complex, and heterogeneous ecosystems on Earth – remains under-explored. Using satellite-resolution LiDAR and

imaging spectroscopy metrics, we map spatial turnover in tropical forest function, examine the relative importance of leaf traits

and canopy structure, and analyze differences in aboveground carbon and demography. We find that leaf phosphorus, LMA, and

canopy height are key distinguishing properties of forest types, achieving accuracies of 85-96% and correspond to differences in

community growth and mortality rates. Our remotely sensed forest types align with ground-based forest definitions but enable

mapping of their entire extent. At 30 m resolution, our method can be used at large scales with spaceborne data to reveal

important differences in structure and function across tropical forests.

1



1 
 

Article Type: Method 1 

 2 

Mapping fine-scale variation in diverse tropical forests with 3 

distinct ecological dynamics requires few leaf traits and 4 

structural attributes 5 

 6 

Short Title: Mapping fine-scale tropical forest variation  7 

 8 

Elsa M. Ordway1,2*, Gregory P. Asner3, David F.R.P. Burslem 4, Simon L. Lewis5,6, Reuben 9 

Nilus7, Roberta Martin3, Michael J. O’Brien8, Oliver L. Phillips5, Lan Qie9, Nicolas R. Vaughn3, 10 

Paul R. Moorcroft1  11 

 12 
1Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, 13 

Cambridge, MA 02138, USA 14 
2Department of Ecology and Evolutionary Biology, UCLA, 612 Charles E. Young Drive South, 15 

Los Angeles, CA 90095, USA 16 
3Center for Global Discovery and Conservation Science, Arizona State University, 1001 17 

McAllister Ave., Tempe, AZ 85281, USA 18 
4School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, U.K. 19 
5School of Geography, University of Leeds, Leeds LS2 9JT, U.K. 20 
6Department of Geography, University College London, London. WC1E 6BT.  21 
7Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, MY 22 
8Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/ Tulipán s/n., E-28933 23 

Móstoles, Spain 24 
9School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, U.K. 25 

 26 

Elsa M. Ordway, elsa.ordway@gmail.com  27 

Gregory P. Asner, gregasner@asu.edu  28 

David F.R.P. Burslem, d.burslem@abdn.ac.uk 29 

mailto:elsa.ordway@gmail.com
mailto:gregasner@asu.edu
mailto:d.burslem@abdn.ac.uk


2 
 

Simon Lewis, S.L.Lewis@leeds.ac.uk  30 

Reuben Nilus, Reuben.Nilus@sabah.gov.my  31 

Roberta Martin, Roberta.Martin@asu.edu  32 

Michael J. O’Brien, mikey.j.obrien@gmail.com  33 

Oliver L. Phillips, O.Phillips@leeds.ac.uk  34 

Lan Qie, lqie@lincoln.ac.uk  35 

Nick Vaughn, nickvaughn@asu.edu  36 

Paul R. Moorcroft, paul_moorcroft@harvard.edu  37 

 38 

Statement of Authorship: EO and PM designed the study. DB, SL, RN, MO, OP, and LQ 39 

collected and provided the inventory plot data. GA and RM led the collection of remote sensing 40 

data and foliar trait data. RM and NV processed the remote sensing data and foliar chemical data. 41 

EO analyzed the output data, performed the statistical modeling work, and wrote the first draft of 42 

the manuscript.  43 

 44 

Data Accessibility Statement: Should this manuscript be accepted, the data supporting results 45 

will be archived in Dryad or Figshare, with a DOI that will be included at the end of the article.  46 

  47 

Abstract Word Count: 150 48 

Main Text Word Count: 4999 49 

Text Box Word Count: N/A 50 

Number of References: 68 51 

Number of Figures: 6 52 

Number of Tables: 0 53 

Number of Text Boxes: 0 54 

 55 

*Corresponding Author: Elsa M. Ordway, 26 Oxford Street, Suite 43, Cambridge, MA 02138; 56 

616-443-0141; e-mail: elsa.ordway@gmail.com 57 

 58 

mailto:S.L.Lewis@leeds.ac.uk
mailto:Reuben.Nilus@sabah.gov.my
mailto:Roberta.Martin@asu.edu
mailto:mikey.j.obrien@gmail.com
mailto:O.Phillips@leeds.ac.uk
mailto:lqie@lincoln.ac.uk
mailto:nickvaughn@asu.edu
mailto:paul_moorcroft@harvard.edu
mailto:elsa.ordway@gmail.com


3 
 

Abstract:  Remote sensing is a powerful tool for characterizing ecosystems at large scales. 59 

However, the relative importance of leaf traits and canopy structure in characterizing the spatial 60 

distribution of functionally distinct tropical forests – the most diverse, structurally complex, and 61 

heterogeneous ecosystems on Earth – remains under-explored. Using satellite-resolution LiDAR 62 

and imaging spectroscopy metrics, we map spatial turnover in tropical forest function, examine 63 

the relative importance of leaf traits and canopy structure, and analyze differences in aboveground 64 

carbon and demography. We find that leaf phosphorus, LMA, and canopy height are key 65 

distinguishing properties of forest types, achieving accuracies of 85-96% and correspond to 66 

differences in community growth and mortality rates. Our remotely sensed forest types align with 67 

ground-based forest definitions but enable mapping of their entire extent. At 30 m resolution, our 68 

method can be used at large scales with spaceborne data to reveal important differences in structure 69 

and function across tropical forests.  70 

 71 

 72 

 73 

 74 

 75 
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Introduction  78 

Tropical forests are the most biologically diverse biome on Earth (Myers 1988), encompassing an 79 

estimated 96% of all tree species (Corlett 2016). Through their differences in structure and 80 

functional traits, variation in species composition can directly influence ecosystem processes in 81 

tropical forests (e.g., Osborne et al. 2020). Tropical forest canopy structure and function vary 82 

geographically by climate (Givnish 1999), topography (Jucker et al. 2018), and edaphic conditions 83 

(Townsend et al. 2008; Hulshof & Spasojevic 2020), as well as different natural and anthropogenic 84 

disturbance histories and regimes (Chazdon 2003; Brando et al. 2019). However, comprehensive 85 

knowledge of tropical forest diversity remains largely limited to field studies that cover a small 86 

fraction of the biome. While networks of tropical forest inventory plots offer invaluable ground 87 

observations and insights into fine-scale mechanisms and processes, remote sensing data, 88 

increasingly available at spatial resolutions relevant to organisms, can be used to scale these 89 

insights to entire landscapes and regions, serving as powerful tools to measure and map forest 90 

function (Schimel et al. 2013; Jetz et al. 2016). 91 

 92 

Imaging spectroscopy (i.e., hyperspectral remote sensing) and light detection and ranging 93 

(LiDAR) offer capabilities for measuring, mapping, monitoring, and understanding tropical forest 94 

functional diversity, structure, vertical light environments, leaf traits, and aboveground carbon 95 

stocks beyond plot boundaries. These data can inform ecological understanding (Bongalov et al. 96 

2019; Draper et al. 2019), support conservation efforts (Asner et al. 2017), and constrain terrestrial 97 

biosphere models (Antonarakis et al. 2014). In the tropics, airborne imaging spectroscopy has 98 

recently been used to map patterns of diversity across forest communities in Amazonia (Féret & 99 

Asner 2014; Draper et al. 2019) and Borneo (Bongalov et al. 2019), and spectral measures of 100 
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tropical forest α and β diversity have been shown to correlate with traditional taxonomically-based 101 

estimates of these quantities.  102 

 103 

Airborne imaging spectroscopy measurements have also been used to characterize the leaf traits 104 

of tropical forest canopies and identify relationships between these traits and underlying 105 

environmental drivers including soil biogeochemistry, topography, hydrology, and climate. For 106 

example, Asner et al. (2016, 2017) identified relationships between imaging spectroscopy derived 107 

estimates of foliar traits and variation in geology, topography, hydrology, and climate across the 108 

Peruvian Amazon, and sorted the region into 36 distinct forest types using hierarchical clustering. 109 

In Malaysia, airborne imaging spectroscopy and LiDAR data have been used to demonstrate a 110 

strong influence of fine-scale topography on forest structure, composition and diversity (Jucker et 111 

al. 2018b), and role of geomorphology on topographic controls on canopy foliar traits across larger 112 

elevation gradients (Chadwick & Asner 2020). In a similar manner, LiDAR measurements have 113 

been used to evaluate variation in tropical forest height and carbon stocks with forest succession 114 

(Dubayah et al. 2010), fine-scale topography (Muscarella et al. 2020), and spatial variation in 115 

vertical leaf area density profiles (Detto et al. 2015).  116 

 117 

The recent surge in ecologically orientated satellite remote sensing missions, including the 118 

operational PRISMA (ESA 2021b) and DESIS (GAC & TBE 2021) spectrometers, NASA’s GEDI 119 

spaceborne LiDAR (Dubayah et al. 2020b, a, c), and the planned NASA SBG (NASA JPL 2021) 120 

and European Space Agency CHIME (ESA 2021a) satellite-based spectrometers, make this a 121 

critical moment to assess the relative importance of forest structure and canopy leaf traits for 122 

characterizing tropical forest function. These instruments will overcome airborne campaign 123 
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limitations, which are expensive and restricted in spatial extent, by providing extensive coverage 124 

over tropical forest regions. However, the data from these sensors will be at spatial resolutions of 125 

~30 m, far coarser than the 1-5m resolution data used in the studies described above. In addition, 126 

the above-mentioned studies have demonstrated the capacity to map spatial variation in tropical 127 

forest species composition and functional and structural diversity using remote sensing data. 128 

However, the relative importance of different leaf traits and forest structural attributes in 129 

determining differences between distinct tropical tree communities remains largely unknown. In 130 

this study, we combine imaging spectroscopy-derived leaf trait measurements with lidar-derived 131 

measurements of canopy structure to 1) identify, characterize, and map structurally and 132 

functionally distinct tropical forests across two landscapes in Malaysian Borneo; 2) examine the 133 

feasibility of conducting these analyses at resolutions corresponding to new satellite missions; 3) 134 

determine the key leaf traits and canopy structural attributes that distinguish different forest types; 135 

and 4) integrate inventory plot data to explore differences in forest dynamics across mapped forest 136 

types. 137 

 138 

Materials and Methods  139 

Study Landscapes 140 

The study landscapes are in Sabah, Malaysian Borneo, encompassing forests in Danum Valley 141 

with the tallest trees in the tropics (Shenkin et al. 2019), and nutrient-poor kerangas forests with 142 

stunted canopies and unique floristic composition (Newbery 1991). The first landscape is Sepilok, 143 

a 4,500 ha reserve of lowland mixed dipterocarp forests spanning varying topography and soil 144 

nutrients (Fox 1973, Nilus 2004, Dent et al. 2006; Jucker et al. 2018b). The second landscape is 145 
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Danum, a 44,000 ha conservation area with predominantly lowland, intact tropical rainforest. In 146 

this study, we focus on the 50-ha ForestGEO inventory plot located in the eastern part of Danum.  147 

 148 

Both landscapes exhibit differences in structure, function, and composition that correspond to 149 

underlying soil and geologic substrate (Fox 1973, Nilus 2004, Dent & Burslem 2016; Coomes et 150 

al. 2017; Jucker et al. 2018b). Sepilok is characterized by three forest types: alluvial forests on 151 

fertile ultisols along alluvial flats and gentle slopes; sandstone forests on well-drained, nutrient-152 

poor ultisols along steep ridges; and kerangas forests that dominate acidic, extremely nutrient-153 

poor podosols along lower dip slopes of cuesta landforms (DeWalt et al. 2006; Dent & Burslem 154 

2016). Total P, nitrate, and base cations are significantly higher in alluvial soils than in the 155 

sandstone and more acidic kerangas forest soils, influencing community differences in species 156 

composition, leaf traits, and stand structure (Dent et al. 2006; Dent & Burslem 2009). An earlier 157 

field study also identified mudstone hills within the alluvial forests as being further distinguishable 158 

in terms of soil chemistry and plant growth (Nilus 2004), although mudstone and alluvial areas in 159 

Sepilok are typically characterized as a single forest type (e.g., Coomes et al. 2017; Jucker et al. 160 

2018b). 161 

 162 

Airborne remote sensing data 163 

To measure forest structure and foliar traits, we used co-aligned LiDAR and imaging spectroscopy 164 

data collected by the Global Airborne Observatory (GAO) in April 2016 (Asner et al. 2012). We 165 

examined ten forest structure variables and canopy foliar characteristics that are strongly linked to 166 

ecosystem function and have demonstrated measurability with high accuracy using airborne 167 

remote-sensing techniques (Table S1, Supplementary Figure S1). Variation in canopy structure 168 
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was characterized using five metrics: 99th percentile of total canopy height (Max H, m), leaf area 169 

index (LAI, m2 m-2), the peak height of LAI (Hpeak LAI, m), a measure of canopy architecture 170 

indicating the vertical distribution of plant foliage (P) relative to the total canopy height (P:H ratio), 171 

and the fraction of canopy cover taller than 20 m height above the ground (Cover20, %). Variation 172 

in canopy leaf traits were analyzed based on differences in leaf mass per area (LMA, g DM m-2), 173 

foliar nitrogen (N, %) and phosphorus (P, %) concentrations, and foliar N:P ratios. To assess 174 

differences in maximum photosynthetic capacity, Vcmax was estimated from foliar N and P 175 

concentrations using the equation in Table 3, model 1 from (Walker et al. 2014). To examine the 176 

feasibility of conducting these analyses at coarser resolutions, we resampled data and ran analyses 177 

at resolutions ranging from 16 m2 - 40,000 m2. LiDAR and imaging spectroscopy data and 178 

processing are described in Supplementary Methods.  179 

 180 

Characterizing functionally distinct forests 181 

We mapped forest types across Sepilok and Danum. At Danum, we restricted our analysis to the 182 

50-ha ForestGEO plot location and a 1-km buffer around the plot. To characterize functional and 183 

structural diversity across all pixels, we 1) conducted a principal component analysis (PCA) to 184 

reduce dimensionality of all ten canopy leaf traits and structural attributes (hereafter canopy 185 

properties), and 2) ran a k-means cluster analysis (Hartigan & Wong 1979) on the first two 186 

principal components to categorize pixels into distinct functional communities. PCA and k-means 187 

cluster analysis data processing is described in Supplementary Methods.  188 

 189 

The primary metric for identifying the appropriate number of clusters (k) was the gap statistic 190 

(Gapk), which defines the number of clusters based on the first local and global maxima (Tibshirani 191 
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et al. 2001). We also evaluated output for k = ks + 1 and for k = ks – 1, where ks represents the 192 

number of clusters selected using Gapk. Two secondary cluster metrics were also considered: 1) 193 

the elbow approach using the within group sum of squares (Wk), and 2) the between cluster sum 194 

of squares (BSS) divided by the total sum of squares (TSS). A higher value of BSS/TSS indicates 195 

improved fit of the cluster analysis to the data (Milligan & Cooper 1985). Because BSS/TSS 196 

increases monotonically as k increases, we evaluated the k at which BSS/TSS increases flattened, 197 

in addition to Gapk and the Wk elbow approach (Tibshirani et al. 2001).  198 

 199 

We visually evaluated cluster results against inventory plot data from forest ecosystems that have 200 

been studied extensively in the field and exhibit clear differences in structure and function. 201 

Significant differences in canopy properties between clusters were calculated based on one-way 202 

ANOVAs using the aov and TukeyHSD functions in R. To explore the minimum number of canopy 203 

properties required to capture differences in forest types, we evaluated cluster results using only 204 

LiDAR variables (structural attributes), only imaging spectroscopy variables (leaf traits), and 205 

reduced combinations of canopy properties. To evaluate these reduced models, we calculated 206 

overall accuracy as the proportion of pixels mapped the same as the full 10-variable model.  207 

 208 

Inventory plot data  209 

To evaluate cluster analysis performance, we compared our forest functional composition maps to 210 

inventory plot data at Danum and Sepilok. Our plot dataset consisted of nine existing 4-ha forest 211 

inventory plots distributed across alluvial (n = 3), sandstone (n = 3), and kerangas (n = 3) forests 212 

at Sepilok, and one 50-ha plot at Danum. Data from the nine 4-ha Sepilok plots and the Danum 213 

50-ha plot were from the ForestPlots.net online repository (Lopez-Gonzalez et al. 2009, 2011) and 214 
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the ForestGEO online repository (ForestGEO 2021), respectively. The datasets include stem 215 

diameter measurements and taxonomic identification to species level for every tree ≥ 1 cm and ≥ 216 

5 cm in diameter in the ForestGEO and ForestPlots.net plots, respectively. Census years from each 217 

plot were as follows: alluvial – 2001, 2009, 2014; sandstone – 2001/03, 2008/09, 2013/14; 218 

kerangas – 2001, 2008/10, 2014/15; Danum – 2011/15, 2019. The GAO airborne campaign in 219 

Sabah was conducted in 2016. 220 

 221 

Observed differences in ecosystem dynamics 222 

In lieu of direct measurements of ecosystem function at the study locations (e.g., net primary 223 

productivity), we quantified differences in three related ecosystem dynamics: aboveground carbon, 224 

growth, and mortality. We compared stand-level growth and mortality rates calculated from forest 225 

inventory data and remotely sensed estimates of aboveground carbon density (ACD, Mg C ha-1) 226 

at plot locations within the inventory plots, and across all mapped pixels within each forest type to 227 

examine differences in aboveground carbon beyond the plots. ACD at 30 m resolution was 228 

estimated from the GAO top-of-canopy height (TCH) and Cover20 data following (Jucker et al. 229 

2018a), described in (Asner et al. 2018). The method involves estimating ACD from a network of 230 

0.25 to 1-ha field plots using the BIOMASS workflow described in (Réjou‐Méchain et al. 2017) 231 

in conjunction with the Chave et al. (2014) pantropical biomass allometry. Equations from (Asner 232 

& Mascaro 2014) were used to estimate ACD from the TCH data, modified based on (Jucker et 233 

al. 2018a) to incorporate Cover20 as a proxy for stand-level basal area. Annual relative DBH 234 

growth rates and annual mortality rates were calculated from plot data (stems ≥ 10 cm) following 235 

(Condit et al. 2006). When calculating growth rates, we excluded trees with broken or resprouted 236 
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stems and stems that grew > 7.5 cm yr-1 or shrunk > 25% of their initial DBH following (Condit 237 

et al. 2006). Negative growth rates < 25% of initial DBH were converted to zero.  238 

 239 

Results 240 

We identified between two and four distinct forest types in Sepilok (Figure 1). The Gapk metric 241 

identified three clusters (BSS/TSS = 68.5%). However, the Wk elbow and BSS/TSS metrics suggest 242 

that Sepilok can also be characterized as two (BSS/TSS = 51.9%) or four (BSS/TSS = 76.7%) 243 

distinct forest types based on the magnitude of the decline in Wk, and gains in BSS/TSS before the 244 

values of both metrics level-off with increasing k (Figure S4-S5). Correspondence between 245 

mapped forest type boundaries and inventory plots show that the series of clustered forest types 246 

align closely with existing forest community definitions (Figure 1). Cluster analysis results for 247 

differing values of k indicate a nested hierarchy of forest types at Sepilok: the highest level (k = 2) 248 

distinguished the alluvial from the sandstone and kerangas forest communities; k = 3 distinguished 249 

sandstone forests from kerangas forests; and k = 4 partitioned the alluvial forest into two forest 250 

types, revealing the less-well known mudstone community as distinct from the interspersed 251 

alluvial forest. 252 

 253 

At Danum, the Gapk metric identified a single cluster (BSS/TSS = 0.0%); however, the Wk elbow 254 

BSS/TSS methods both indicate that Danum can be characterized as three distinct forest types 255 

(BSS/TSS = 61.3%; Figure 1; Figure S4-S5). Two of these forest types were found within the 50-256 

ha plot (white rectangle in Figure 1). The plot is dominated by one forest type (Danum 2), although 257 

the northeast corner was identified as distinct (Danum 1) when k = 2 and k = 3 (Figure 1; Figure 258 

S8).  259 
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 260 

Distinguishing characteristics of forest types  261 

The first principal component (PC1) corresponded to leaf economic spectrum traits (LMA, N, P). 262 

The second principal component (PC2) reflected variation in canopy stature (Max H, Cover20) and 263 

architecture (P:H), as well as photosynthetic capacity (Vcmax). These patterns were consistent at 264 

Danum and Sepilok (Figure 2; Figure S6). LAI explained little variation across the forest types, 265 

with weak loading values (PC3 at Sepilok, PC4 at Danum; Figure S6). Figure 3 shows variation 266 

in canopy properties across forest types, shown for the largest number of forest types identified at 267 

each landscape (i.e., k = 3 and k = 4; see Figures S7-S9 for results from other values of k). The 268 

sandstone and kerangas forests had the lowest mean foliar nutrient concentrations and 269 

photosynthetic capacities (Figures 3 – Foliar N, Foliar P, Vcmax). Despite having lower canopy 270 

height than other forest types, the sandstone and kerangas forests had the highest fraction of 271 

canopy cover above 20 m, high P:H values, and the highest peak height of LAI (Figure 3 – Cover20, 272 

P:H, Hpeak LAI).  273 

 274 

Strong gradients in LMA, N, and P leaf traits were observed across all forest types. The highest 275 

foliar nutrient concentrations and the lowest average LMA were observed in the three Danum 276 

forest types, and the Sepilok mudstone and alluvial forests (Figure 3 – LMA). These patterns were 277 

consistent across different values of k (Figures S7-S8). Average leaf N and P in the mudstone 278 

forest were equivalent to or higher than the alluvial forest, yet the mudstone forest had significantly 279 

lower Vcmax. Significantly lower maximum canopy heights (max H) and greater foliage density 280 

near the ground (lower P:H) also distinguished the mudstone and Danum 1 forests from the alluvial 281 

and Danum 2-3 forests. The Danum 1 forest (when k = 2 or 3) was structurally similar to the 282 
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mudstone forest; however, the two communities differed in leaf economic spectrum traits (Figures 283 

3 – LMA, Foliar N, Foliar P).  284 

 285 

While average canopy LAI was similar across communities (Figure 3 – LAI), ranging from 5.5 to 286 

6.3, (coefficient of variation (CV) = 0.05), the average height of maximum LAI (Hpeak LAI), canopy 287 

architecture (P:H), and canopy cover at 20 m (Cover20) all exhibited much greater variation across 288 

communities (CV = 0.48; 0.12; 0.25 respectively). Vertical LAI patterns further illustrated 289 

differences in structure across forest types despite similar total LAI (Figure 4, Figure S10), with 290 

strong clumping in the understory and the upper canopy at the alluvial and Danum forests. Vertical 291 

LAI profiles indicated less height heterogeneity in the sandstone and kerangas forests (Figure 4). 292 

Maximum canopy height, which varied significantly across clusters, was correlated with Vcmax 293 

between the different forest types (R2 = 0.72, p = 0.017) and at the pixel scale (R2 = 0.24, p < 294 

0.0001) (Figure S9).  295 

 296 

Aboveground carbon, an emergent property of ecosystem function, differed significantly across 297 

clustered forest types, with high values on average in sandstone forests and widely varying values 298 

in the alluvial and Danum 2-3 forest types (Figure 5a). Aboveground carbon density within the 299 

inventory plots generally corresponded to aboveground carbon distributions derived from the 300 

entire forest type (Figure 5a). The one exception was the alluvial forest. When three forest types 301 

were distinguished at Sepilok (k = 3), the alluvial forest inventory plot had significantly higher 302 

aboveground carbon than the cluster-derived alluvial forest extent (Figure 5a, p < 0.001). However, 303 

when the mudstone and alluvial forests were differentiated (k = 4), the inventory plot aboveground 304 
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carbon distribution was comparable to aboveground carbon in the clustered alluvial forest extent, 305 

while the mudstone forest encompassed significantly lower aboveground carbon densities. 306 

 307 

Differences in annual relative growth and mortality rates were also observed across forest types 308 

within the inventory plots (Figure 5b). Growth rates differed significantly across all forest types, 309 

corresponding inversely to mean aboveground carbon at the sandstone (232 MgC ha-1), alluvial 310 

(223 MgC ha-1), and Danum 50-ha (194 MgC ha-1) inventory plots (Figure 5a-b). The kerangas 311 

forest did not follow this trend, exhibiting an intermediate plot-level growth rate despite lower 312 

average aboveground carbon (180 MgC ha-1). Mortality rates were similar in the alluvial and 313 

Danum 50-ha plots, and significantly higher than the mortality rates in the sandstone or kerangas 314 

plots.  315 

 316 

The relative importance of leaf traits and structural attributes 317 

Cluster analyses conducted with only structural attributes, only leaf traits, or reduced combinations 318 

of leaf traits and structural attributes, indicated that leaf P, LMA, maximum canopy height and 319 

Cover20 are critical for capturing the observed forest types (Figure 6). Clustering with LMA, P, 320 

Cover20, and maximum height resulted in similar forest types to those identified when ten canopy 321 

properties were used (overall accuracies (OA) of 96.0% and 86.0% for k = 2 and k = 4 respectively) 322 

at Sepilok (Figure 6a; Figure S11a), as well as higher BSS/TSS values at both Sepilok (Figure 323 

S12a) and Danum (Figure S12b). At Danum, LMA, P, and Cover20 alone yielded the strongest 324 

similarity to the cluster results with all ten variables (OA = 88.0%; Figure 6b, Figure S11b). The 325 

highest overall accuracy for k = 3 at Sepilok was achieved with the three leaf economic spectrum 326 

traits, equal to 85.9%, although the combination of maximum height, LMA and P (OA = 84.8%), 327 
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and just LMA and P (OA = 84.7%) yielded similar results (Figure 6a). We were unable to obtain 328 

the observed patterns using structural attributes alone. The inclusion of leaf P improved output in 329 

all cases in terms of correspondence with plot locations and noise (speckling) reduction.  330 

 331 

Discussion 332 

Our analysis of LiDAR and imaging spectroscopy data at satellite-scale resolution reveals that a 333 

few key remotely sensed canopy properties – foliar P, LMA, Max H, Cover20 – can be used to 334 

successfully identify ecologically-distinct forest types at two tropical forest sites in Malaysian 335 

Borneo. The forest types identified using these remotely sensed traits closely align with forest 336 

communities defined from field-based floristic surveys and plot-based measurements of their 337 

growth and mortality rates. However, our approach enables mapping of their entire extent and 338 

reveals important structural and functional variation within areas characterized as a single forest 339 

community in previous studies. The ability to do so using remote sensing measurements at 30 m 340 

resolution means that our method can be applied to emerging spaceborne LiDAR and imaging 341 

spectroscopy data to reveal important differences in structure and function across the world’s 342 

tropical forests.  343 

 344 

Nested functional communities revealed  345 

The cluster analyses at Sepilok and Danum revealed nested distinctions between forest types. The 346 

Sepilok mudstone forest was nested, both spatially and statistically, within the alluvial forest type. 347 

For k = 2 and 3, the two forests were aggregated as a single forest type, although k = 4 revealed 348 

forests with significant differences in leaf economic spectrum traits and canopy structure (Figure 349 

3). This finding is consistent with independent field-research at Sepilok. Mudstone hills were first 350 
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identified as distinct from surrounding alluvial forests by (Nilus 2004; Nilus et al. 2011), who 351 

found differences in soil cation exchange capacity, pH, and nutrient concentrations that translated 352 

into intermediate plant growth rates in mudstone forests, between higher and slower growth rates 353 

in alluvial and sandstone forests respectively. More recently, (Bartholomew et al. in press) found 354 

higher clay fractions and higher exchangeable Mg, Ca, and K at varying soil depths in Sepilok 355 

mudstone forest compared to alluvial forests. In addition to differences in foliar N and P 356 

concentrations, consistent with our results, (Bartholomew et al. in press) found that leaf Ca 357 

concentrations were higher in mudstone forests than alluvial, sandstone, and kerangas forests.  358 

 359 

Our findings also reveal that mudstone forests have much lower aboveground carbon than the 360 

intermingled low-lying alluvial forests. The lower aboveground carbon may be due to lower soil 361 

nutrients and higher acidity, as well as differences in hydrology. (Born et al. 2014, 2015) found 362 

that differences in growth and mortality responses to flooding at seedling and sapling stages are 363 

relevant to the community assembly of species in Sepilok mudstone and alluvial forests. High 364 

mortality was observed for some species in alluvial areas immediately after ephemeral flooding 365 

events, suggesting that soil water relations might play a significant role in differential survival of 366 

forest specialist seedlings and saplings. However, for saplings that survive to later growth stages, 367 

the higher water availability in alluvial forests may be an important contributing factor to the tall 368 

tree heights that we observed from the LiDAR data, which contributes directly to higher 369 

aboveground carbon densities in alluvial forests. Because the mudstone forests in Sepilok are also 370 

generally closer to anthropogenic forest edges than alluvial forests, edge effects, which have been 371 

shown to significantly influence large tree mortality and lower aboveground carbon, cannot be 372 

ruled out (Laurance et al. 2000; Qie et al. 2017; Ordway & Asner 2020).  373 
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 374 

At Danum, our results indicate that the region is comprised of one to three forest types that differ 375 

in canopy height, vertical structure, LMA, and foliar N and P. Two of these forest types (Danum 376 

1 and 2) are found within the Danum 50-ha plot (Figure 1). Interestingly, this finding of two 377 

distinct forest types within the 50-ha plot aligns with recently identified differences in species 378 

composition and soil characteristics between the northeast corner and the remainder of the 50-ha 379 

plot (Cardon Pocovi 2019). The northeast corner (Danum 1) has lower species richness, diversity, 380 

stem density, and basal area compared to the rest of the plot (Danum 2), linked to less acidic soils 381 

with a higher cation exchange capacity and higher Ca, Mg, and Ni content (Cardon Pocovi 2019).  382 

 383 

The implications of k selection  384 

Rather than making an a priori decision about the number of clusters (k), we deliberately explored 385 

the capacity of remotely sensed data to reveal variation in ecological communities. Because the 386 

choice of k directly influences analysis outcomes, the method used for selecting k is important. 387 

The Gapk and Wk elbow methods yielded different optimal numbers of clusters for Danum (1 versus 388 

3 respectively). Similarly, a comparison of results based on k = 2, 3, and 4 in Sepilok revealed 389 

ecologically meaningful and interesting structural and functional differences in forest 390 

communities, consistent with a general hierarchical organization of forest community types at this 391 

site. In both cases, Gapk pointed to an optimal number of clusters, and the reality of graduated 392 

transitions between forest communities on the ground at both sites emerged from our results when 393 

evaluating possible alternative values of k. Applying this methodology at broader scales will 394 

require similar decisions about k, which will either require user input, or the development of robust 395 
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automated algorithms for selecting the value of k. Our results indicate that the exploration of traits 396 

that aggregate or separate communities as k changes is a valuable exercise.  397 

 398 

Linking remote sensing and ground-based studies 399 

Our finding that aboveground carbon estimates derived from within plot boundaries corresponded 400 

to estimates derived from larger mapped forest areas suggests that the inventory plots in this study 401 

and the corresponding mapped forest types capture similar landscape-scale patterns. We found 402 

significant differences in aboveground carbon and growth and mortality rates between the mapped 403 

forests. The Sepilok alluvial and Danum 2 forest plots had similar aboveground carbon on average 404 

(Sepilok alluvial: 231 Mg C ha-1, Danum 2: 203 Mg C ha-1). Both forest types are dominated by 405 

large and fast-growing dipterocarp species, although the plots exhibited different stand-level 406 

relative growth rates. Lower LMA and significantly higher leaf P and N, as well as a lower N:P in 407 

Danum 2 compared to the Sepilok alluvial forest are consistent with the higher observed growth 408 

rates. Similar mortality rates, despite varying growth, suggests high turnover rates in both forests, 409 

perhaps with a greater influence of exogenous disturbance processes on mortality in the alluvial 410 

forest (Margrove et al. 2015). The lack of structural differences between Danum 2 and alluvial 411 

forests, despite significant differences in all leaf traits, suggests a strong control of trait driven 412 

differences on growth even under similar vertical light environment conditions.  413 

 414 

Higher aboveground carbon corresponded to lower mortality rates, except at the kerangas forest. 415 

These kerangas forests, which had the highest LMA, lowest foliar P and N, and the lowest plot-416 

level aboveground carbon density (186 Mg C ha-1), are known to have higher stem densities, lower 417 

canopy heights, and long-lived leaves (Fox 1973, Dent et al. 2006; Jucker et al. 2018b), suggesting 418 
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well-developed strategies for nutrient retention (Turner et al. 1993; Turner 1994). In contrast, the 419 

Sepilok sandstone forests, comprised of slow-growing dipterocarp species (Dent & Burslem 2009, 420 

2016), had the highest median aboveground carbon density (236 Mg C ha-1), with higher foliar P 421 

and N, and lower LMA. Despite significant differences in aboveground carbon and demography, 422 

the kerangas and sandstone forests did not differ in their LAI or canopy architecture (P:H); 423 

although, maximum height, Cover20, and Hpeak LAI were significantly higher in the sandstone forest. 424 

The taller canopy and lower leaf nutrient concentrations are consistent with the low growth rate in 425 

the sandstone forest, indicating a slow-growth strategy yielding larger trees and higher 426 

aboveground carbon stocks. Similar LAI between the sandstone and kerangas forests, despite 427 

differences in ecosystem dynamics, highlights a need to account for differences beyond LAI when 428 

scaling processes from leaves to ecosystems.  429 

 430 

Remotely sensed metrics beyond LAI 431 

LAI is considered one of the most important ecophysiological attributes of vegetation, and is 432 

widely used in terrestrial ecosystem and biosphere models to upscale estimates of leaf-level 433 

processes to ecosystem scales and model land atmosphere interactions (Jarvis & McNaughton 434 

1986; Bonan et al. 1993). While there is significant variation in LAI between the world’s major 435 

biomes (Fang et al. 2019), we found that community scale differences in LAI across lowland 436 

tropical forests in this study failed to capture important variation in canopy architecture, and thus 437 

likely important differences in vertical light environments, between forest types. Instead, our 438 

findings emphasize the importance of using additional LiDAR-derived metrics – maximum height, 439 

Cover20, P:H, and Hpeak LAI – and leaf traits to identify differences in forest canopy structure and 440 

function.  441 
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 442 

Previous studies have emphasized the importance of the distribution of leaf area vertically for 443 

many canopy processes since the total amount of leaf surface area and its vertical organization can 444 

vary independently (Wu et al. 2000; Frolking et al. 2009; Shugart et al. 2010).  Parker (2020) 445 

suggested that total LAI may not be directly relevant for many processes in ecosystems beyond 446 

LAI of three. Our findings provide additional evidence that vertical foliar distributions may be 447 

more important than the absolute amount of leaf area for characterizing differences across 448 

ecosystems.  449 

 450 

Forest communities revealed by the cluster analyses were distributed along the leaf economic 451 

spectrum. On one end of the spectrum, the Danum 1 and 2 forests exhibited high nutrient 452 

concentrations and low LMA, while the sandstone and kerangas forests exhibited low nutrient 453 

concentrations and high LMA (Figure 5 and S6). Differences in forest structure varied across forest 454 

communities in ways that were orthogonal to the variation in leaf economic spectrum traits. Our 455 

PCA findings are consistent with the growth-survival and stature-recruitment (longevity-456 

reproduction) tradeoff hypotheses (Díaz et al. 2016; Rüger et al. 2020). Interestingly, variation in 457 

Vcmax across communities exhibited significant correlation with stature (max H), which somewhat 458 

complicates the distinction between growth and stature tradeoffs (Figure S9). Bartholomew et al. 459 

(in press) found that, in Sepilok, variation in Vcmax and LMA was more related to nutrient 460 

availability than tree height, suggesting limited plasticity with changes in light availability and that 461 

responses to light availability in these ecosystems are likely constrained by nutrient availability. 462 

Importantly, we were able to detect and map these patterns at 30 m resolution, which will be 463 

available with spaceborne data. Since the main axes of variation in canopy properties correspond 464 
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to quantities that are measurable from spaceborne LiDAR and imaging spectroscopy, our approach 465 

offers a framework for large-scale mapping of functionally distinct tree communities that can be 466 

employed across highly diverse tropical forest ecosystems at regional and global scales. 467 

 468 

Importantly, leaf P and LMA were critical for mapping functionally distinct tropical forests. 469 

Maximum canopy height and the fraction of canopy cover taller than 20 m were important for 470 

distinguishing forest types, although variation in structure alone was insufficient to capture 471 

observed differences in forest types. The accurate mapping of leaf P and LMA using imaging 472 

spectroscopy data from spaceborne sensors will thus be essential for ecological applications. Our 473 

remote sensing-based results re-affirm findings from field studies and yield new insights into the 474 

spatial turnover of canopy structure and functional traits, and the potential to reveal unstudied 475 

ecological communities across the tropics. In doing so, our results underscore potential synergies 476 

between ground-based and remote-sensing ecological analyses, whereby landscape-scale remote 477 

surveys can efficiently pinpoint locations that can be targeted as high priority for discovery-478 

oriented fieldwork and plot measurements.  479 
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Tables & Figures 678 

 679 

Figure 1. Results from PCA and k-means clustering of 10 variables across forest ecosystems in 680 
Sepilok Forest Reserve for k = 2, 3, and 4, and in Danum Valley Conservation Area around the 681 
50-ha ForestGEO plot for k = 2 and 3. The partitioning of the alluvial forest into alluvial and 682 
mudstone forest types is revealed with k = 4. No Data indicates omitted pixels and pixels that 683 
were cloud, cloud shadow, and water masked.  684 
 685 
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 686 

 687 
 688 
Figure 2. The first two loadings from the principal component analysis at Sepilok (a-c) and 689 
Danum (d). (a-c) illustrate the partitioning of pixels into k = 2, 3, and 4 clusters at Sepilok. (d) 690 
illustrates k = 3 clusters at Danum.   691 
 692 
 693 
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 694 
Figure 3. Trait distributions by cluster for Sepilok k = 4 and Danum k = 3. Forest communities 695 
are ordered based on their median LMA to illustrate differences in traits for communities that 696 
vary along the leaf economics spectrum. Identical letters represent clusters where there is no 697 
significant difference between forests based on one-way ANOVA tests (p < 0.01). ** = traits that 698 
varied significantly between all seven forest types. * = traits that varied significantly between at 699 
least five forest types.  700 
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 701 
Figure 4. Vertical LAI profiles for all pixels within each inventory plot (a) and forest community 702 
identified based on k = 3 clusters at Danum and k = 4 clusters at Sepilok (b).  703 
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 704 
Figure 5. (a) Aboveground carbon density for each field inventory plot (solid line) compared to 705 
aboveground carbon for the entire forest type based on cluster results where k = 1 for Danum and 706 
k =3 for Sepilok (dotted line) and k = 3 for Danum and k = 4 for Sepilok (dashed line). (b) 707 
Annual relative growth (grey) and mortality (black) rates for each forest type calculated from 708 
forest inventory plot data. Identical letters represent inventory plots with no significant 709 
difference in terms of carbon, mortality rates, and growth rates respectively, based on one-way 710 
ANOVA tests (p < 0.01). 711 
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 712 
Figure 6. Change in overall accuracy for reduced k-means clustering models using structural 713 
variables (purple), leaf trait variables (orange), and combinations of structural and leaf trait 714 
variables (blue) for k = 2, 3, and 4 for Sepilok and k = 3 for Danum. All are compared to the full 715 
10-variable k-means clustering analysis for Sepilok (A) and Danum (B). LES: leaf economic 716 
spectrum. 717 
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Supplementary Methods 

Airborne remote sensing data and processing 

LiDAR data were collected at a minimum pulse density of 1.14 pulses m-2 (4.5 returns m-2 in 

forested regions) and processed to top-of-canopy height (TCH, m) at 2 m resolution using the 

LAStools software suite (Rapidlasso, GmbH, Gilching, Germany). Using the LiDAR top-of-

canopy height (TCH) data, maximum height was calculated as the 99th percentile of TCH for every 

resampled 30 m pixel. The 2 m TCH data was also used to calculate the fraction of each 30 m 

resolution pixel that exceeded 20 m, known as Cover20 (Coomes et al., 2017; Jucker et al., 2018). 

Canopy cover at or above 20 m aboveground correlates with plot level basal area in the region 

(Coomes et al., 2017). Vertical LAI profiles, estimated from the LiDAR data using the spherical 

theoretical leaf angle distribution method described in (Detto et al., 2015), and binned vertically 

every 2 meters, were used to identify the height aboveground where maximum (i.e., peak) LAI 

occurred. We calculated the P:H ratio at 5 m resolution using the method described in (G. P. Asner 

et al., 2014), where P refers to the height aboveground at maximum canopy volume within the 5 

m pixel resolution, and H is the 99th percentile of total canopy height. Areas with high P:H values 

correspond to forests with foliage vertically partitioned high in the canopy, while low P:H values 

indicate foliage vertically partitioned nearer to the ground. 

 

Imaging spectroscopy data were collected at 4 m ground-level resolution using a visible to 

shortwave (VSWIR) imaging spectrometer that measures spectral radiance in 427 channels at 5 

nm bandwidths from 350-2485 nm. Radiance data were averaged to 10 nm bands, atmospherically 

corrected using the ACORN-6LX software, and transformed to apparent surface reflectance. After 

averaging the radiance data to 10 nm bands, the ACORN-6LX atmospheric correction software 

was used to transform the imaging spectroscopy radiance data to apparent surface reflectance 
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(Imspec LLC, Glendale, CA USA). Each study site was processed through ACORN using mean 

flight conditions (elevation, collection altitude, sensor and solar view angles, and time) specific to 

that site.  

 

Crown-level foliar chemical traits and LMA were estimated by linking spectral observations with 

field-based measurements of foliar characteristics (Martin et al., 2018), summarized here. 

Individual trees identified as visible within the imaging spectroscopy reflectance data were 

sampled across 13 field locations in Sabah, including 13 crowns in the kerangas forest, 35 crowns 

in the alluvial forest, 14 crowns in the sandstone forest, and 76 crowns in Danum Valley (Table 

S1). Mature top-of-canopy leaf samples were collected from at least two fully sunlit branches of 

each tree. Leaf samples were scanned, weighed, and dried for at least 72 hours before dry mass 

(DM) was measured. Leaf mass per area (LMA) was calculated as g DM m-2.  Detailed descriptions 

of chemical analysis protocols, standards, and instruments used to extract total element 

concentrations of N and P are described in (Gregory P. Asner et al., 2014; Gregory P. Asner & 

Martin, 2011, 2016).  

 

To ensure accurate comparison between laboratory measurements of N, P, and LMA and the 

corresponding airborne spectroscopy data, the spectral data were restricted to fully sunlit portions 

of tree crowns. After applying a hand-generated cloud and cloud-shadow mask, spectral data were 

filtered based on a 2 m height requirement to exclude bare ground and non-forest vegetation, and 

a Normalized Difference Vegetation Index (NDVI) threshold of ≥ 0.75 to ensure sufficient foliar 

cover for pixels included. Spectral bands in the 440-1320, 1500-1760, and 2040-2440 nm 
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wavelengths were omitted due to high atmospheric water absorption. Filtered spectral data were 

brightness normalized to eliminate anomalously low or high reflectance values. 

 

A partial least squares regression model was generated to relate the brightness normalized surface 

reflectance spectra to lab-assayed foliar traits across the state of Sabah, Malaysia, and this model 

was subsequently applied across surface reflectance imagery to generate foliar trait maps. Crown-

level mass-based foliar N (%) and P (%) concentrations and LMA values were predicted with R2 

= 0.54, 0.65, 0.81 and normalized root mean squared error (RMSE) = 0.43, 0.03, and 23.90 (Martin 

et al., 2018). The mapped foliar traits were used to calculate foliar N:P ratios across the Sepilok 

study area. N:P ratios are broadly used to infer the potential limitation of N or P with respect to 

primary productivity (Koerselman & Meuleman, 1996; Tessier & Raynal, 2003). Low N:P values, 

less than circa 14, are considered to indicate N limitation, while values > 16 indicate P limitation 

(Townsend et al., 2007).  

 

PCA and k-means cluster data processing 

We conducted the principal component and clustering analyses at the following spatial resolutions 

(m): 4, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 170, 200. Prior to analysis at each 

resolution, all variables were resampled to the same resolution and stacked. The collection of 

variables at each pixel location was treated as a sample for subsequent analysis. The height of peak 

LAI and N:P were log transformed, and Cover20 and P:H were cube root transformed to normalize 

their distributions. Each variable was then centered and scaled across all samples. Pixels without 

a value for every single trait were omitted, and a 5 m height requirement was applied to remove 

bare ground and non-forest vegetation. Improvement in the degree of explained variance saturated 

around 20-40 m resolution (Figure S3), which corresponds to the maximum crown diameter for 
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canopy trees in the region (Loubota Panzou et al., 2020; Shenkin et al., 2019). We report results 

from analyses at 30 m resolution to assess the feasibility of this framework at the planned 30 m 

resolution of SBG imaging spectroscopy data.   
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Supporting Tables 

 

Table S1. Ten variables used in the PCA and k-means cluster analysis.   

Cluster Analysis Traits Abbreviation Unit Resolution* Description 

Maximum height Max H m 2 Maximum height of the forest canopy.  

Canopy cover at 20 m Cover20 % 30 
Fraction of canopy cover ≥ 20 m height 
aboveground.  

Leaf area index LAI m2 m-2 50 Leaf area index estimated using the spherical 
theoretical leaf angle distribution method.  

Height of peak LAI  Hpeak LAI m 50 Height above ground of the peak LAI from the 
vertical LAI profile. 

Canopy shape ratio P:H unitless 5 P: Height above ground at max. canopy volume. H: 
99th percentile of total canopy height.  

Leaf mass per area LMA g m2 4 The ratio of leaf dry mass to leaf area.  
Foliar nitrogen N % 4 Mass-based foliar nitrogen concentration.   

Foliar phosphorus P % 4 Mass-based foliar phosphorus concentration.   
Nitrogen to phosphorus ratio N:P unitless 4 Foliar nitrogen to phosphorus ratio. 

Max. photosynthetic capacity Vcmax µmol m-2 s-1 4 Maximum rate of Rubisco carboxylase activity, a 
metric of photosynthetic capacity.   

*Original resolution of data prior to resampling for analysis.  
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Table S2. Number of tree crowns and species sampled per site for remotely sensed canopy foliar 
trait estimation as described in (Martin et al., 2018).  

Site N crowns N species Example species  
Sepilok 
alluvial/
mudstone 

30 24 
Dipterocarpus applanatus, Dryobalanops lanceolata, 
Eusideroxylon zwageri, Parashorea tomentella, Shorea 
johorensis, Shorea leprosula 

Sepilok 
sandstone 14 11 Dipterocarpus acutangulus, Hopea baccarina, Shorea 

beccariana, Shorea multiflora, Shorea smithiana,  
Sepilok 
kerangas 13 11 Cotylelobium melanoxycan, Ixonanthus reticulata, Shorea 

multiflora, Koompassia malaccensis 

Danum 
Valley 58 40 

Eusideroxylon zwageri, Koompassia excelsa, Samanea 
saman, Shorea faguetiana, Shorea johorensis, Shorea 
leprosula, Shorea parvifolia 
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Supporting Figures 

 

Figure S1. Ten community, plant, and leaf traits used in the forest functional mapping at Sepilok 
(a) and Danum (b). LiDAR and imaging spectroscopy data were collected in 2016 by the Global 
Airborne Observatory. LMA: leaf mass per area, N: nitrogen, P: phosphorus, N:P: nitrogen to 
phosphorus ratio, Max H: maximum height, Cover 20: canopy gap fraction at 20 m, LAI: leaf 
area index, P:H: ratio describing the vertical partitioning of foliage in the canopy. Black areas 
indicate No Data.  
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Figure S2. Histograms of untransformed distributions for all ten traits used in the PCA and k-
means cluster analysis for Sepilok (a) and Danum (b).  
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Figure S3. The influence of data spatial resolution on the degree of variance explained for 2-3 
principal components (PCs) (a, c) and the k-means BBS/TSS (b, d) for both Sepilok (a-b) and 
Danum (c-d). The grey shaded area highlights saturation for both metrics around 20-40 m 
resolution. The 30 m analysis resolution is indicated by the black vertical line.  
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Figure S4. Comparison of the and within group sum of squares (Wk) (a-b) and gap statistic (c-d) 
used to determine the number of k-means clusters for Sepilok (a,c,e) and Danum (b,d,f). The 
solid vertical lines in panels b and e indicate the number of clusters selected using the first local 
and global maxima, while the dashed lines indicate additional k values explored. Panels e-f show 
the observed and expected log(Wk), where the optimal number of clusters is the value of k for 
which observed log(Wk) falls the farthest below expected log(Wk). 
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Figure S5. Between cluster sum of squares (SS) divided by the total SS for k values between 1 
and 5000. The points circled in black indicate the number of clusters analyzed for each site 
(Danum = 1, 3; Sepilok = 2, 3, 4). 
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Figure S6. Principal components from PCA of the 10 foliar, plant, and community traits at 
Sepilok Forest Reserve (a) and Danum Valley (b).  
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Figure S7. Trait distributions by cluster for Sepilok k = 3 and Danum k = 1. Forest communities 
are ordered based on their median LMA to illustrate differences in traits for communities that 
vary along the leaf economics spectrum. Identical letters represent clusters where there is no 
significant difference between forests based on one-way ANOVA tests (p < 0.01). 
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Figure S8. Trait distributions by cluster for Sepilok k = 4 and Danum k = 2. Forest communities 
are ordered based on their median LMA to illustrate differences in traits for communities that 
vary along the leaf economics spectrum. Identical letters represent clusters where there is no 
significant difference between forests based on one-way ANOVA tests (p < 0.01). ** traits that 
varied significantly between all six forest types. * traits that varied significantly between at least 
four forest types. 
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Figure S9. Relationship between Vcmax and maximum canopy height at the cluster (a) and pixel 
(b) level. Colors indicate communities identified for k = 3 clusters in Danum and k = 4 clusters in 
Sepilok.   
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Figure S10. Vertical LAI profiles for all pixels within each inventory plot (a-b) and forest 
community identified based on k = 1 cluster at Danum and k = 3 clusters at Sepilok (c-d).  
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Figure S11. Change in overall accuracy for reduced k-means clustering models using structural 
variables (purple), leaf trait variables (orange), and combinations of structural and leaf trait 
variables (blue). All are compared to the full 10-variable k-means clustering analysis for Sepilok 
(A) and Danum (B). Asterisks indicate the reduced model with the highest overall accuracy for k 
= 2, 3, and 4 for Sepilok and k = 3 for Danum. Dots indicate reduced models with the second 
highest overall accuracy. Each bar illustrates k = 2, 3, 4 from left to right for Sepilok (A) and k = 
3 for Danum (B). LES: leaf economic spectrum.  
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Figure S12. Change in between sum of squares (BSS) divided by total sum of squares (TSS) 
with variables included in the k-means clustering analysis for Sepilok (A) and Danum (B). The 
horizontal dotted line is the BSS/TSS value with all variables. Asterisks indicate output that 
captured the different forest types identified with all variables. Dots indicate when a similar 
pattern was captured but at least one forest type was not distinguished. Each bar illustrates k = 2, 
3, 4 from left to right for Sepilok (A) and k = 3 for Danum (B). LES: leaf economics spectrum.  
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