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Abstract

The processes governing soil bacteria biogeography are still not fully understood. It remains unknown how the importance

of environmental filtering and dispersal differs between bacterial taxonomic and functional biogeography, and whether their

importance is scale-dependent. We sampled soils at 195 plots across the Tibet plateau, with distances among plots ranging

from 20 m to 1,550 km. Taxonomic composition of bacterial community was characterized by 16S amplicon sequencing, and

functional community composition by qPCR targeting 9 functional groups involved in N dynamics. Twelve climatic and

soil characteristics were also measured. Both taxonomic and functional dissimilarities were more related to environmental

dissimilarity than geographic distance. Taxonomic dissimilarity was mostly explained by soil pH and organic matter, while

functional dissimilarity was mostly linked to moisture, temperature and N, P and C availabilities. The roles of environmental

filtering and dispersal were, however, scale-dependent and varied between taxonomic and functional dissimilarities, with distance

affecting taxonomic dissimilarity over short distances (<˜300 km) and functional dissimilarity over long distances (>˜600 km).

The importance of different environmental predictors varied across scales more for functional than taxonomic dissimilarity.

Our results demonstrate how biodiversity dimension (taxonomic versus functional) and spatial scale strongly influence the

conclusions derived of bacterial biogeography.
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Abstract 32 

The processes governing soil bacteria biogeography are still not fully understood. It remains 33 

unknown how the importance of environmental filtering and dispersal differs between bacterial 34 

taxonomic and functional biogeography, and whether their importance is scale-dependent. We 35 

sampled soils at 195 plots across the Tibet plateau, with distances among plots ranging from 36 

20 m to 1,550 km. Taxonomic composition of bacterial community was characterized by 16S 37 

amplicon sequencing, and functional community composition by qPCR targeting 9 functional 38 

groups involved in N dynamics. Twelve climatic and soil characteristics were also measured. 39 

Both taxonomic and functional dissimilarities were more related to environmental dissimilarity 40 

than geographic distance. Taxonomic dissimilarity was mostly explained by soil pH and organic 41 

matter, while functional dissimilarity was mostly linked to moisture, temperature and N, P and 42 

C availabilities. The roles of environmental filtering and dispersal were, however, scale-43 

dependent and varied between taxonomic and functional dissimilarities, with distance affecting 44 

taxonomic dissimilarity over short distances (<~300 km) and functional dissimilarity over long 45 

distances (>~600 km). The importance of different environmental predictors varied across 46 

scales more for functional than taxonomic dissimilarity. Our results demonstrate how 47 

biodiversity dimension (taxonomic versus functional) and spatial scale strongly influence the 48 

conclusions derived of bacterial biogeography. 49 

 50 

Significance Statement 51 

Our study demonstrates that i) in general, the importance of environmental filtering exceeds 52 

that of dispersal for both taxonomic and functional biogeography of soil bacteria; ii) taxonomic 53 

and functional biogeographic patterns are driven partly by different environmental drivers, with 54 

pH being the most important for taxonomic composition, while several variables drive the N-55 

related functional composition; and iii) the importance of environmental filtering and geographic 56 

dispersal are scale-dependent, with dispersal being related to taxonomic dissimilarity at short 57 

distances only, but to functional dissimilarity only when distances are > 600 km. Overall, these 58 

findings show that taxonomic and functional components of soil bacterial communities are not 59 

constrained by the same drivers, and that interpretation of bacterial biogeography depends on 60 

the spatial scale. 61 

 62 

Introduction 63 

The composition of biological communities varies across space, expressed as gradually 64 

changing beta-diversity along geographical and environmental gradients, with a tendency to 65 

have distinct biological assemblages in different parts and habitats of a landscape (1-3). The 66 

knowledge of such patterns and their drivers regarding microorganisms, however, is scarce 67 

when compared to the knowledge available for macroscopic species (4-11). The famous 68 

hypothesis ‘everything is everywhere, but environment selects’ made by Baas Becking (12) 69 

suggests that the distribution of free-living microorganisms would be mainly governed by 70 

environmental selection (13). However, many recent studies have found that soil bacteria can 71 

show spatial patterns related to geographic isolation (14-17). Due to their passive dispersal 72 

regimes, soil bacteria might indeed be more dispersal-constrained than macroscopic and 73 

aquatic organisms (18-20). Overall, an increased understanding of the drivers of the distribution 74 

of soil microorganisms and of their community composition is still needed. This need is further 75 



intensified in the context of ongoing global changes, such as climate warming, N deposition 76 

and acidification which affect biota distribution and assemblages (21, 22).  77 

 Following Vellend (23), Hanson, Fuhrman, Horner-Devine and Martiny (8) and Nemergut, 78 

et al. (24) distinguished four fundamental assembly processes defining the spatial patterns in 79 

diversity and composition of microbial communities: selection (through environmental filtering 80 

and biotic interactions), dispersal, drift and mutation/diversification, the main processes 81 

identified being environmental filtering and dispersal (7, 17, 25-31). Environmental filtering 82 

represents a process where environmental conditions shape community composition by filtering 83 

taxa that have suitable strategies to establish in a site. Dispersal affects community composition 84 

by influencing the establishment of organisms in new sites. Taken together, both processes 85 

lead to a distance decay effect where communities further away are less similar than the 86 

communities close-by, because of increasingly different environmental conditions and/or higher 87 

isolation with increasing distance (32-36). While dissimilarity of environmental conditions can 88 

correlate with geographical distance, environmentally similar conditions can be found from 89 

distant locations too, or reversely, sharp environmental transitions can occur across small 90 

distances (37). Thus, sampling soil bacterial communities over broad spatial and environmental 91 

transects including both fine- and broad-scale variations can allow tearing the effects of these 92 

two processes apart based on the covariance between bacterial community dissimilarity and 93 

environmental dissimilarity and geographic distance (38). 94 

 For soil bacteria, most studies on the relative roles of environmental filtering and dispersal 95 

have focused on community dissimilarity based on the taxonomic compositions of communities 96 

(14, 30, 39). However, bacterial communities can be assessed using other entities too, such as 97 

functional attributes, that do not necessarily correlate with taxonomy (40-43) because functional 98 

redundancy can be particularly high within bacterial communities (44). For example, 99 

communities in two distant but environmentally similar places might considerably differ 100 

taxonomically due to the dispersal barrier, whereas their functional composition might be 101 

relatively more similar due to prevailing environmental conditions favouring or requiring certain 102 

functions or functional attributes (40). Thus, the importance of environmental filtering and 103 

dispersal as drivers of soil bacteria biogeography might vary depending on the type of measure 104 

of communities used (45-47). More particularly, dispersal processes (and so geographic 105 

distance) would better explain taxonomic dissimilarity among soil bacterial communities, 106 

whereas some previous reports suggested that community functional dissimilarity, which is 107 

affected by local gradients in resource availability, might be less related to distance and more 108 

to environmental conditions (48) (Fig. 1). Incorporating both taxonomic and functional 109 

compositions of communities might better reveal the major drivers of soil bacterial 110 

biogeography (43, 49, 50). Since soil bacteria communities are connected to ecosystem 111 

functioning such as nutrient and carbon cycles (51-53), understanding bacterial biogeography 112 

from both the taxonomic and functional points of view is crucial to forecasting future impacts of 113 

global changes on ecosystems. 114 

 In this study we aim to advance the understanding of soil bacteria biogeography by 115 

analysing a large range of environments and distances, and incorporating both taxonomic and 116 

functional dissimilarities of bacterial communities, in order to compare the relative roles of 117 

environmental filtering and dispersal in explaining the taxonomic and functional biogeography 118 

of soil bacteria. For this purpose, we sampled soils along a 1,550 km transect across the Tibet 119 



plateau (Fig. 1). Taxonomic community composition was defined based on the relative 120 

abundances of OTUs determined by 16S amplicon sequencing, while one aspect of functional 121 

community composition was defined based on the abundances of nine nitrogen (N) cycle-122 

related functional groups determined by quantitative PCR. For each plot, environmental 123 

conditions were derived based on 12 climatic and soil characteristics. The relationships 124 

between taxonomic, functional and environmental dissimilarities and geographic distances 125 

among sampling locations (calculated from geographic coordinates) were then assessed using 126 

mantel tests and general dissimilarity modelling (GDM; Fig. 1). We assumed that the taxonomic 127 

and functional community compositions would not be akin and that environmental dissimilarity 128 

and geographic distance would not correlate strongly. We also assumed that functional 129 

dissimilarity would better correlate with environmental dissimilarity than geographic distance 130 

(Fig. 1), with distinct predictors explaining taxonomic and functional compositions. We also 131 

evaluated the possible influence of spatial scale on the conclusions derived.  132 

 133 

Results  134 

When rarefying sequences to obtain 14,619 sequences for each of the 96 plots, a total of 6,384 135 

different OTUs were observed across all the plots. The OTU richness varied from 1,371 to 2,164 136 

OTUs per plot. 137 

For the nine N-related functions, the largest variations in abundances among all plots were 138 

observed for the free N2 fixers (nifH) and the nosZ1-N2O reducers, with abundances ranging 139 

from 3.9×104 to 1.3×1010 and from 1.4×105 to 4.2×109 gene copies g-1 soil, respectively (Fig. 140 

S5). In comparison, Nitrospira abundance varied over three orders of magnitude. The less 141 

abundant groups were ammonia oxidizing AOB and the nitrite-oxidizing Nitrobacter, with 142 

median abundances across the 195 sites being 3.49 105 and 1.25 104 gene copies g-1 soil, 143 

respectively (Fig. S5). 144 

Concerning the environmental variables, soil pH ranged from 5.17 to 9.08 for the 195 145 

samples (Fig. S6). Soil organic matter concentration (OM) ranged from 0.3 % (for Alpine semi-146 

desert shrub steppe) to 41.9 % (swamp meadow), though most values were below 20 %. Large 147 

variations were also observed for soil mineral N concentrations, i.e. from 0.95 to 52.25 ppm 148 

and 1 to 89.4 ppm for ammonium (NH4.N) and nitrate (NO3.N), respectively (Fig. S6). Mean 149 

annual temperature (MAT) varied from -3°C to 7°C. Some of the environmental variables were 150 

correlated, which included OM with total nitrogen concentration (TN) and with the soil C:P 151 

stoichiometric ratio; and TN with the soil N:P stoichiometric ratio (Table S2). 152 

 153 

Relationships among taxonomic, functional and environmental dissimilarities and distance 154 

Mantel tests performed on the 96 soil samples for which both taxonomic and functional 155 

compositions were available showed a positive correlation (r=0.36) between taxonomic and 156 

functional dissimilarities (Fig. 2). Environmental dissimilarity and distance had similarly positive 157 

correlation (r=0.36; Fig. 2). Both taxonomic and functional dissimilarities were positively 158 

correlated to environmental dissimilarity (r=0.56 and r=0.46, respectively) and less strongly to 159 

distance (r=0.24 and r=0.33; Fig. 3). Similar patterns were observed when using data from all 160 

195 plots, where functional dissimilarity more strongly correlated with environmental 161 

dissimilarity than distance (r=0.50 and 0.31, respectively) (Fig. S7).  162 

 163 



Predictors of taxonomic and functional dissimilarities 164 

The environmental predictors reaching the highest explanatory power for taxonomic 165 

dissimilarity, when considered individually in GDMs, were soil pH (more than 50% of the 166 

variance explained) and to a lesser extent OM and C:P (32% and 26% of the deviance 167 

explained, respectively; Fig. 4a). For the functional dissimilarity, the N:P and available 168 

phosphorus had the highest explanatory power (nearly 30% of the deviance explained for each) 169 

followed by soil moisture, OM and TN (ca. 25% of the deviance explained for each; Fig. 4a). 170 

Distance explained 10-13 % of deviance of taxonomic and functional dissimilarity. 171 

The best GDM for taxonomic dissimilarity explained 72% of the variance and included 172 

five predictors (ranked according to their relative predictor contribution): pH > C:P (highly 173 

correlated with OM) > soil moisture > MAT > distance (Fig. 4b). The best model for functional 174 

dissimilarity (based on the same 96 samples) explained 53 % of the variance and included 5 175 

predictors (ranked according to their relative predictor contribution): soil moisture > distance > 176 

available phosphorus (AP) > C:P > MAT (Fig. 4b). Note that the C:P was highly correlated to 177 

the N:P and OM (Table S2). Similar results were obtained when the analysis was performed for 178 

all the 195 soil samples (Fig. S8). 179 

 180 

Predictors’ relationships to taxonomic and functional dissimilarity 181 

The I-splines (response curves) fitted to the predictors retained in the best models showed that 182 

taxonomic dissimilarity was in continuous manner and strongly related to change in soil pH and 183 

with weaker amplitude to change in MAT among the plots (Fig. 5). In contrast, differences in 184 

soil moisture and C:P among the plots increased taxonomic dissimilarity the most strongly at 185 

lower ends of the gradients. Taxonomic dissimilarity increased with distance only when the plots 186 

were 20 m – 300 km apart. 187 

Functional dissimilarity was related to differences in soil moisture, C:P and MAT among 188 

the plots in rather continuous manners along the observed gradients (Fig. 5). Difference in AP 189 

was mostly related to the functional dissimilarity at the lower end of the gradient. In contrast to 190 

the results obtained for taxonomic dissimilarity, the functional dissimilarity was mostly related 191 

to increase in distance when it was 600 km or more. These results were confirmed when 192 

analysing all the 195 soil samples (Fig. S9). 193 

 194 

Scale dependency of processes driving bacterial biogeography 195 

Correlations between taxonomic and functional dissimilarities and between environmental 196 

dissimilarity and distance were the strongest when the distances among plot pairs were 20 m 197 

– 314.3 km (r=0.55 and 0.33, respectively) than >314.3 km (r=0.16-0.24 and 0.05-0.07, 198 

respectively; Fig. S10 top). Correlations of taxonomic and functional dissimilarities to 199 

environmental dissimilarity were rather stable across the different distance classes (always 200 

between 0.47 and 0.64, except 0.23 between functional dissimilarity and environmental 201 

dissimilarity for medium distances; Fig. S10 middle row). Between taxonomic dissimilarity and 202 

distance, the significantly positive correlation (r=0.36) occurred when the distances among plot 203 

pairs were 20 m – 314.3 km (Fig. S10 bottom left). Between functional dissimilarity and distance, 204 

the correlation was strongest (r=0.32) when distances were 671 – 1,546 km (Fig S10 bottom 205 

right). 206 

The GDMs showed that the importances of individual environmental predictors for 207 



taxonomic dissimilarity were largely stable across the three scales (Fig 6a). In contrast, for 208 

functional dissimilarity the explanatory power of environmental predictors, especially of soil 209 

moisture, MAT, AP and NH4.N varied across the scales (Fig. 6b). Irrespective of the scale, soil 210 

pH, C:P, soil moisture and MAT were always included in the best model of taxonomic 211 

dissimilarity, with pH always having by far the largest relative predictor contribution (Fig. 6c). 212 

The predictors and their relative contributions in the best models for functional dissimilarity 213 

showed that soil moisture and C:P had a prominent role at the short scale but their relative 214 

importance decreased with increasing distance (Fig. 6c), where NH4.N, total phosphorus (TP) 215 

and distance became significant. 216 

For the pairs of plots 20 m – 314 km apart, distance alone explained 24 % of deviance 217 

in taxonomic dissimilarity vs. 11 % in functional dissimilarity, whereas for the pairs of plots 671 218 

– 1,546 km apart, these values were 0 % and 11 %, respectively. Distance was included as a 219 

predictor in the best model only at the short scale for taxonomic dissimilarity and at the long 220 

scale for functional dissimilarity.  221 

 222 

Discussion 223 

A good understanding of soil bacteria biogeography and its determinants is needed to 224 

better understand ecosystems’ structures and functioning, and to anticipate their possible 225 

changes with global change (22, 54, 55). Here, we studied if and how environmental filtering 226 

and dispersal affect the taxonomic and N-related functional compositions of soil bacteria 227 

communities, hypothesising that, due to functional redundancy, environmental filtering would 228 

more strongly drive functional than taxonomic composition whereas dispersal would be 229 

relatively more important for taxonomic than functional composition. We based these 230 

hypotheses on the underlying expectations that the taxonomic and functional community 231 

compositions would not be akin, and that environmental dissimilarity and geographic distances 232 

among sites would not strongly correlate, thus allowing to unravel the effects of environmental 233 

filtering and dispersal.  234 

Some hypotheses were supported by our analyses. In particular, taxonomic and 235 

functional community compositions were not tightly correlated, and we found support for the 236 

presence of functional redundancy (i.e. taxonomic dissimilarity was in general higher than 237 

functional dissimilarity as observed also, e.g., for fish assemblages (56)). However, in 238 

contradiction with our hypotheses, environmental filtering played a major role in comparison to 239 

dispersal for both taxonomic and functional compositions. Moreover, we observed a strong 240 

scale-dependency in the drivers of bacteria biogeography and the role of distance, which varied 241 

between taxonomic and functional biogeography. Below we elaborate on these findings in more 242 

detail. 243 

 244 

The taxonomic biogeography of soil bacteria is mostly driven by pH, while their N-related 245 

functional biogeography is determined by a range of environmental conditions 246 

The strong positive correlation between taxonomic and environmental dissimilarities was 247 

mainly related to soil pH and to a lesser extent to soil organic matter (correlated to the C:P ratio). 248 

The strong influence of pH on soil bacterial communities has been reported for different parts 249 

of the world, including Great Britain (6), USA (5, 57), the Western Swiss Alps (30) and China 250 

(58, 59), with the only exception being the report by Plassart, et al. (60) indicating that soil 251 



bacterial composition varied greatly across a pan-European transect but that less than 5% of 252 

this variation was explained by soil pH. The overall conception is, thus, that pH is the major 253 

driver of soil bacterial communities by acting as a selective force for many bacterial taxa (61). 254 

This could be due to direct effects of pH on soil bacteria (62) but also to non-direct effects 255 

because pH often correlates with a number of other biotic and abiotic variables such as soil 256 

carbon and nitrogen substrate availabilities (63), plant community diversity (64) and 257 

composition (65), and bioavailability of some pollutants (66). 258 

Yet, interestingly, we did not find pH as an important driver of functional community 259 

dissimilarity, here assessed based on functional genes related to nitrogen dynamics. This was 260 

not expected because some bacterial groups studied, e.g. AOB and Nitrobacter, are sensitive 261 

to pH (61). However, this finding might be due to the fact that the effect of soil pH on some N-262 

related groups is mostly indirect, acting for instance through altered N availability and changed 263 

plant diversity (67). Thus, N availability would be a more straightforward variable to predict 264 

functional dissimilarity here. In addition, a weaker sensitivity to pH – in terms of abundance – 265 

of other groups like denitrifiers (68, 69) could explain the minor role of pH when explaining 266 

functional dissimilarity. Functional dissimilarity was mainly explained by the availabilities of N, 267 

C and P (and associated stoichiometric ratios) along with moisture and mean annual 268 

temperature. These drivers are largely consistent with the ecology of the 9 N-related functional 269 

groups studied and partly also identified in the study by Nelson, Martiny and Martiny (43). In 270 

addition, in grassland soils from the Tibetan plateau fertilised with N, P or NP, AOB, Nitrobacter 271 

and Nitrospira were sensitive to N availability and organic matter concentration, N2-fixers to the 272 

N:P ratio, nirS-nitrite reducers to soil N and organic matter, and nirK-nitrite reducers to organic 273 

matter and the N:P ratio (70). Similarly, soil moisture often influences functional groups like 274 

nitrifiers and denitrifiers (71). Overall, the nature of the environmental drivers of functional 275 

dissimilarity obviously depends on the functional groups considered, and other environmental 276 

drivers would likely be important with a focus on other specific groups like degraders of specific 277 

molecules. The nine functional groups selected here, however, represent a consistent and 278 

rather comprehensive set of groups involved in major aspects of soil N dynamics, which is an 279 

important aspect of the functioning of ecosystems. 280 

Our finding that environmental filtering does not happen through the same set of 281 

environmental variables for both taxonomic and functional dimensions is consistent with recent 282 

studies on Tibetan meadow soils reporting that the abundances of many bacterial functional 283 

groups involved in soil N dynamics depended on soil N availability, organic matter concentration 284 

and N:P ratio, but that the majority of bacterial taxa in the same soils were limited by other 285 

resources than N and P (70, 72). The same finding was done in global context by Nelson, 286 

Martiny and Martiny (43). Altogether, this has important implications to predict ecosystem 287 

functioning and anticipate the effect of global change (73). Especially, while soil acidification or 288 

alkalinisation would strongly change the taxonomic composition of bacterial communities, the 289 

functioning of bacterial communities would not necessarily respond to pH per se but rather to 290 

changes in C:N:P availability and soil moisture. 291 

 292 

The importance of dispersal for taxonomic and functional community composition is weak and 293 

varies with scale 294 

When considering all plots, distance was a weak predictor of functional and even more so of 295 



taxonomic community composition. However, when performing our analyses at different spatial 296 

scales (i.e. distinguishing short, medium and long geographic distances among the pairs of 297 

plots), the role of distance varied between taxonomic and functional dissimilarity depending on 298 

the scale. In particular, the role of distance in explaining taxonomic dissimilarity was detected 299 

only at short scale (until a limit of ca. 300 km) after which the further distance had no further 300 

effect in taxonomic composition. Similarly, in the experiment of Lindström and Östman (74), 301 

dispersal affected taxonomic community composition only at high dispersal rates (which can be 302 

assumed to occur at shorter distances)and Shi, et al. (59) reported that stochastic processes 303 

(including dispersal) dominated over environmental filtering for the composition of soil bacterial 304 

communities when distances among study sites were short, whereas environmental filtering 305 

dominated over stochasticity for larger distances. A comparison of this scale-dependency 306 

against the results obtained for plant species would be important, since for them the effect of 307 

dispersal is commonly thought to act on coarser scale than environmental filtering (75, 76).  308 

At coarser scales, i.e. when the plots are >651 km apart, distance became relatively more 309 

important in explaining functional dissimilarity. A strong role of distance was also observed at 310 

global scale in marine environments (49), where the authors hypothesised that the effect of 311 

distance on functional composition was due to historical evolutionary changes that select 312 

certain bacterial functions. This might also explain our finding, although the reasoning of 313 

Haggerty and Dinsdale (49) concern free-living communities.  314 

 315 

Scale dependency of the environmental drivers of taxonomic and functional bacterial 316 

biogeography 317 

Incorporating spatial scale to the analyses also modulated some conclusions regarding 318 

the importance of environmental predictors. While the dominant role of pH, and to some extent 319 

of OM, in explaining taxonomic dissimilarity did not vary across the scales, the main 320 

environmental predictors of functional dissimilarity did vary. A possible explanation for these 321 

results could be that the variation (i.e. heterogeneity; as measured by variances or ranges of 322 

values) of environmental variables changes among the scales (77). More specifically, a 323 

predictor that has less heterogeneity for a given distance class might not be identified as having 324 

an important role at this scale and vice versa. Indeed, there was some link between the 325 

variability (Fig. S11) and importance of the environmental predictors across the scales. For 326 

example, the variability of pH among the plots was relatively stable across the scales and so is 327 

its importance in explaining taxonomic dissimilarity, whereas variability of TP, NH4.N and MAT 328 

increased with distance between the plots, and these predictors also became significant and 329 

more important in explaining functional dissimilarity at coarser scales. Thus, it is important to 330 

bear in mind that the importance of an environmental driver might be linked to its variability 331 

across the study area when comparing the results of different studies covering different 332 

environmental heterogeneity. However, here, we did not observe any correlation across scales 333 

between the variance and importance of environmental variables for e.g. C:P, organic matter 334 

and AP, which suggests that the relative importance of drivers across scales could also be 335 

linked to modified environmental filtering processes. Analysing this in more detail would, 336 

however, require a different kind of setting. 337 

 338 

Materials and methods 339 



Study area and soil sampling 340 

The study area covers a large part of the Tibetan Plateau and stretches 800 km along latitude 341 

and 1,250 km along longitude (Fig. 1). The climate is high altitude plateau climate with 342 

precipitation mainly falling during the short, cool summer in July and August (70). The mean 343 

annual temperature ranges from -15 to 5 °C (78) and mean annual precipitation from 170 to 344 

600 mm (79). Soil sampling was performed randomly along a ca. 1,500 km SW-NE transect in 345 

the Qinghai Province and Tibetan Autonomous Region, China (Fig. 1), during the peak-growing 346 

season in July–August 2015. We collected soil samples from 39 sites. At each site, soil was 347 

sampled from five plots of 0.25 m2 to 1 m2 located at least 20 m from another (Fig. S1). From 348 

each plot, 5 soil cores (0–10 cm; 4 cm diameter) were collected and homogenized to form one 349 

composite sample per plot (i.e. 975 individual cores leading to 195 composite samples). The 350 

location and altitude of each site was measured using a Trimble JUNO SC GPS. The altitudes 351 

of the plots ranged from 2,988 m to 4,787 m above sea level. 352 

Composite soil samples were sealed in plastic bags, stored a few days at 4 °C and 353 

brought back to the laboratory. Fresh sub-samples were used for measuring soil environmental 354 

variables. Other sub-samples were stored at -20°C for a few weeks before molecular biology 355 

assays. Extracted DNA was stored at -80℃ before sequencing and quantitative PCR assays 356 

(see below). 357 

 358 

DNA extraction from soil and 16S rRNA sequencing  359 

Total genomic DNA was extracted from samples using 0.25 g of soil, according to the MoBio 360 

Power Soil DNA isolation protocol (MO BIO laboratories, Carlsbad, CA, USA). The taxonomic 361 

compositions of bacterial communities were determined by amplifying the V4 hypervariable 362 

regions of bacterial 16S ribosomal RNA. This was done for 99 composite samples only, first by 363 

randomly selecting three plots from the five available at each of the 39 sites (39*3=117) and 364 

then removing 18 of these sites mostly redundant with other plots based on vegetation type. 365 

DNA was amplified using the 338F/806R primers (Table S1). Amplification problem was 366 

encountered for one site, finally leading to amplicons for 96 samples. Amplicons were extracted 367 

from 2 % agarose gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen 368 

Biosciences, Union City, CA, USA). The purified products were pooled in equimolar and paired-369 

end sequenced on an Illumina MiSeq platform (Shanghai Majorbio Bio-pharm Technology Co., 370 

Ltd., Shanghai, China). Acquired sequences were quality-filtered using Trimmomatic (version 371 

0.36). Singletons were removed before the OTU clustering step. Chimeras removing and 372 

operational taxonomic units (OTUs) clustering (3% dissimilarity cutoff) were performed with 373 

UPARSE (version 7.0.1090) (80). OTUs with less than two sequences were removed. 374 

Sequences were rarefied to obtain 14,619 sequences for each of the 96 plots. The raw 375 

sequence was submitted to NCBI Short Read Archive under accession number SRR11586107 376 

- SRR11586107. 377 

 378 

Quantitative PCR assays 379 

Nine different functional groups involved in soil N cycling were targeted (Fig. S2). For all the 380 

195 samples, the abundances of free N2-fixers, ammonia oxidizing bacteria (AOB), two groups 381 

of nitrite oxidizing bacteria (Nitrobacter and Nitrospira), nitrate-reducers, two groups of nitrite-382 

reducers, and two groups of N2O-reducers were quantified by quantitative PCR targeting 383 



sequences of the following genes (70): nifH (coding for the nitrogenase); bacterial amoA 384 

(coding for the bacterial ammonia monooxygenase); nxrA (coding for nitrite oxido-reductase 385 

specific of the bacterial genus Nitrobacter); 16S specific of the bacterial genus Nitrospira; narG 386 

(coding the nitrate reductase); nirK and nirS (both coding for a nitrite reductase); and nosZ1 387 

and nosZ2 (coding for N2O reductase), respectively. The abundances of Nitrobacter and nosZ2-388 

N2O reducers were quantified on a lightcycler 480 (Roche Dignostic, Meylan, France) using 20 389 

ul reaction volume with 40 ng, and 25 ul with 20 ng of DNA templates, and 0.5 uM and 1 uM of 390 

each primer, respectively (see Table S1). The abundances of the seven other groups were 391 

quantified on an iCycler iQ5 thermocycler (Bio-Rad,USA), using 20 ml reaction volume with 2 392 

μl of DNA templates, and 1.6 ml (0.8 mM) of each primer (Table S1) and 10 ml SYBR Premix 393 

ExTaq™Ⅱ (Takara, Japan). Plasmids carrying sequences of the targeted genes were 394 

constructed by cloning the targeted gene fragments into plasmid pGEM-T Easy Vector 395 

(Promega, Madison, USA). Details of qPCR methodologies and standards used are presented 396 

in Table S1. Ten-fold serial dilutions of the linearized plasmid DNA were used to establish a 397 

standard curve for each gene, and the data were then transformed into gene copy numbers per 398 

gram of dry soil. Inhibition tests were performed on 64 samples (randomly chosen) for the nifH 399 

gene by diluting 5 and 10 times DNA extracts before qPCR, and this showed no inhibition. 400 

 401 

Environment data measurement  402 

For each of the 195 samples, eight soil characteristics plus one climatic factor were quantified. 403 

Soil organic matter concentration (OM) was determined by the potassium dichromate method 404 

(81). Total nitrogen (TN) and total phosphorus (TP) concentrations were determined with a 405 

SAN++ system flow injection analyzer (SAN++, Brampton, Canada) after digesting, according 406 

to Bao (2000). Ammonium (NH4
+) and nitrate (NO3

-) concentrations were measured using a 407 

SAN++ system flow injection analyzer after extraction with KCL (82). Available phosphorus (AP) 408 

was extracted according to Mehlich (83). Soil moisture was measured gravimetrically and pH 409 

was quantified using a PHS-3C pH meter (Shanghai, China) with 1:2.5 vol soil:H2O solutions 410 

(84). Soil carbon (C) concentration was obtained by dividing OM by the van Bemmelen factor 411 

1.72. In addition, three stoichiometric ratios were computed, i.e. the C:N, N:P and C:P ratios. 412 

Finally, mean annual temperature (MAT) for each site was obtained from CHELSA (79). 413 

Outliers were tested by identifying values outside mean±SD, leading to 3 outliers for OM, 414 

6 for AP, 4 for NO3
- and 2 for NH4

+, which were replaced using geostatistical interpolation where 415 

the unknown value of a given variable at a location xi was predicted using the values at 416 

surrounding locations (68). 417 

 418 

Statistical analyses 419 

The dissimilarities among bacterial communities were calculated as Bray-Curtis dissimilarities 420 

for each pair of samples based on the double square root-transformed relative abundances of 421 

OTUs (for taxonomic dissimilarity) and double square root-transformed abundances of the nine 422 

N-related functional groups (for functional dissimilarity). By transforming the data prior to 423 

calculating dissimilarities, more weight is given to OTUs and functional groups with low 424 

abundance which would be overlooked otherwise. Double square root transformation was 425 

chosen based on preliminary analyses (e.g. having the highest model performance, see below) 426 

and favoured over logarithmic transformation because it avoids the troubles of transforming 427 



zeros and resulting negative numbers. Nevertheless, the dissimilarity values do not drastically 428 

change depending on the transformation (Fig. S3-S4). As the geographic coordinates existed 429 

only for the centers of each site (consisting of 5 plots located 20 m from the center of the site), 430 

we randomly added or subtracted 20 meters from y- and/or x-coordinates of the sites to obtain 431 

unique coordinates for all plots and reflect the non-zero distances among the plots of a same 432 

site.  433 

General relationships among taxonomic, functional and environmental dissimilarities and 434 

geographic distances among the plots were assessed by Mantel tests. For Mantel test, 435 

environmental dissimilarity was calculated using Bray-Curtis statistic and log-transformed soil 436 

variables (except pH already on log-scale). 437 

To assess in detail the influence of individual environmental variables and distance on 438 

taxonomic and functional dissimilarities, we implemented generalized dissimilarity modelling, 439 

(GDM; 85, 86). GDM is suited to analyse spatial patterns of pairwise dissimilarities for 440 

community data as a function of environmental conditions and/or geographic distance (see e.g. 441 

in 87). Non-linear responses are possible by applying link and variance functions, and I-splines 442 

(see 85). Using GDM, we assessed (1) to what extent each environmental predictor and 443 

geographic distance alone explain taxonomic and functional dissimilarities, (2) what are the 444 

best combinations of predictors to explain taxonomic and functional dissimilarities, (3) how the 445 

predictors of the best models influence taxonomic and functional dissimilarities (i.e. shape of 446 

the relationship between a predictor and taxonomic or functional dissimilarity across the range 447 

of predictor values), and (4) how the importances of environmental predictors and distance vary 448 

across spatial scales. 449 

For the GDMs, we created all possible combinations of environmental variables and 450 

distance but removed the combinations that contained correlated environmental variables 451 

(using threshold of ±0.7; see Table S2). No transformations were applied to environmental 452 

variables and distance, as GDM can model non-linear responses. This means that the results 453 

of the GDMs did not depend on the transformations applied to variables when analysing the 454 

relationships between dissimilarities/distance. Models for taxonomic dissimilarity (based on the 455 

96 plots for which taxonomic composition was available) and functional dissimilarity (based on 456 

the same 96 plots or all 195 plots) were then built using the different combinations of predictors, 457 

and for each combination, the model deviance explained (%) was calculated. The best 458 

combination of predictor variables was determined as the model with the highest deviance 459 

explained and where all predictors were significant. Significance and contribution of predictors 460 

in the models were tested using permutation tests randomizing each predictor at a time, and 461 

testing the significance and amount of decrease in deviance explained compared to the model 462 

with unshuffled predictors (see function gdm.varImp; 86).  463 

To examine the relationships between predictors and taxonomic and functional 464 

dissimilarities, we plotted the I-splines (i.e. response curves) fitted to the predictors retained for 465 

the best models. The height and slope of the curve indicate the amount and rate of change of 466 

community dissimilarity, respectively, along the predictor gradient. All models were fitted with 467 

three I-splines for all predictors with default knots (86). 468 

Finally, to assess the scale dependency of these relationships and of the importance of 469 

environmental filtering and dispersal on taxonomic and functional dissimilarities, we divided all 470 

pairs of 96 plots into three equal sized groups based on the geographic distances among the 471 



plots (i.e. three groups corresponding to short, medium and long distances between plots, 472 

namely 20 m to 314.3 km, 314.3 to 671.3 km and 671.3 to 1,545.6 km, respectively). For each 473 

group, correlation tests were run and the GDM modelling of taxonomic and functional 474 

dissimilarity was repeated. 475 
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Figures 683 

 684 

 685 

Figure 1. Framework used to study the drivers of taxonomic and functional biogeography of 686 

soil bacteria, and working hypotheses. Soil was sampled from 39 sites (red dots - 5 plots per 687 

site) along a 1,550 km transect in the Tibet plateau (Top). Distances, and environmental, 688 

taxonomic and functional dissimilarities among all plots were then computed and compared 689 

(Middle). We hypothesised that geographic distance would better explain taxonomic 690 

dissimilarity of bacterial communities due to dispersal processes, whereas functional rather 691 

than taxonomic dissimilarity would be mainly driven by environmental dissimilarity due to 692 

functional redundancy (Bottom).  693 



 694 

Figure 2. Relationships between (Left) the functional and taxonomic community dissimilarities 695 

and (Right) the environmental dissimilarity and geographic distance, based on the 96 soil 696 

samples for which both taxonomic and functional compositions are available. Spearman 697 

correlations (panel corners) are based on Mantel tests. Lines indicate linear fits.  698 



 699 

Figure 3. Relationships between the taxonomic (Left) or functional community dissimilarity 700 

(Right) and geographic distance (Top) or environmental dissimilarity (Bottom) based on the 96 701 

soil samples for which both functional and taxonomic compositions were available. For 195 702 

sites, see Fig S7. Spearman correlations (panel corners) are based on Mantel tests. Lines 703 

indicate linear fits.  704 



 705 

Figure 4. Percentage of deviance of taxonomic (a) and functional (b) dissimilarity explained by 706 

individual predictors, i.e. distance or each of the environmental variables; and the models with 707 

highest deviance explained when all predictors are significant and the relative importances of 708 

the predictors (c). Analyses were made based on the 96 soil samples for which both 709 

functional and taxonomic compositions were available. For results based on the 195 sites, 710 

see Fig S8.711 



 712 

Figure 5. Predicted changes in (Top) taxonomic and (Bottom) functional dissimilarity according 713 

to changes in distance or each individual environmental variable selected by the best GDM 714 

models (see Fig. 4), along the range of variable values. The maximum height and slope of the 715 

curve indicate the amount and rate of change of community dissimilarity, respectively. The 716 

analyses were made based on the 96 soil samples for which both functional and taxonomic 717 

compositions were available. For 195 sites, see Fig S9.  718 



 719 

Figure 6. Percentage of deviance of taxonomic (a) and functional dissimilarity (b) explained by 720 

individual predictors when distinguishing three classes of distance between plots: 20 m to 314 721 

km, 314 to 671 km, and 671 to 1,546 km (in dark, intermediate and light, respectively), and the 722 

models with highest deviance explained when all predictors are significant and the relative 723 

importances of the predictors (c). For each model considered, all predictors were significant. 724 


