Morphology-performance Mapping Determines Least Functional Resistance in Morphospace: A Case of Dual Locomotor Systems in Chinese Sturgeon

Yi Qu¹, Chaoshuo Zhang², Ying Zhang³, Gang Yang⁴, Shaoqiu Hu², Xiangyuan Mi², Dongxu Zhang², Steven Cooke⁵, Jim Rohlf⁶, and Ming Duan²

¹Taizhou Ecological Environment Monitoring Center
²Institute of Hydrobiology Chinese Academy of Sciences
³Taizhou Vocational and Technical College
⁴Chinese Academy of Fishery Sciences East China Sea Fishery Research Institute
⁵Carleton University
⁶State University of New York at Stony Brook

April 05, 2024

Abstract

Morphology-performance (M-P) mapping seems to be predictive of how morphology may evolve along "functional lines of least resistance", regardless of genetic effect, but as yet it is not clear the strict (or mathematical) definition of the least functional resistance and how M-P mapping determines it. We recorded station-holding and swimming performance using a published critical swimming speed (Ucrit) test in Chinese sturgeon Acipenser sinensis, and used Ucrit as a proxy for fitness. We addressed a geometric morphometric framework to initiate Arnold's "morphology-performance-fitness" path model (Arnold, 1983), assessing and visualizing apparent and direct M-P mapping. We quantified them as that one unit of the most-performance-covaried shape vector generated fapparent and f units of standardized performance, respectively. We defined the least functional resistance as the theoretically minimum morphological variation on an arbitrary direction in morphospace required by one unit of standardized fitness, (|b-1|min), which was calculated as a multivariate function of direct M-P mapping (f), together with the angle between paired most-performance-covaried shape vectors in morphospace (ϑ) and direct performance effect on fitness (w), given dual performance systems. The simulated and empirical data suggested that |b-1|min was constrained by larger sum of absolute direct effects (|fhold| + |fswim|) and absolute functional interaction (|fhold fswim cos ϑ |), and its direction was biased by magnitude of direct M-P mapping.

Hosted file

Main Document.doc available at https://authorea.com/users/734330/articles/711413-morphologyperformance-mapping-determines-least-functional-resistance-in-morphospace-a-case-ofdual-locomotor-systems-in-chinese-sturgeon

Hosted file

Figures and tables.doc available at https://authorea.com/users/734330/articles/711413morphology-performance-mapping-determines-least-functional-resistance-in-morphospace-acase-of-dual-locomotor-systems-in-chinese-sturgeon

