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Abstract

We study a phase-field model, which describes the transformations for the austenite-martensite and the multiple twinning in
Martensite. The model consists of two nonlinear parabolic equations of second order. We first show the existence of local
solutions to an initial-boundary value problem by utilizing the Banach fixed-point theorem. Then we verify the solutions is

global. Finally we investigate the regularity and uniqueness of the solution.
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1 Introduction

In the processes of martensitic phase transformations (PTs), twinning can be formed which
by reducing the energy associated with internal elastic stresses [1]. In fact, twinning is a
common mechanism of metal plastic deformation in which a region of the lattice is uniformly
shear into a new orientation, and the phenomenon is pronounced at low temperatures and
high stress rates [2].

In this article, the phase transformations for the austenite-martensite and the multiple
twinning in Martensite, which are developed for lattice rotations and large strains [3]. In
fact, the phase field theory of transformations in Martensite is a non-diffusion type phase
transition. The processes of transformations between the two crystal structures are completed
through shearing, instead of the long-distance migration of atoms, thus they are a solid-state
phase change controlled by interface migration [4-5].

For the investigation of phase-filed model, phase-field method is widely used, and it
has been regarded as one of the most significant computing methods [6-9]. The spatial
and temporal evolution of the variables is governed by the Cahn-Hilliard equation and/or
the Allen-Cahn equation [10-11]. The two well-known equations can describe the ordering
of atoms during the phase separation, in which the order parameter is conserved or not
conserved. The two kinds of order parameter have been presented in numerous models [12-
16]. In these models, one of phase-field models about the phase transformations for the



austenite-martensite and the multiple twinning in Martensite is investigated in the rest of
this article. First the Helmholtz free energy in one space dimension is given [6]

Flu, 6] = /R fd
= [ (s o+ s s 00) e (a1

where
Fo(w ) = 3malu) + aimg()a(u),
P, s 60) = "2 uf? + "2 6 Pa(u) + agmigh(u),
and the Landau-Ginzburg kinetics equations are given
Lo L0,
B = s lnn) 49
We can obtain the equations from (1.1)-(1.3)
¢ = ar(q(w)ps), — pg'(¢)q(u), | (1.4)
= gt — pib () — asd (W)l6uf? — pr (15)
for (t, z) € (0, +00) x .
The boundary and initial conditions are
% =0, % =0, (t, )€ (0,+00) x 09, (1.6)
u(0, x) =up(x), @0, ) = ¢o(x), =€, (1.7)

where 2 C R! is a bounded domain, n is the unit normal to 9. The function ¢(¢, ) is
the angular order parameter, which describes the twinning transformations. The function
u(t, x) € [e, 1] is the radial coordinate of the austenite-martensite transformations, where € is
a positive constant.

Here, the positive constants 3;, k; (i = u,¢), aj,nm; (j = 0,1), m are the gradient energy
coefficients, kinetic coefficients, barriers for variant-variant transformations, the temperature
at the relevant states, the ratio of mass densities respectively. And we note ay = By ky, as =
Boka, a3 = 2Boku, p1 = agnoku, py = B p3 =301 p — g k.

. m
The function W = ¢'(u)(1 + p3g(¢)) in (1.5) with the interpolation function

q(u) = u*(3 — 2u),
and the double-well potential with minima at ¢ =0 and ¢ =1
9(¢) = 6*(1 — )™
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Otherwise, the double-well potential with minima at v = 0 and w = 1 is given by
h(u) = u*(1 — u)?.

To simplify the calculation on the constant coefficients, we set po = a3 in equation (1.5), then
it can be rewritten as

e = gty — 03 ()14 162 + pog(8) + 57— (1 = 2u)],

where 1/(u) = 3(1 — 2u)q/(u).
Second law of thermodynamics [17]. From the free energy F' in (1.1), it is easy to

obtain
0 u 0 0 ofe ofe
= | G ) + (R Pal) + 5 aommb) + G + F) da
— [ (= mButne + 216 P () + gm0 + S
R u
a c
(= mBufal)en), + G)en) da

m o 1M 9

= (-k—uut—k—¢t>d$

which implies that the second law of thermodynamics holds for problem (1.4)-(1.5).

In this article, we write Q7 := (0, T') x  for any given constant 7" > 0, denote < -, - >
as the duality pairing between H'(Q) and (H'(Q2))’; || - || as the normal || - || 12(o)

Before stating our main results, we give the definition of a weak solution to problem (1.4)-
(1.7).
Definition 1.1. Assume that ¢y € L*(Q2), up € L*(2). We say a function (¢, u) with

¢ € L=(0,T; H'(Q) N L*(0,T; H*(R)), (1.8)

¢ € L*(0, T3 L*(2)), (1.9)

u € L0, T; L*(Q) N LY(Qr) N L*(0,T; H(Q)), (1.10)

ur € L*(0,T; (H'(Q))), (1.11)

is a weak solution to problem (1.4)-(1.7) provided

(& er)ar — 2(q(w)s, 02)or — P(9'(0)q(w), P)or + (o, p0)a = 0, | (1.12)
<u> th)QT - al(“% SO:L“)QT - pl(h/<u)> SO)QT - a3(q/(u)‘¢56’2’ SO)QT - P2(%, @)QT + (uo? 900)9 =0,
(1.13)

for each p € C§°((—o0,T) x Q) where (1.5), (1.6) are satisfied weakly.
The main results of this article is the following:



Theorem 1.1 For all ¢g € H (), ug € L*(Q) with ¢ < ug < 1 a.e. x € Q. There exists
a weak solution (¢, u) to problem (1.4)-(1.7) in the sense of Definition 1.1, and for all
te0,7T),e<u<lae e

The rest of this paper is organized as follows: In Section 2, we prove the existence of local
solution by employing Banach fixed-point theorem for problem (1.4)-(1.7). Then we show
the solution is global by establishing asymptotic estimates. In Section 3, we investigate its
regularity and uniqueness of the solution under the appropriate assumption.

2 Existence of weak solutions

2.1 Existence to the fixed problem
We first introduce a Banach space X, that is

X ={(¢, u) | ¢€(Lx0,T; H'(Q)) N L*0,T; H*(Q)),
u € L0, T; L*(Q) N LYQr) N L*(0,T; H(Q)), e <u < 1a.e. in Qr}.

With 4 € X fixed, we consider the parabolic problem of ¢

¢ — ax(q(0)¢s) = —pg'(9)q(t)  in Qr,
(2.1)
60, ) = ¢o(x), x € 96 ), (t, =) € (0, T) x 00.

For the system (2.1), we have

Lemma 2.1 If ¢ € H'(Q), then (2.1) has a unique solution ¢ € L>=(0,T;H'(Q)) N
L*(0,T; H*(Q)), and

9l 220,752 + PNl L0151 0) < C Dl L2 < O (2.2)

Proof: From Them.7.1 of [18] and Them.6.7 of [19], it is easy to obtain the proof of this
lemma.
For the given function ¢, we consider the quasilinear parabolic problem of u

U — Uy = —3q (W)[1 + |Qu* + p3g(0) + 421 —2u)] in Qr,
(2.3)
w(0, t) =up(z), x€Q SL=0, (t )€ (0, T)x
For the system (2.3), we also have
Lemma 2.2 Let ¢ < ug < 1 a.e. © € Q. If ug € L*(Q), then (2.3) has a unique solution
e<u<l1ae inQr, and

1wl oo o,riz2 ) + Nullza@ry + ullzemm ) < €, ullzeor @)y < C- (2.4)



To prove the existence of solutions to (2.3), we consider the modified problem

U — A Ugy = —a3q/(u) [1 + |¢)m|2 + p3g(¢) + 3’?713(1 — 2u)} m Qr,

(2.5)
w(0,2) =up(z), z€Q %£=0, (¢, z)€ (0, T)x0Q,
where ¢ € X', and
q (e), if u € (—o0, €),
q(u) =9 q(w), if u € [e, 1], (2.6)
q (1), if u e (1, 00).

Notation: We observe that the existence of solutions to the system (2.3) can be proved im-
mediately if the hypothesis of ¢ < u < 1 and the existence of solution u in (2.5) are shown.

Lemma 2.3 If uy € L*(Q) with ¢ < uy < 1 a.e. x € ), then there exists a weak solution
e<u<1ae inQr, andu € L>*(0,T; L*(Q)) N L*0,T; H'(Q)) to the system (2.5).

Proof: The existence of solution u in (2.5) can be proved from Them.6.7 of [19], and
HUH%OO(O,T;LQ(Q)) + HUH%Q(O,T;Hl(Q)) <C.

Next, we prove that if e <ug <1 a.e. x €, then e <u <1 a.e. in Qr.
Multiplying equation (2.5) by (u — €)™, where (u — €)™ = max(0, € — u), and integrating
over €2, we get, for a.e. t € (0,7)

2dt/|u—e 2da:+a1/|u—e ]da:——ozg/ 7 0)(u = 21~ 20) + 1+ 6.
+ p3g(0)]da.

It follows from the definitions of (u — €)™ and ¢'(u) that

2dt/|u_€ |dm+a1/\u—e C|?dr = 0. (2.7)

Due to the fact that the second term in (2.7) is positive, we obtain

2dt/]u—e “|dx < 0. (2.8)

From the data (ug —€)~ = 0, it is easy to verify (u — €)™ = 0. Hence, u > € a.e. in Q.
We next multiply equation (2.5) by (u — 1)*, integrate over €2, and obtain, for a.e.
(0,7)

M/\ ) Pdoar [ Ju= i Pde =~ as [ G (- 20+ 1 o
+ p39(¢)]da.

Making use of the definitions of ¢'(u) and (u — 1)*, we get

2dt/| \dx+a1/yu—1 2da = 0. (2.9)

5



Similarly, we deduce u < 1 a.e. in Q7. The proof of Lemma 2.3 is complete.
Now, we start to complete the proof of Lemma 2.2. We multiply equation (2.3) by n €
L*(0,T; H'()) and use the boundedness of u, the result is

t
!/0 (ur, myds| < C(lull 20, ) 1Ml 205y + Il 220,250 @) 161720 11202

+ ||77||L2(0,T;H1(Q)) H¢||%oo(o,T;H1 (Q)))
< Clnllc20,m;m1 9)-

This implies

Hut”Lz((),T;(Hl(Q))/) S C (210)

For the estimate [|ul|74q,, We have

t
||u||%4(QT) :/ /|u|4d:vds
0o Ja

< CllullZeeo.r.z2 1l 220 7011 2))
< C.

For the uniqueness, we consider u; and uy two solutions to the system (2.3). We note
U = u; — us, and it satisfies

Up — ayUpe = —p1 (W' (u1) — W' (u2)) — s (q' (1) — ¢ (ua)) [1 + [¢2]* + p3g(0)],
(2.11)
U0, z)=0, ze€Q 9u=202w—_q (t z2)e(0,T)x 0.

Multiplying equation (2.11) by U, integrating over €2, we obtain

31U+ U7 = = [ {pa (A (a) = () + (g () = o Cun)[1 + 6 + pag() U

<C 1+H¢xHLoo )+ 19()] e o) 1T
< C(1+ a2 16112 + ]2 ) V1P

From Gronwall’s lemma [20], it is easy to obtain
¢ L {gaal| 2 (612 1Bl oy, ) ds
o) < o> 0, )P =

which ensures the uniqueness. The proof of Lemma 2.2 is complete.

2.2 The Banach fixed-point method

In this subsection, we show the existence of local solution to problem (1.4)-(1.7) by employing
a Banach fixed-point theorem [18]. Below we introduce the Banach fixed-point theorem, that
is



Theorem 2.2 (Banach Fixed-Point Theorem) A is a Banach space. Assume T : A —
A is a nonlinear mapping, and suppose that

| 7(ur) = 7(u2) [[< v [ ur —uz ||, (u1, up € A) (2.12)
for some constant 0 <~ < 1. Then 7 has a unique fized point.

Now, we begin to show the existence of local solution to problem (1.4)-(1.7). First, from
the proof of Lemma 2.1 and Lemma 2.2, we can define a map A : X — X by setting
Ao, 1) = (¢, u), where (¢, u) and (¢, @) satisfy

(& — as(q(2)d,), = —pg'(d)a(id)  in Qr,

U — Uy = —3q (W)[1 + |gu|* + p3g(0) + 42-(1 —2u)] in Qr, (2.13)

L 9(0,2) = ¢o(x), u(0,2) = up(x), v € % =0, g—g =0, (t, z) € (0, T) x 0.

Next we need to claim that A is a compressed mapping if 7" > 0 is small enough. To
prove this, we choose (¢;, 4;) € X so that A(¢;, @;) = (¢;, w;) with the norm

[(0i @i)llx = N @il 0.1 () + 103l 20m,m2(0)) + (|8l Lo 07,11 (2)) + |8l 20,7581 (2
Hlaill s,
where (¢, u;), i = 1,2 are the solutions to the syestem (2.13).

Lemma 2.4 Assume ug € L2(Q), ¢o € HY(Q), and ||(¢s, @)||x < C. Suppose A: X —
X is a nonlinear mapping, if the mapping satisfies

|A($1, 1) — A(da, tia)llxe < V[[(d1 — do, g — 1ia)||
for some constant 0 < ~v < 1. Then A is a contraction.
Proof: We set ¢ = ¢y — ¢, U = uy — ug, then (¢, U) satisfy
(6 — o (q(in)dro — qliin) d2a) , = —pg'(61)q(in) + pg'(62)q(iia) i Qr,

Up — a1Usp = —asq (u1) (1 + [¢12]* + p39(d1)) + cs3q’ (u2) (1 + |daa|* + p3g(92))

— p1 (W (u1) — 1/ (us)) in Qr, (2.14)

$(0,2) =0, U0,2) =0, zeQ 2=0L=0 (¢ z)e (0, T) x .
\ on on

Multiplying the first equation in (2.14) by ¢, integrating over 2, we get
1d

501 + camlenl* < s [ fatin) = ada)ll6aliénlde + pllain) oy | 19'61) = g (Go)llohdo

+p /Q 19/ (d2) (@) — gli)||6]d



where we set 0 < m < g(u;) < M, i =1, 2, and

I = as / 1g(@n) — q(@2) |l | 65]

O(gm

< —leall® + Cllgal®

(0% m
: 5 N0al” + Cllallin o (2.16)

I/\

I = plla(in) =) / 16/(61) — ¢ (3)|6lde
< ClolIBI(1BI2 + 162)
1 .
1Al + 8ol + I, (2.17)

IA

I=p / 1B lla(@r) — alan)|blde
<c / O116llg/ (6| dz

1 - .
< 51611l (62) 1200y + CINUIP

1 A .
< 5llol*1éallzn @) + CIUIP. (2.18)
The estimates (2.15)-(2.18) yield
2 4 agm 2
: S0+ 22 o]

< §(II¢1II‘};1(Q> + 02l + I 02llE @) 1917 + C{ld2lzr ) + 1017 + U117}

We get from Gronwall’s lemma and Holder inequality that

t t
I6I? < c(1+ / \07[2ds + / 16120y ds)

t
< OO moraion + 1l rman)( | @9
< CT(NU 70,7200 + 10117 0,71 0)))- (2.19)
The estimates (2.15)-(2.19) together yield
|’¢’|%°°(O,T;L2(Q)) + HQSH%Q(O,T;Hl(Q)) < OT(HUH%OO(O,T;LZ(Q)) + ”¢H%°°(O,T;H1(Q)))'

We multiply the first equation in (2.14) by —¢,,., integrate over 2, and obtain

1d
e e L

< 042/ ’q/(ﬁl)ﬁ1x¢1z - q,(/&Q)a2x¢QmH¢xx|dx + P/Q ‘Q(ﬁl)Hgl(@) - gl(<£2)H¢m’d$

o / 19 (82) (a(81) — q(22)) |l dz
i+ dyt s (2.20)



where we set @ = max(q'(u1), ¢'(u2)), and
J1 = 042/ ‘q/(ﬁ1>alm¢1x - q/(ﬁz)@2x¢2x’|¢m|d5€
Q
< awm [ 0,l160ll0wslde + s [ fins6cl}orslda

Oégm

< 162217 + C Tl d1:ll 70 () + 22170 () 100 1%). (2.21)

= p / g(@)llg' (1) — o' (92) |ualde

Oégm

< = sl + lla(@) |2y llg' (91) — g/ (S2)II°

OCQTTL

< =N aall® + CUISLI Lo ) + 19270 2 111, (2.22)

I = p / 16/(B2)(a(@r) — ()| busdz

Oégm

VAN

|Gz l® + O/ | (62) 2|0 |2da:

1622l® + CIU 720y 1021131 (0 (2.23)

Oégm

<

It follows from (2.20)—(2.23) that

Oégm

2 2
et P LT
< OH“hH%w(Q)H%HQ + CI(HU$H2H¢1$H%W(Q) + (||¢1||%oo(9) + ||¢2||%oo(9))||¢||2
HIU NN 02ll51.0) - (2.24)

Applying Gronwall’s lemma, the estimates (2.20) and (2.24) imply
t
||¢IH%°°(O,T;L2(Q)) + HgbwwH%Q(O,T;LQ(Q) < C(||¢||%oo(o,T;H1(Q)) + ||UH%°°(0,T;L2(Q)))(/O ds)
< CT(10ll 1wy T IV ~0riz@y)-  (225)

Multiplying the second equation in (2.14) by U and integrating over (2, we obtain

31U+ Uil < o1+ sl + sl IV + Ca | llten) = stn) P

Applying Gronwall’s lemma, we get

HUH%OO(O,T;LQ(Q)) + HUH%Q(O,T;Hl(Q)) < CT(H¢H%°°(O,T;H1(Q)) + HUH%OO(O,T;LZ(Q)))' (2.26)

For the estimate ||U ||i4(QT)’ we infer

t t
/0 / Ul*deds < © / 12 U2

< CNU G o2 U 17201001 )
< (CT(9)1 70,1y + U oo 0.7:2207)) (2.27)
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Then, thanks to (2.15)-(2.27) we have
16, D)l < (CT)=1I(d. ) (2.28)

Thus, A is a contractive operator if T > 0 is so small that (CT)% < 1. Then we apply
Banach fixed-point theorem to obtain a solution (¢, u) to problem (1.4)-(1.7) on the interval
[0, T}], where 0 < T} < T so small that (CT})z < 1.

2.3 Existence of global solution

In this section, we prove the solution (¢, u) obtained is global.

Theorem 2.3 Let (¢, u) be a weak local solution to problem (1.4)-(1.7) in the sense of
Definition 1.1. If for any T, there is a constant C = C(||¢o| a1, ||vollr2), T) satisfies

1(®, w)llx <C, (2.29)
then the solution (¢, u) is global.

Proof: We multiply (1.5) by u and integrate over {2 to obtain

1d
gl sl + oy [ W do+ay [ qult+ 6. + mg(@)ds = 0. (230)
Q Q
Simplifying (2.30) as
1d
g3l + anlua P+ ol + 603 [ (1= w1+ 16, + pag(@)de < .

Using Gronwall’s lemma, we get

ull7 o 072200y + NU2llT20.2:020)) + NullTagry < C(T, lluollr2@y)- (2.31)
Multiplying (1.4) by ¢ and integrating over €2, we obtain

1d
2dtH¢H2+042/961(16)!%\20196—i—p/gg'(¢)¢q(u)dm:O.

We obtain the estimate from Holder inequality and the boundedness of ¢(u) that

= 1017 + ol + pml i) < ClOI* (2.32)
Applying Gronwall’s lemma, the estimate (2.32) implies
Dl 075209) + 02l T20,m:22(0)) < C(T ol z2e)- (2.33)

Multiplying (1.4) by —¢,., integrating over 2, and using Gagliardo-Nirenberg inequali-
ty, we obtain

2dt|l¢$||2+052m“¢zx||2 < /|g ¢x$|d$+a2/ |q um¢w¢zz’dx

Oégm
[6aall® + C(Ig" (O + I fa Loy 11l Z2(e)

16aall® + C (6151 (@) + 1617 1ullh (@) (2.34)

IN

Oégm

IN
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It follows from Gronwall’s lemma and (2.34) that

12l e 02220y + N b2allizigry < C(T, 1ol (@)- (2.35)

These relations (2.31)-(2.35) verify the estimate (2.29).

3 Regularity and uniqueness

In this section, we investigate the regularity and uniqueness of the solutions obtained in
Section 2. To begin with, we first introduce the Gagliardo-Nirenberg inequalities, which will
be utilised later on. That is

Lemma 3.5 Let Q € R! be a bounded and open set with a smooth boundary. Then the
following Gagliardo-Nirenberg inequalities hold:

el < CilltnelZaop 2y for all we HX(Q):

ol < Colltzall oy Il iy for all e H(S):

ol < Colltwnoll oy lull oy for all we HY(Q);
where C1, Cy, C3 are positive constants.

Theorem 3.4 Let ¢g € H*(Q) such that % =0 and ug € H(Q), then for any T > 0, there
exists a unique solution (¢, w) to problem (1.4)-(1.7), which satisfies

¢ € L*0,T; H*(Q)) N H'(0,T; H'());
u € L0, T; HY(Q)) N L*(0,T; H*(Q)), u, € L*(0,T; L*(Q)). (3.2)

The proof of regularity: We multiply (1.5) by u; and integrate over € to calculate

O./ld

2
R

HMW+mewmm:—%Kywwm+wﬁ+mmmm

IN

1
Slluell® + Cliallza@) + 19(6) 1w + 1)

1
§Hut|!2 + Cl|paalIP10] 7 ) + 8] Fr1 () + 1)-
(3.3)

IA

Integrating (3.3) with respect to t, we obtain

luellZ2p) + clluall® + 201 /Q h(u(t))dz < C([lua (0, 2)* + [|h(uo) |1 @) + 1]z 0, 7 1110

+||¢:cas||%2(QT)||¢||%°°(O,T;H1(Q)) +1)
< C.

Hence u € L>(0,T; H'(Q)), u; € L*(0,T; L*()).

11



We multiply (1.5) by —u,, and integrate over € to obtain
1d
— el + e [* = p1 / h (u)ugede + ag/ ¢ (W)L + |9a]* + p39(d)|uzedr
aq
< el + OO+ K (@7 + I éelza@) + 19Dz (3:4)
It follows from Gronwall’s lemma and (3.4) that

HUQZH%N(O,T;L?(Q)) + ||“MH%2(QT) <C.

Hence (3.2) follows.
Next, multiplying (1.4) by @z, integrating over €2, we obtain

il = a2 [ @)6..01mms = p [ (010 0n0rata
= —Q2 /Q (q”(u>ui¢x + q/(u)uxx¢x =+ 2q/<u>ux¢m + Q(u)(bmx)%mdx
T / (6" (6)6sa() + &' () (1)t1z) Sraodl. (3.5)

We make use of the assumption 0 < m < ¢(u) < M and (3.5) that

Dbl + asmlldasall® < C / 1 Pl b | e | + / |2 | uae | + / i ||z |

T / 19" ()][6l | asaldz + / 16/(6)]ttal | oo )
Q Q
= C(K1+ Ky + K3 + Ky + K5), (3.6)

th

where
K, = /Q 1 216 |
< | all Lo @) |72 (0) | Gae
< Nmaall 1613 ol ]2 g | B0 |
< Z baaol” + ClOIP lutaa Pl 3 (3.7)

Q

< Nl @all 2o @) e || dzaz||
§ l
< el #1017 [[ta || el
agm
< 162sall® + Cllgwa 216112 1tz 1 (3.8)

Q
< HUJ’SHL‘”(Q)’WWHH(bme
[ull zr2(@) | 0za || @z |

<
Oégm
< ——lbuwall® + Cllullfr o) éooll*; (3.9)

12



K, = / 10"(6)] [l |zl

QoMn
26 [ Gaaall® + Cll6 1l c); (3.10)

<

Ks — / 16/(6)] 4] |Gzl de

< N0 Zoe o 11 | G

< 161z @ llullz @) | fae
QTN
< —5 19uwall® + UGl oyl 0. (3.11)

Combination with (3.6)-(3.11) and Gronwall’s lemma yield

1@z ll7oe (0.7.22(0)) F | PazallZ20. 10200 < C(1 A+ 1622 (0, 2)]|72(0)
<cC. (3.12)

We conclude from (3.12) that ¢ € L>(0,T; H*(2)) N L*(0,T; H3(Q)).
To get the estimate of (¢;),, we multiply (1.4) by —(¢..); and integrate over €2 to obtain

10l = —as / (a() o) (Gua)edz + p / §(6)g(u) ($us)edz. (3.13)

Using integration by parts, and the assumption 0 < m < ¢(u) < M, we have

I(60)alP + 25 el = 2 [ (" (@020 + /(0 utaaa + o (1)) (1)
—p / (6"(6)bua(u) + &' ()¢ (w)uis) (f1)odla
< o( / s 0| (B1)alde + / ael el (B1)alda + / o1 |l | (S0) |z
n / 16" (S)16a (Br)sldz + / 16/(6) o (B0) )
= C(Ll + L2 + L3 + L4 + L5>, (314)
where

Ly = / ta 2 650l | (B1)e ]
Q
< 1o e a2 | (@0)a
2 1
< 11w I3 101 e gy It el 0 | 1)

1 2
< 5|!(¢t)m\|2+C!|¢m||2||¢!|§p<mHumll2HUI|§p(Q); (3.15)
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L= / || (P0)s
< 1Lz 2t I} 1)
< 1 asll* 1015w gy 1tz 11 (S0)

1 2
< gH(@)xHQ + Cllwal P10l Fr gt 1 (3.16)

Ly = T T tzd
: /Q|u 6001(60)s |
< N o=y el (@0)a]
1
< 1@l + Cllulls o e (3.17)

A

Li— / 19" ()16l (60)lda
1612 o0 611 @0)s
1
< H1@l? + Clloln o (3.18)

IN

Ly — / 16/(6) [t (0) |z
1813 e s 1 0)s

1
< g||(¢t)z||2 + Clloll o el o) (3.19)

IA

Here we use the embedding theorem H?(Q2) — H'(Q2) — L>(Q) and Lemma 3.5 in (3.14)-
(3.19) respectively. Then it follows from (3.14)-(3.19) and Gronwall’s lemma that

1(6)x 1220 22()) + | Gaz | Fe 02200y < C(1 4 [1022(0)]|72(0)
<C,

which implies ¢ € H'(0,T; H*(2)). The regularity is proved.
The proof of uniqueness: We consider (¢, u1) and (¢pa, uz) two solutions to problem
(1.4)-(1.7). And we set ¢ = ¢ — P2, u = u; — ug, then (¢, u) satisfies

(¢ — s (q(ur)dra — q(u)d2s) , = —pg'(d1)q(ur) + pg' (92)q(uz) in Qr,

U — Uy = —3q (1) (L4 |pra]® + p3g(¢1)) + s (u2) (1 + @20 |* + p3g(2))

— P (h'(ul) — h'(ug)) in Qr, (3.20)

¢(0,2) =0, u(0,2) =0, z€Q; 92=0, 28=0, (¢t z)e(0, T)x 0%
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We multiply the first equation in (3.20) by ¢, integrate over 2, then we get after inte-
grating by parts

1d
31Ol + camll P < e [ Ja(u) - atwaslBalde + platun ey [ Io60) = o @Il
4 [ 19/a)llatur) = gtus)olda
Q
< C(llgalllldazll + (¢all7oo iy + lld2llzo @) 1217 + |l @2ll7 o0 ll0 M),
where we set 0 < m < q(u;) < M, i =1, 2. Owing to the continuous embedding H!(Q) <
L>=(Q) and the fact ¢; € L>(0,T; H'(Q)), i = 1, 2, we obtain

d
ol + asmlig.|* < CII° + [lul)- (3.21)

We multiply the first equation in (3.20) by —¢,., integrate over {2, and obtain after
integrating by parts,

1d 9 9
5 166 + 16l

az/ ¢ (ur) e Pra — ' (u2) e G2 | drz|d + p/ lq(ua)llg'(é1) = §'(¢2) || Pas|d
Q Q

IN

T / 16 (62)]19(u1) — q(u2) |l

IN

¢ /Q(stcll%llcﬁml + [t @12l D] + 161 + G216l dua| + |02 ul|bua| ) dw

IN

4
=llbwell® + C(lluzel @02l + 012 2oy lall” + 61 + dallz (@) 1 + 12l ey 1)

4 3 1 3 1
g|’¢m||2 + O (Jugzall? luz]l (|92 ]” + | Praxll2 [|f1]12 [l |2 + llp1 + b2l gy 212
-+ a5 0 lull?), (3.22)

where we set a = max(|¢' (u1)], |¢'(u2)]), a% = |q(u1) — q(u2)| and using the continuous

embedding H'(Q2) — L>°(€). Combination with the fact ¢;, u; € L>(0,T; H(Q))(i = 1, 2)
and (3.22) yield
Ld
2dt

Since the estimates of u is similar to the calculation of ¢, we make use of the continuous
embedding H'(Q2) — L>(Q) and the fact ¢; € L>(0,T; H*(2))(i = 1, 2) to obtain

1d
5 7 1l + anllua]® < Co(1+ [luseeP)Jull® + Collall” + Csll @I, (3.24)
where C, C5, C3 are positive constants.

With the help of (3.21)-(3.24), we have

IN

1 3 3
[l62]” + gH%zHQ < C(lluzeallZN0a 1 + | 12012 [ l® + 110117 + [Jul?).  (3.23)

d
— (9l (0) + 1ull) < Cullol7 ) + Co(1 + fuawa ) [Jull* (3.25)
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From Gronwall’s lemma and (3.25), it easy to know

00 + Pz =o.

The uniqueness is proved. Thus the proof of Theorem 3.4 is complete.
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