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Abstract

In this paper, a mathematical model is proposed and analysed to assess the impacts of

health care providers in transmission dynamics of COVID-19. The stability theory of dif-

ferential equations is used to examine a mathematical model. The results of both local and

global stability of disease-free equilibrium points were determined by using Routh-Hurwitz

criteria and Metzler matrix method which verified that was locally and globally asymp-

totically stable. Also, the endemic equilibrium point was determined by the Lyapunov

function which showed that E∗ was globally asymptotically stable under strict conditions.

The findings revealed that non-diagnosed and undetected health care providers seems to

contribute to high spread of COVID-19 in a community. Also, it illustrates that an increase

in the number of non-diagnostic testing rates of health care providers may result in high

infection rates in the community and contaminations of hospital’s equipment. Therefore,

the particular study recommend that there is a necessity of applying early diagnostic testing

to curtail the COVID-19 transmission in the health care providers’ community and reduce

contaminations of hospital’s equipment.

Keywords: COVID-19, Health care providers, Virus concentrations, Diagnostic testing,

Hospital equipments

1 INTRODUCTION

The ongoing Corona virus disease-2019 (COVID-19) was reported in the mid-December-2019

in Wuhan City at Hubei Province, China causing a severe acute respiratory syndrome corona

virus- 2 (SARS-COV-2), where the first infected patient was identified after exposure into the

seafood market [1, 2]. The existence of this pandemic disease in the world affected many people

without regarding their economic and development status.

The World Health Organisation in its 6th September, 2021 report showed that more than
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220563227 were confirmed having COVID-19 infections worldwide and from which more than

4565483 confirmed deaths while more than 570000 health care providers were infected and

2500 died due to the pandemic disease [3, 4]. The corona virus is locally transmitted through

either direct or indirect contact with infected individuals such as the droplets resulting after

infected patients speaks, coughs and sneezes [5]. However, scientists and researchers proved

that the transmission of the corona virus from an infected human to human spreads rapidly

through eyes, nose, and mouth before washing contaminated hands with soaps or sanitizers [6].

Furthermore, the corona virus spreads through hospital’s equipment due to insufficient precau-

tions taken by health care providers’ population resulted from the unavailability of equipment

and poor facilities.

The infected individuals with COVID-19 expressing several signs of the disease. The foremost

clinical symptoms are high fever, coughing, sneezing, headache, hemoptysis, diarrhoea, dys-

phonia, heart failure, and respiratory failure [6, 7]. Since COVID-19 affecting many countries

in the World, then East Africa as among the victims struggled to prevent further disease trans-

mission by insisting people wearing face masks, using sanitizers, practising social distancing,

introducing lock-down, and suspending all activities involving gathering such as closing learn-

ing institutions Mumbu & Hugo [1].

Various mathematical epidemiologists have been proposed different studies targeting the trans-

mission dynamics and control the spread of COVID-19 in a population by introducing the best

control measures such as personal protective equipments, face masks, disinfectants, sanitizers,

and applying physical distancing but still the disease affects many people around the world.

Some of the mathematical model includes:

The SEIRD model proposed by Viguerie et al [8] applied partial differential equations to simu-

late the spread of COVID-19. The results inform the health authority in Italy of the best way of

allocating medical resources and effective control measures regarding geographical location.

However, Mumbu & Hugo [1] developed the SMUEIHR model for the human population, by

comparing the use and disuse of masks and observed that before and after introducing wearing

face masks and hospitalization the basic reproduction number was R0 = 3.8 and R0 = 0.698

respectively. Hence from the values of R0, the researchers recommended that wearing face
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masks is mandatory whenever contacted with the crowded population as preventive measures

for control spreads of COVID-19 transmission in Tanzania.

Besides, Baek et al [9] developed SEIR containing compartments of Doctors, Nurses, Patients,

and Caregivers model for assessing the effectiveness of early screening and quarantined in

tertiary hospitals to identify infected patients. The results showed that early screening and

quarantined in South Korea reduced the number of cases from 81.3% to 42% within 60 days

after implementation. The study insists on implements early screening to all visitors and early

stage of exposure to infections.

Furthermore, Mekonen et al [5] studied SEIRDM model for self protection behaviour changes

from asymptotic individuals with COVID-19. The outcome showed that basic reproduction

number depends on the contamination of environments and population. The study suggested

that for preventing further COVID-19 transmission, the population should be aware with the

environments.

Thus, the particular study needs to applymathematical techniques to analyse the preventivemea-

sures required for minimizing the transmission dynamics of COVID-19 in health care providers’

population.

Therefore, this study intends to analyse the impacts of health care providers’ population in

transmission dynamics of COVID-19.

2 MODEL FORMULATION

In this paper, a deterministic mathematical model on transmission dynamics of COVID-19 was

formulated and analysed. The biological model consists of seven sub-compartments namely: a

susceptible health care providers’ population whose at high risk to be infected Alfred et al [10]

when contacted with infectious denoted by SH , exposed health care providers EH are expected to

be infectiouswith the disease but do not express clinical symptomsZhang et al [11]. The infected

class is further subdivided into two classes that are diagnosed and detected ID whose clinically

identified having SARS-COV-2 infections while non-diagnosed and undetected IU health care

providers’ population are unidentified clinically and does not show disease symptoms due to

either low virus concentrations or strong body immunity Kasali et al [12], but treatment class

denoted by TH is a place where all infected individuals seek medications and supportive care
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services while recovery class RH are all sick individuals who gained health either through

medical treatments or natural body immunity. Finally, the virus concentrations attached on

the hospital’s equipment is denoted by CH and it influences susceptible individuals for getting

COVID-19 infections indirectly from contaminated hospitals’ environments.

It is also assumed that hospital’s equipment acquired infections through interaction of non-

diagnosed and undetected health care providers’ population only since they are difficult to

identify infected individuals. The total health care providers’ population at any time t is denoted

by;

NH (t) = SH (t)+EH (t)+ ID (t)+ IU (t)+TH (t)+RH (t) (1)

Hence, the following parameters were constructed in formulating a mathematical model:

(i) Health care providers’ population get exposed either directly or indirect contacts to infec-

tious through infection rate λ = β (ID+ζ IU )
NH

+ βwCH
G , where G represents the virus concen-

trations and capacity of hospital’s equipment to hold SARS-COV-2 [5], β is an effective

probability of infection rate, βw is probability of infection rate from CH class, ζ is a

modification of parameter in reduction of disease transmission from non-diagnosed and

undetected health care providers [5, 12].

(ii) The infections of health care providers’ population increasing when interactions to the

contaminated hospital equipment increases which induced by the rate of shedding off

viruses δ and progression rate φ while the virus concentrations on hospital’s equipment

decreases due to the natural death rate of SARS-COV-2 as time goes on which is denoted

by q [5].

(iii) However, recruitment rate Π represents individuals visited at hospitals for medical treat-

ment and consultations while µ is a natural mortality rate occurred for each class of health

care providers’ population.

(iv) The susceptible health care providers’ population increases at the rate of individual waned

their body immunity γ , recovered after using medications σ and diagnosed but not having

infections rate θ . Furthermore, some of non-diagnosed and undetected having infection

recovered at the rate α and the rest who undergoes severe clinical symptoms seeks

medications at the rate η while all severe infected individuals are treated at the rate ρ.

4



(v) The COVID-19 disease induced death rates τ and ν at diagnosed and detected, non-

diagnosed and undetected classes respectively.

(vi) The proportion rates of diagnosed and non-diagnosed with respect to exposed health

care providers’ population EH is ε and 1− ε respectively, while for those detected with

COVID-19 infections seek treatments at the rate ω

(vii) The virus concentrations in the hospital’s equipment increases at a rate of shedding off δ

from IU while it decreases at decayed rate q

From the variables and parameters stated above, the transmission dynamics of the COVID-19

model were constructed as follows. Basing on the transmission dynamics of COVID-19 model

Figure 1: Transmission dynamics of COVID-19 model

in Figure 1, we generate the following non-linear ordinary differential equations of the model
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system as:



dSH
dt = Π+θ ID +(γ +σ)RH−λ SH−µ SH

dEH
dt = λ SH− (µ +φ)EH

dID
dt = ε φ EH− (θ +µ + τ +ω) ID

dIU
dt = (1− ε)φ EH− (µ +η +α +δ ) IU

dTH
dt = ω ID +ηIU − (µ +ρ +ν)TH

dRH
dt = α IU +ρ TH− (γ +σ +µ)RH

dCH
dt = δ IU −qCH

(2)

For non-negative initial conditions we have:

SH (0)> 0; EH (0)> 0; ID (0)> 0; IU (0)> 0; TH (0)> 0; RH (0)> 0; CH (0)> 0;

2.1 Boundedness of solution

In this subsection, the model system (2) is biologically well defined if all its solutions exists and

is bounded within the positive invariant region such that;

Γ=
{
(SH(t),EH(t), ID(t), IU(t),TH(t),RH(t)) ∈ R6

+ : 06 NH(t)6 Π

µ
, CH(t) ∈ R+ : 06CH(t)≤ Πδ

µq

}
Theorem 1 The solution of model system (2) lying within R7

+ are uniformly bounded in the

invariant region Γ for ∀t > 0.

Proof

Let the bounded region be;

Γ={SH (t) ,EH (t) , ID (t) , IU (t) ,TH (t) ,RH (t) ,CH (t)} ∈ R7
+ for ∀t > 0

Then, by differentiating equation (1) with respect to time t and substituting model system (2) of

the first six equation, we obtain;
dNH

dt
= Π+θ ID +(γ +σ)RH −µ SH − (µ +φ)EH + ε φ EH − (θ +µ + τ +ω) ID +(1− ε)φ EH

− (µ +η +α +δ ) IU +ω ID +η IU − (µ +ρ +ν)TH +ρ TH +α IU − (γ +µ +σ)RH (3)

Simplifying equation (3) and assuming that there is a well protections and control measures

observed by health care providers’ population, then no infections induced by COVID-19 disease.
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Thus, equation (3) becomes;
dNH

dt
6Π−µNH (4)

It follows that solution of equation (6) is given as;

NH(t)6
Π

µ
+

(
NH(0)−

Π

µ

)
e−µt (5)

Hence as t −→ ∞ in 5, we obtained;

NH(t)6
Π

µ
(6)

From equation (6), the health care providers’ population implies that Γ is positively invariant

bounded region of solutions in R6
+ such that;

ΓNH =

{
(SH(t),EH(t), ID(t), IU(t),TH(t),RH(t)) ∈ R6

+ : 06 NH(t)6
Π

µ

}
. (7)

However, for the virus concentrations on hospital’s equipment class, we have;

dCH

dt
= δ Iu−qCH (8)

Since, IU 6 Π

µ
, then equation 8 becomes,

dCH

dt
6 δ Iu−qCH (9)

By using the concept of Gronwall inequality in 9 as applied by [5], for 06CH(0)≤ Πδ

µq , we get;

06CH(t)6
Πδ

µq
(10)

Hence, the virus concentrations in the hospital’s equipment are also bounded in the invariant

region positively such as:

ΓCH =

{
CH(t) ∈ R+ : 06CH(t)6

Πδ

µq

}
(11)

Therefore, combining the solutions of 7 and 11, the model system (2) is epidemiologically well

defined in the bounded invariant region Γ �

3 MODEL ANALYSIS

In this section, we determine the equilibria points of the model equation, reproduction number,

and analysis of the model.

The model 2 posses the following equilibria points:
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(i) Disease free equilibrium point;

E0
(
S0

H ,E
0
H , I

0
D, I

0
U ,T

0
H ,R

0
H ,C

0
H
)
=

(
Π

µ
, 0, 0, 0, 0, 0, 0

)
.

(ii) Endemic equilibrium point E∗o f (S∗H ,E
∗
H , I
∗
D, I
∗
U ,T

∗
H ,R

∗
H ,C

∗
H) in terms of I∗D and I∗U at steady

state, we have;

S∗H =
((α (µ +ρ +ν)+ρ η) I∗U +ρ ω I∗D)(γ +σ)+ (θ I∗D +Π)((µ +ρ +ν)(γ +µ +σ))

(µ +ρ +ν)(γ +µ +σ)(λ ∗+µ)
,

E∗H =
((λ ∗α (µ +ρ +ν)+λ ∗ρ η) I∗U +λ ∗ρ ω I∗D)(γ +σ)+λ ∗ (θ I∗D +Π)(µ +ρ +ν)(γ +µ +σ)

(µ +φ)(µ +ρ +ν)(γ +µ +σ)(λ ∗+µ)
,

T ∗H =
η I∗U+ω I∗D
µ+ρ+ν

, R∗H =
(α (µ+ρ+ν)+ρ η)I∗U+ρ ω I∗D

(µ+ρ+ν)(γ+µ+σ) , C∗H =
δ I∗U

q .

3.1 Basic reproduction number

The basic reproduction number is used by the researchers to determine whether the disease

exists or cleared out in the entirely community. The basic reproduction number is used by the

researchers determine whether the disease it will either continue existing or dying out in the

community. Hence, to compute the basic reproduction number, we used the approach as applied

by [2, 13, 14] which is given as;

R0 =
βφ (ε (µ +η +α +δ )+ζ (1− ε)(θ +µ + τ +ω))

(µ +φ)(θ +µ + τ +ω)(µ +η +α +δ )
(12)

Biologically, the basic reproduction number R0 shows that new number of infected health care

providers’ population with COVID-19, it depends on β while keeping constants other parameter

values:

If β < (θ +µ + τ +ω)(µ +η +α +δ ) , then R0 < 1 and health care providers’ population

and hospital equipments will be free from COVID-19 infections.

If β > (θ +µ + τ +ω)(µ +η +α +δ ), then R0 > 1 and the disease will invade and spreads

in health care providers’ population which results to virus concentration on the hospital’s

equipment.

8



3.2 Local stability for disease free equilibrium points

To determine the local stability of disease free equilibrium points of the model system (2),

we applied the linearisation techniques to formulate a Jacobian matrix with corresponding to

disease free equilibrium point, E0.

Theorem 2 If R0 < 1, then the disease free equilibrium points E0 of the model system (2) is

locally asymptotically stable, otherwise unstable.

Proof:

We need to attest that the real part of the eigenvalues of the Jacobian Matrix J at disease free

equilibrium point E0 has negative sings.

Hence, we have a Jacobian matrix J at disease free equilibrium point E0 given as:

JE0 =



−µ 0 θ −β −β ζ 0 γ +σ −βwΠ

µG

0 −µ−φ β β ζ 0 0 βwΠ

µG

0 ε φ −θ −µ− τ−ω 0 0 0 0

0 (1− ε)φ 0 −µ−η−α−δ 0 0 0

0 0 ω η −µ−ρ−ν 0 0

0 0 0 α ρ −γ−µ−σ 0

0 0 0 δ 0 0 −q


(13)

From matrix (11), we obtained the real parts of eigenvalues with negative sign as follows:

λ1 =−µ , λ2 =−(µ + γ +σ), λ3 =−(µ +ρ +ν).

Also, the remaining eigenvalues are determined by using matrix block reductions as applied in

[10, 15]. Then, the reduced Jacobian matrix JE1
0
is given by;

JE1
0
=



−µ−φ β βζ
βwΠ

Gµ

ε φ −θ −µ− τ−ω 0 0

(1− ε)φ 0 −µ−η−α−δ 0

0 0 δ −q


(14)

where,

a1 = φ +µ , a2 = θ +µ + τ +ω , a3 = µ +η +α +δ , a4 = q.
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Now to obtain the eigenvalues of matrix (14), we determine its determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1−λ β β ζ
Πβw
Gµ

ε φ −a2−λ 0 0

(1− ε)φ 0 −a3−λ 0

0 0 δ −a4−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (15)

Hence, characteristic equation JE1
0
is a fourth order of degree polynomial which is written by;

λ
4 +Aλ

3 +Bλ
2 +Cλ +D = 0 (16)

where,

A = a4 +a3 +a2 +a1,

B = β ε φ ζ −β φ ζ − ε φ β +a2a1 +a3a1 +a4a1 +a3a2 +a4a2 +a4a3,

C = β ε φζ a2 +β ε φ a4−β ε φζ a3−β ε φ a4−β φ ζ a2−β φ ζ a4

+a1a2a3 +a1a2a4 +a1a3a4 +a2a3a4 +
Πδ ε φ βw−Πδ φ βw

Gµ
,

D = β ε φ ζ a2a4−β ε φ a3a4−β φ ζ a2a4 +a1a2a3a4 +
Πδ ε φ βwa2−Πδ φ βwa2

Gµ

Using the concept of Routh-Hurwitz criteria as applied in the work of [12, 16] , we obtain:

1. A, B, C , D > 0

2. AB−C > 0

3. ABC−C2−A2D > 0

Therefore, the disease free equilibrium points E0 is locally asymptotically stable when the

eigenvalues of matrix (14) have negative real parts if R0 < 1, otherwise unstable. �

3.3 Global stability of disease free equilibrium points

Theorem 3 The model system (2) is said to be globally asymptotically stable whenever R0 < 1

at disease free equilibrium point E0 , otherwise it is unstable within invariant region Γ.

To examine the global stability of disease free equilibrium point E0, we use the method done by

10



[17, 18]. Hence, we rewrite our model system (2) as:
dY1
dt = A1 (Y1−Y ∗1 )+AY2

dY2
dt = A2Y2

(17)

where,

Y1 = uninfected classes of the model equation (2)

Y2= infected classes of the model equation (2)

Y ∗1 = represents disease free equilibrium point E0 of uninfected classes of model equation (2)

We define,

Y ∗1 = (Π

µ
, 0, 0)T

Y1 =


Π+θ ID +(γ +σ)RH−

(
β (ζ IU+ID)

NH
+ βwCH

G

)
SH−µ SH

ω ID +ηIU − (µ +ρ +ν)TH

α IU +ρ TH− (γ +µ +σ)RH ,

(18)

Y2 =



(
β (ζ IU+ID)

NH
+ βwCH

G

)
SH− (µ +φ)EH

ε φ EH− (θ +µ + τ +ω) ID

(1− ε)φ EH− (µ +η +α +δ ) IU

δ IU −qCH

(19)

Thus, theorem 2 is epidemiologically well posed if the following conditions holds the global

stability of disease free equilibrium points E0:

i. A1 must be a matrix with real negative eigenvalues on the main diagonal.

ii. A2 must be a Metzler matrix (off diagonal matrix must have non-negative element).

Using equation (2)and (17), we obtained the following results:

A1 =


−µ 0 γ +σ

0 −µ−ρ−ν 0

0 ρ −γ−µ−σ

 (20)
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A =


−µ 0 θ −β −βζ 0 γ +σ −βwΠ

µG

0 0 ω η −µ−ρ−ν 0 0

0 0 0 α ρ −γ−µ−σ 0

 (21)

A2 =



−µ−φ β βζ
βwΠ

µ G

ε φ −θ −µ− τ−ω 0 0

(1− ε)φ 0 −µ−η−α−δ 0

0 0 δ −q


(22)

Since matrix A1 and A2 satisfies the necessary conditions (i) and (ii) respectively, we conclude

that model system (2) at disease free equilibrium points E0 is globally asymptotically stable

which makes epidemiologically meaningful in the invariant region Γ. �

3.4 Global stability analysis of endemic equilibrium point.

In this paper, the global stability of the endemic equilibrium point E∗ is determined by using

the Lyapunov function as applied by Ngalya and Kuznetsov [19]. Therefore, to obtain global

stability E∗, we need to prove that Lyapunov function L is globally asymptotically stable

contained in the invariant region Γ.

Theorem 4 If R0 > 1, then endemic equilibrium points E∗ of the model system (2) is globally

asymptotically stable defined in the invariant region Γ otherwise unstable.

Proof:

Using the Lyapunov function L, we prove that endemic equilibrium points E∗ is globally asymp-

totically stable if R0 > 1.

Thus, we define the following Lyapunov function L as:

L =
7

∑
i=1

Mi(Xi−X∗i lnXi) (23)

where,

M j= carefully chosen constants
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X∗i = represents HCPs at endemic equilibrium points

Xi=represents HCPs compartments (SH , EH , ID, IU , TH , RH , CH)

From (3.2) , we generate the following equation:

L = M1(SH−S∗H lnSH)+M2(EH−E∗H lnEH)+M3(ID− I∗DlnID)+M4(IU − I∗U lnIU)

+M5(TH−T ∗H lnTH)+M6(RH−R∗H lnRH)+M7(CH−C∗H lnCH) (24)

Differentiating equation (24) with respect to time t, we get:

dL
dt

= M1

(
1− S∗H

SH

)
dSH

dt
+M2

(
1− E∗H

EH

)
dEH

dt
+M3

(
1− I∗D

ID

)
dID

dt
+M4

(
1− I∗U

IU

)
dIU

dt

+M5

(
1− T ∗H

TH

)
dTH

dt
+M6

(
1− R∗H

RH

)
dRH

dt
+M7

(
1−C∗H

CH

)
dCH

dt
(25)

Using the endemic equilibrium points E∗, substituting the values of dSH
dt ,

dEH
dt , dID

dt ,
dIU
dt ,

dTH
dt ,

dRH
dt , dCH

dt into equation (25) and further simplification by collecting negative and positive terms

together, we obtained the following results:

dL
dt

=M1θ ID

(
1− I∗D

ID

)(
1− S∗H

SH

)
+M2λSH

(
1− λ ∗S∗

λS

)(
1− S∗H

SH

)
+M3ε φ EH

(
1− E∗H

EH

)(
1− I∗D

ID

)
+M4 (1− ε)φ EH

(
1− E∗H

EH

)(
1− I∗U

IU

)
+M5ω ID

(
1− I∗D

ID

)(
1− T ∗H

TH

)
+M6α IU

(
1− I∗U

IU

)(
1− R∗H

RH

)
+M6ρ TH

(
1− T ∗H

TH

)(
1− R∗H

RH

)
+M7δ IU

(
1− I∗U

IU

)(
1−C∗H

CH

)
−M1µ SH

(
1− S∗H

SH

)2

−M2 (µ +φ)EH

(
1− E∗H

EH

)2

−M3 (θ +µ + τ +ω) ID

(
1− I∗D

ID

)2

−M4 (µ +η +α +δ ) IU

(
1− I∗U

IU

)2

−M5 (µ +ρ)TH

(
1− T ∗H

TH

)2

−M6 (γ +µ)RH

(
1− R∗H

RH

)2

−M7qCH

(
1−C∗H

CH

)2

−M1λSH

(
1− λ ∗S∗

λS

)(
1− S∗H

SH

)
−σ RHM1

(
1− R∗H

RH

)(
1− S∗H

SH

)
(26)

which can be written as;
dL
dt

= P−Q (27)
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where,

P=M1θ ID

(
1− I∗D

ID

)(
1− S∗H

SH

)
+M2λSH

(
1− λ ∗S∗

λS

)(
1− S∗H

SH

)
+M3ε φ EH

(
1− E∗H

EH

)(
1− I∗D

ID

)
+M4 (1− ε)φ EH

(
1− E∗H

EH

)(
1− I∗U

IU

)
+M5ω ID

(
1− I∗D

ID

)(
1− T ∗H

TH

)
+M6α IU

(
1− I∗U

IU

)(
1− R∗H

RH

)
+M6ρ TH

(
1− T ∗H

TH

)(
1− R∗H

RH

)
+M7δ IU

(
1− I∗U

IU

)(
1−C∗H

CH

)

and

Q = M1µ SH

(
1− S∗H

SH

)2

+M2 (µ +φ)EH

(
1− E∗H

EH

)2

+M3 (θ +µ + τ +ω) ID

(
1− I∗D

ID

)2

+M4 (µ +η +α +δ ) IU

(
1− I∗U

IU

)2

+M5 (µ +ρ)TH

(
1− T ∗H

TH

)2

+M6 (γ +µ)RH

(
1− R∗H

RH

)2

+M7qCH

(
1−C∗H

CH

)2

+M1λSH

(
1− λ ∗S∗

λS

)(
1− S∗H

SH

)
+σ RHM1

(
1− R∗H

RH

)(
1− S∗H

SH

)

Hence, if P < Q then it implies that dL
dt < 0; for all values of (SH ,EH , ID, IU ,TH ,RH ,CH)> 0.

However, dL
dt = 0, if and only if SH = S∗H , EH = E∗H , ID = I∗D, IU = I∗U , TH = T ∗H , RH = R∗H , CH =C∗H .

Therefore, by considering the La Salle’s invariant principle [20], equation (27) is strictly

Lyapunov function if and only if dL
dt < 0 which signifies the endemic equilibrium points E∗

is globally asymptotically stable whenever R0 > 1 and otherwise unstable within the invariant

region Γ. Epidemiologically, this informs that COVID-19 infections will be endemicity in

health care providers’ populations for a long time.

4 NUMERICAL RESULTS

To examine the impacts of health care providers’ population in transmission dynamics of

COVID-19 disease. We simulate the mathematical model (2) using the Matlab programming

language and the set of parameter values obtained from recently published articles while un-

known parameters were assumed under epidemiological reasoning as indicated in Table 1.

Since, the researchers did not go to the data collections, then the assumed initial data were used

in the model simulations basing on the real environments of health care providers’ population

in transmission dynamics of COVID-19.

14



Table 1: Parameter Values used for numerical simulation.

Symbol Value Source Symbol Value Source
Π 100000 Assumed ω 0.02857 [21]
β 0.5944 [1, 22] ρ 0.1443, 1.428 [1, 22]
βw 0.0089 [5] γ 0.125 Assumed
µ 0.1 Assumed α 0.0983 Assumed
θ 0.0546 Assumed σ 0.00538 Assumed
τ 0.0047876 [21] η 0.0047876 [21]
ν 0.0047876 [21] ε 0.0312 [21]
φ 0.0142857 [23] δ 0.0323 [5]
q 0.5788 [5] ζ 0.025 Assumed

4.1 Discussion

The implementation of mass diagnostic testing to susceptible health care providers’ population

is an important approach that can help health authorities and stakeholders in general to control

the transmission of COVID-19 disease in our community.

Figure 2 shows as the rate of diagnostic testing increasing it results to identify the infected

Figure 2: Variations of diagnostic testing rates in health care providers’ population

individuals from which can help to control the transmission of COVID-19 in health care

providers’ population and reduce the possibility of contamination of hospital’s equipment.

On the other hand, non-diagnosed and undetected increases slowly due to most of health care

15



Figure 3: Variation of virus concentrations on hospital’s equipment due to increasing the rate
of shedding off viruses

providers taking diagnostic testing and control measures. Also, the rate of shedding off virus

into hospital’s equipment increases due to interactions of non-diagnosed and undetected with

COVID-19 infections and contaminated equipment (Figure 3) which results in disease existence,

since an undetected individuals are difficult to identify them.

Figure 4: Variations of diagnostic test rates in non-diagnosed and undetected health care
providers
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Figure 5: Variation of treatments rates seeking medications from non-diagnosed and undetected
health care providers

Figure 6: Variation of treatment rates seeking medications from diagnosed and detected health
care providers

Figure 4 shows that the non-diagnosed and undetected health care providers’ population de-

creasing due to most of them observing control measures which results to decrease the indirect

contact and contamination of virus into hospital’s equipment.

Furthermore, the results from Figure 5 and Figure 6 shows that treatments of infected increasing

17



as the number of detected and those with severe clinical symptoms from non-diagnosed and

undetected health care providers increases.

In Figures 7 and Figure 8, we observed that most of the health care providers seek medical

Figure 7: Variations of recovery HCPs population with natural recovery rate

Figure 8: Variations of recovery HCPs population with treatment rate

treatments and, non-diagnosed and undetected with low infections recovered from COVID-19

18



disease due to medications and their natural body immunity respectively.

Therefore, the findings from both analytical and numerical results showed that non-diagnosed

and undetected health care providers with SARS-COV-2 infections were among the source of

spreading COVID-19 in the community, and contamination of virus into hospital equipment

during the medical treatment and consultations.

On the other hand, results obtained by Mumbu & Hugo 2020 [1] showed that non-wearing

face masks of infected individuals increase the human-to-human transmission of COVID-19

infections in a population. However, these findings concurred with the study done by [5,9,

22, 24, 25] which showed that implementing of early screening helped to detect all infected

individuals and reducing further transmission of COVID-19.

Thus, from the results obtained we can recommend that all hospitals should introduce pre-

diagnosis testing for all health care providers before and after medical consultation of any

individuals.

5 CONCLUSION

Basing on the analytical and simulation results obtained from this study, it concluded that non-

diagnosed and undetected health care providers’ population seems to contribute to high spread

of COVID-19 pandemic in community and contamination of hospitals’ equipment; since, most

health care providers have indirect interactions with contaminated hospital’s equipment at the

time of implementing medical consultations.

Hence, the study proved the necessity of implementing early diagnostic testing and taking med-

ical treatments once detected having COVID-19 clinical symptoms to curtail the transmission

of disease among health care providers’ population and keeping hospital’s equipment safe from

infections.
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