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Abstract

Enhanced geothermal systems (EGS) are promising for generating clean power by extracting heat energy from injection and

extraction of water in geothermal reservoirs. The stimulation process involves hydroshearing which reactivates pre-existing

cracks for creating permeability and meanwhile inducing microearthquakes. Locating these microearthquakes provide reliable

feedback on the stimulation progress, but it poses a challenging nonlinear inverse problem. Current deep learning methods for

locating earthquakes require extensive datasets for training, which is problematic as detected microearthquakes are often limited.

To address the scarcity of training data, we propose a transfer learning workflow using probabilistic multilayer perceptron

(PMLP) which predicts microearthquake locations from cross-correlation time lags in waveforms. Utilizing a 3D velocity

model of Newberry site derived from ambient noise interferometry, we generate numerous synthetic microearthquakes and 3D

acoustic waveforms for PMLP training. Accurate synthetic tests prompt us to apply the trained network to the 2012 and

2014 stimulation field waveforms. Predictions on the 2012 stimulation dataset show major microseismic activity at depths of

0.5–1.2 km, correlating with a known casing leakage scenario. In the 2014 dataset, the majority of predictions concentrate

at 2.0–2.9 km depths, consistent with results obtained from conventional physics-based inversion, and align with the presence

of natural fractures from 2.0–2.7 km. We validate our findings by comparing the synthetic and field picks, demonstrating a

satisfactory match for the first arrivals. By combining the benefits of quick inference speeds and accurate location predictions,

we demonstrate the feasibility of using transfer learning to locate microseismicity for EGS monitoring.
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Abstract 19 

Enhanced geothermal systems (EGS) are promising for generating clean power by extracting heat 20 

energy from injection and extraction of water in geothermal reservoirs. The stimulation process 21 

involves hydroshearing which reactivates pre-existing cracks for creating permeability and 22 

meanwhile inducing microearthquakes. Locating these microearthquakes provide reliable 23 

feedback on the stimulation progress, but it poses a challenging nonlinear inverse problem. Current 24 

deep learning methods for locating earthquakes require extensive datasets for training, which is 25 

problematic as detected microearthquakes are often limited. To address the scarcity of training 26 

data, we propose a transfer learning workflow using probabilistic multilayer perceptron (PMLP) 27 

which predicts microearthquake locations from cross-correlation time lags in waveforms. Utilizing 28 

a 3D velocity model of Newberry site derived from ambient noise interferometry, we generate 29 

numerous synthetic microearthquakes and 3D acoustic waveforms for PMLP training. Accurate 30 

synthetic tests prompt us to apply the trained network to the 2012 and 2014 stimulation field 31 

waveforms. Predictions on the 2012 stimulation dataset show major microseismic activity at 32 

depths of 0.5–1.2 km, correlating with a known casing leakage scenario. In the 2014 dataset, the 33 

majority of predictions concentrate at 2.0–2.9 km depths, consistent with results obtained from 34 

conventional physics-based inversion, and align with the presence of natural fractures from 2.0–35 

2.7 km. We validate our findings by comparing the synthetic and field picks, demonstrating a 36 

satisfactory match for the first arrivals. By combining the benefits of quick inference speeds and 37 

accurate location predictions, we demonstrate the feasibility of using transfer learning to locate 38 

microseismicity for EGS monitoring. 39 

 40 
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Plain Language Summary 41 

Enhanced geothermal systems (EGS) are an emerging technology that generates clean electricity 42 

by injecting water into underground hot rocks and pumping it back to the surface for power 43 

generation. However, this stimulation process causes tiny earthquakes, known as 44 

microearthquakes. Tracking the location of these microearthquakes is crucial for monitoring the 45 

EGS creation process. Unfortunately, finding where these microearthquakes occur is a complex 46 

task. Using deep learning methods is challenging because of the general lack of microearthquakes 47 

for training. To overcome this, we employ transfer learning, which allows computer models to 48 

train on realistic data, and eventually deploy to real-world EGS microearthquake data. We create 49 

a realistic geological model of the Newberry EGS site and generate many artificial 50 

microearthquake data for deep learning training. During the application on field data from 2012 51 

and 2014 stimulation, the computer model successfully identifies the depth and location of MEQs. 52 

Our results match well with what we already know about the underground structure, such as the 53 

presence of natural fractures in the rock. This study shows that our approach can effectively predict 54 

microearthquake locations even when presented with limited earthquake data for training, which 55 

is promising for monitoring and improving EGS operations in the future. 56 

 57 

  58 
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1 Introduction 59 

Geothermal energy has emerged as a valuable and sustainable resource in the global energy 60 

landscape, which harnesses the Earth's natural heat to generate electricity, providing a reliable and 61 

consistent supply, unlike intermittent resources such as solar or wind power (Muffler & Cataldi, 62 

1978). As a low-emission energy form, geothermal power mitigates greenhouse gas emissions and 63 

reduces the nation's reliance on fossil fuels (Tester et al., 2006). According to the U.S. Energy 64 

Information Administration (EIA, 2023), geothermal energy generation in 2022 reached 65 

approximately 17 billion kWh, positioning the United States as the leading global producer of 66 

geothermal electricity. Moreover, electricity generated from geothermal plants is projected to 67 

increase to 37.2 billion kWh in 2050. Enhanced geothermal systems (EGS) technology harnesses 68 

heat energy produced from areas of young tectonism and volcanism, but contains relatively low 69 

permeability (e.g., Häring et al., 2008; Cladouhos et al., 2016; Schill et al., 2017; Lu, 2018; Tomac 70 

and Sauter, 2018). In an EGS, fluid is injected into the subsurface under carefully controlled 71 

conditions, which caused pre-existing fractures to reopen, enhancing permeability. Increased 72 

permeability allows fluids to circulate in the now-fractured rock and to transport heat to the surface 73 

where electricity can be generated. 74 

 The creation of EGS has been widely known to induce microearthquakes (MEQs) (Zang 75 

et al., 2014; Majer et al., 2007). These MEQs, serving as reservoir stimulation diagnostic 76 

indicators, can locate fluid-induced fractures and monitor EGS stimulation progress such as crack 77 

propagation, permeability evolution, and temperature changes (Izadi and Elsworth, 2013; Fang et 78 

al., 2016). However, elevated occurrence of MEQs may lead to negative public perception 79 

regarding EGS deployment, particularly felt seismicity may be perceived as an isolated annoyance. 80 

Furthermore, there is concern about the cumulative effects of recurrent events and the potential of 81 
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larger earthquakes in the future (Majer et al., 2007). Consequently, there is both a scientific and 82 

societal need to locate and monitor MEQs associated with EGS reservoir stimulation. 83 

 Conventional earthquake location methods involve iteratively minimizing the difference 84 

between picked P- and/or S-wave first arrival times and predicted data at multiple seismic stations 85 

(Geiger, 1912; Tarantola & Valette, 1982; Bondar et al., 2014; Karasözen & Karasözen, 2020). 86 

While these methods have been widely employed in seismology, they exhibit certain limitations. 87 

The accuracy of earthquake location estimates can be affected by convergence issues, particularly 88 

when the initial location guess is not sufficiently close to the true hypocenter, the solution may 89 

converge at a local minimum, leading to inaccurate location estimates. Additionally, conventional 90 

methods can be computationally intensive, particularly when applied to large datasets or in regions 91 

with complex geology (local heterogeneities). As such, most location algorithms rely on one-92 

dimensional (1D) velocity models, where the velocity changes only with depth. Furthermore, 93 

waveform-based methods that are based on time-reversal imaging principles utilize finite 94 

difference to compute time-reversed seismograms and the actual source location is determined by 95 

identifying the point of highest energy concentration (e.g., McMechan, 1982; Chang and 96 

McMechan, 1994; Gajewski and Tessmer, 2005; Zhu, 2014; Li et al., 2020). Wavefield simulation 97 

method is unsurprisingly computationally expensive, and the energy focusing can be ambiguous 98 

for noisy data and very heterogeneous models. Waldhauser and Ellsworth (2000) proposed 99 

hypoDD, a widely used location inversion method that iteratively minimizes the misfit between 100 

theoretical and observed differential travel-times for pairs of earthquakes (double-difference) at 101 

each station. Nonetheless, the system can get very large if all event pairs are used in double-102 

difference methods and reducing the efficiency of location estimation.  103 
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 Deep learning (DL) techniques have been increasingly applied in earthquake seismology. 104 

For example, DL has seen significant developments in earthquake event phase detection (Ross et 105 

al., 2018; Dokht et al., 2019), phase picking (Zhu and Beroza; 2018; Mousavi et al., 2020), and 106 

phase association (Ross et al., 2019; Zhu et al., 2022). For DL-based earthquake location inversion, 107 

a large majority of studies rely heavily on training with labeled field data. Perol et al. (2018) used 108 

convolutional neural network (CNN) that trained on ~2,900 single station events near Guthrie, 109 

Oklahoma, in which the CNN accepts three-component waveforms and predicts earthquake 110 

location groups of six clusters. Later studies improved the earthquake location inversion method 111 

by employing more advanced DL algorithms and utilize multi-station three-component waveforms 112 

as input to predict three-dimensional (3D) locations. For example, Kriegerowski et al. (2019) 113 

employed deep CNN to predict easting, northing, and depth of earthquakes based on ~3,000 events 114 

from Western Bohemia, Czech Republic. Van den Ende and Ampuero (2020) used graph neural 115 

networks to predict the source latitude, longitude, depth, and magnitude based on ~1,300 events 116 

from Southern California. Shen and Shen (2021) used deep CNNs that trained on USGS Combined 117 

Cataglog earthquakes (~1,800) to predict latitude, longitude, depth, and origin time of events. 118 

Zhang et al. (2021) adapted deep CNNs to predict 3D event location probabilities based on ~1,000 119 

events from Central Apennies, Italy. Using single-station waveforms, Mousavi and Beroza (2020) 120 

employed Bayesian neural networks to predict epicenter, depth, and origin time based on the 121 

Stanford Earthquake Data Set (~450k events).  122 

 Comparing natural earthquakes to geothermal induced MEQs reveals several distinct 123 

differences, particularly in terms of their detectability (Fang et al., 2016; Templeton et al., 2020). 124 

MEQs are generally characterized by lower magnitudes and higher scarcity compared to natural 125 

earthquakes. The lower magnitudes make MEQs more challenging to detect, as they are often 126 
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masked by background noise. This results in fewer MEQ events detected in conventional catalogs. 127 

This scarcity of MEQs poses a significant challenge for DL training, as the limited amount of 128 

available data restricts the ability to build robust and accurate DL models for solving the nonlinear 129 

MEQ location inversion problem. Consequently, even though DL algorithms are strong solvers for 130 

nonlinear problems and have quick inference speeds, the data scarcity for training presents as the 131 

major challenge for using DL guided solutions to accurately locate MEQs. Moreover, the accuracy 132 

of predicted locations using conventional earthquake location methods (e.g., minimizing travel-133 

time misfit) highly depends on the velocity model used. Simplified velocity models can result in 134 

less precise location predictions due to the lack of local heterogeneities present in the model. Using 135 

higher resolution velocity models that include more local geological features will incur higher 136 

computation costs. As such, it is pivotal to develop a practical method that combines the benefits 137 

of DL (quick inference times and strong nonlinear solving abilities), address the paucity of field 138 

training data, and integrates high-resolution realistic velocity models, to estimate induced MEQ 139 

locations for EGS monitoring. 140 

 In this study, we present a transfer learning workflow using probabilistic multilayer 141 

perceptron (PMLP) to accurately predict MEQ locations from waveform data. Transfer learning 142 

involves applying a machine learning model, initially trained on one dataset, to a different but 143 

related dataset. The knowledge transfer technique is especially beneficial in applications scenarios 144 

where collecting extensive training data is impractical or unfeasible. This approach serves as the 145 

basis of our study to locate field MEQs at the Newberry EGS site. The workflow encompasses 146 

three parts. Firstly, we use a high-resolution 3D velocity model created by Matzel et al. (2014) to 147 

simulate numerous synthetic MEQ events using 3D acoustic finite-difference modeling. From the 148 

synthetic waveforms, we extract its first arrivals. In practice, since we do not have the MEQs event 149 
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origin time, we compute the cross-correlation of the first arrivals such that the first arrival of the 150 

master trace is at zero time lag. The time lags at other receivers contain the same moveout pattern 151 

as the first arrivals. Secondly, we train a PMLP that inputs cross-correlation time lags and outputs 152 

the locations (x, y, z) of MEQs. Lastly, we apply the trained PMLP onto the field dataset to obtain 153 

field MEQ location predictions. We are essentially leveraging transfer learning principles by 154 

allowing the neural network to train on realistic or physics-informed synthetic dataset, and then 155 

apply its knowledge learned onto field waveforms to predict the induced MEQ locations.  156 

 This manuscript is organized as follows. Firstly, we provide some background on the 157 

Newberry EGS and its field collected dataset. Secondly, we introduce our methodology, including 158 

the Newberry 3D velocity model, synthetic training dataset generation, and PMLP. Lastly, we 159 

discuss and interpret our results, and showcase our potential improvements to the previous 160 

understanding of Newberry EGS microseismicity. 161 

2 Newberry EGS 162 

Newberry Volcano is a shield volcano located in central Oregon, about 20 mi (35 km) south of the 163 

city of Bend and approximately 40 mi (65 km) east of the crest of the Cascade Range. The 164 

Newberry EGS was operated by AltaRock Energy and Davenport Newberry to test and 165 

demonstrate the EGS technology. After an extensive study of the state of the stress for the area 166 

(Cladouhos et al., 2011a; Davatzes and Hickman, 2011), this location was selected due to a very 167 

low permeability rate as well as a large conductive thermal anomaly that yields high-temperatures 168 

(Cladouhos et al., 2011b), making it ideal to test the creation of an EGS. Borehole logs reveal 169 

natural fractures extending from approximately depths of 2,000 m to 2,700 m. At these depths, the 170 

interpreted lithology consists of tuffs, basalt-andesite, and granodiorite. The EGS demonstration 171 



manuscript submitted to JGR: Machine Learning and Computation 

9 

 

was stimulated two times, first in 2012 and later in 2014, to induce hydroshearing in the reservoir 172 

and enhance the movement of fluids through the system (Cladouhos et al., 2016).  173 

 In the 2012 fluid stimulation, there was a suspected casing leakage which caused induced 174 

MEQs at shallower than the intended depths. In the fall of 2014, casing repairs and re-stimulations 175 

were made. In the drilling well, the perforated liner is used to create multiple pathways for fluid 176 

injection into the rock formation, enabling efficient fracturing and increased heat exchange 177 

between the injected fluid and the surrounding hot rocks. The perforated liner starts at 1,912 m 178 

(6,272 ft) to 3,045 m (9,990 ft), along with a blank liner extending from 2,289 m (7,509 ft) to 2,493 179 

m (8,177 ft). The depths at which the perforated liner is installed (1,912 m - 3,045 m) is considered 180 

the targeted depth for EGS stimulations. The experiment had a monitoring array of seven surface 181 

seismic stations and eight borehole stations. Figure 1 shows the general vicinity of Newberry EGS 182 

site. For the purposes of our study, we only show the borehole stations because the recorded 183 

waveforms are frequently missing at the surface stations. As such, we only work on data traces 184 

from the eight borehole stations throughout our study. 185 

 186 
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 187 

Figure 1: Aerial view of Newberry EGS site. The eight NN stations are borehole seismic 188 

stations. Events in blue are from the initial location catalog from the 2012 stimulation. Events in 189 

green are the corresponding locations of 2014 stimulation. 190 

 191 

2.1 Microseismicity of the 2012 and 2014 EGS Stimulation 192 

The 2012 stimulation lasted from Sept. 1, 2012, to Dec. 31, 2012. About 40,000 m3 of water were 193 

injected with about 90% of the events were above the casing shoe (depths less than 1,830m (6,000 194 

ft)), suggesting that injected fluid had leaked out of the casing to stimulate relatively shallow and 195 

cool rock. In the summer of 2013, caliper and video logs confirmed that there was both a horizontal 196 

crack in the casing at 683 m (2,240 ft) depth and a leak in the parasitic aeration string (AltaRock, 197 

2014). In 2014, casing repairs were made, and second stimulation was conducted on Sept. 22, 198 
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2014, until Nov. 30, 2014. As for microseismicity, the seismic acquisition software automatically 199 

identified events, generated preliminary P- and S-wave picks and locations.  200 

 During the 2012 stimulation, about 175 events were located with magnitudes between M 201 

0.0 and M 2.3. As for the 2014 stimulation, about 398 events were located with magnitudes 202 

between M 0.0 and M 2.2 (Cladouhos et al., 2016). 203 

 As for the data availability (http://fracture.lbl.gov/Newberry/Location.txt – assessed 204 

October 2019), there were only 149 datasets comprising waveforms and locations for the 2012 205 

stimulation. For the 2014 stimulation, only 334 datasets are available.   206 

3 Methodology 207 

The main objective of this study is to develop DL algorithms to predict the locations of MEQs 208 

induced in the Newberry EGS, using waveform features, specifically cross-correlation time lags. 209 

The workflow is summarized in Figure 2. The workflow methodology can be divided into four 210 

parts. Firstly, we obtain a realistic seismic velocity model that is derived from field observations. 211 

Secondly, we simulate numerous synthetic MEQs, and their corresponding waveforms based on 212 

the field-informed velocity model. Thirdly, we use a neural network (PMLP in this study) to map 213 

the relationship from cross-correlation time lags (derived from waveforms) to MEQ locations 214 

(x,y,z). Lastly, we apply the trained PMLP onto the field waveforms to obtain Newberry MEQ 215 

location predictions. 216 

 217 

 218 

http://fracture.lbl.gov/Newberry/Location.txt
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Figure 2: The workflow of this study begins with using a realistic velocity model derived from 219 

field measurements to generate numerous random MEQs. Next, we simulate the corresponding 220 

MEQ waveforms using 3D acoustic forward modeling. Following this, we extract cross-221 

correlation time lags from these waveforms. These time lags are then utilized as inputs for our 222 

neural network, with the MEQ locations serving as outputs. After the neural network is 223 

adequately trained, we implement transfer learning, by applying this trained neural network to 224 

the actual field waveforms to obtain accurate location predictions. 225 

 226 

3.1 Newberry Seismic Velocity Model 227 

Matzel et al. (2014) computed ambient noise correlations from 22 seismic stations in the Newberry 228 

network, together with 12 additional stations from the nearby CC (Cascade Chain), UO (University 229 

of Oregon), and UW (University of Washington) seismic networks. The Green’s functions that 230 

emerged from the cross-correlation waveforms were treated as seismic record and inverted for the 231 

best fitting 1D model along each path, resulting in Vp, Vs, and Qs models. For this study, we use 232 

the Vp model as a basis for our study.  233 

The original format of velocity model is in latitude, longitude, and altitude (elevation above 234 

sea level). As such, we apply these preprocessing steps to convert the location to appropriate 235 

scales: 236 

1) We first convert the latitude and longitude to easting and northing coordinates using 237 

the open-source software UTM (https://github.com/Turbo87/utm).  238 

2) Next, we convert the altitude to depth below ground by subtracting altitude from the 239 

local topography.  240 

3) Due to the significantly larger easting and northing values compared to depth, we 241 

normalize these values by subtracting them from the easting and northing coordinates 242 

https://github.com/Turbo87/utm
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of centroid of the 15 stations. This ensures the new coordinates system is centered 243 

around the seismic stations. 244 

4) Finally, we upsample the original velocity model from spatial sampling (dx, dy, dz) 245 

of 500 m to 25 m to satisfy seismic modeling numerical stability requirements (Igel, 246 

2017). 247 

Similarly, we also preprocess the locations of the field MEQ events. We overlay the 248 

velocity model with 2012 and 2014 stimulation initially located MEQ events in Figure 3. The 2012 249 

stimulation MEQs are scattered as far as ~2 km away from the well bore, with the majority of 250 

events lying at depths of 2.0 – 3 km. These initial location estimates are incorrect (see Figures 3a 251 

and 3b) as there was a casing leak and most of the MEQs were later relocated to much shallower 252 

depths (0.6 – 1.3 km). As for the 2014 stimulation MEQs, the initial locations are noticeable at the 253 

wrong depths (Figures 3a and 3b) as the fluid injection was correctly stimulated at intended depths 254 

of ~ 1.9 – 3.0 km (Cladouhos et al., 2016). Moreover, we note that the velocity model completely 255 

covers the spatial extent of all the MEQs. This allows us to generate synthetic MEQs anywhere 256 

within the velocity model and simulate their corresponding waveforms.  257 
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 258 

Figure 3: 3D P-wave velocity model of Newberry EGS site generated by Matzel et al. (2014). 259 

(a) represents the East-West cross section, (b) is the North-South cross section, and (c) is the 260 

aerial view of the location. Blue dots are initially located events from 2012 stimulation and green 261 

dots are from 2014 stimulation. In the downloaded raw dataset, there are 149 events for 2012 262 

stimulation and 344 events for 2014 stimulation.  263 

 264 

3.2 Synthetic MEQs, 3D Acoustic Waveforms, and Cross-correlation Time Lags 265 

From the velocity model, we generate 10,000 artificial events across the entire extent of velocity 266 

model, and another 10,000 events to focus on the regions below the seismic stations which is also 267 

the injection zone (Figure 4). We note that the artificial MEQ events concentrate at the regions 268 

with field events. Next, we perform acoustic wave seismic modeling using the open-source 269 

Madagascar software (https://www.reproducibility.org/wiki/Main_Page) to generate the synthetic 270 

waveforms.  271 

https://www.reproducibility.org/wiki/Main_Page
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 272 

Figure 4: 10,000 synthetic events (purple) covering almost the entire spatial extent of velocity 273 

model. There are an additional 10,000 events covering the regions below the seismic stations. 274 

Blue dots are initially located events from 2012 stimulation and green dots are from 2014 275 

stimulation. 276 

 277 

Figure 5 shows an example snapshot of P-wave arriving at the receivers. The P-wave is analogous 278 

to the first arrivals emanated from induced MEQs during fluid stimulation. Figure 6a shows an 279 

example of waveforms generated (in black) from seismic modeling. It is important to highlight 280 

that the moveout pattern is caused by the relative MEQ location to receivers. For different MEQs 281 

at other locations, the time taken for first arrivals to arrive at the receivers cause different moveout 282 

patterns. We pick the first arrivals from the waveforms and create corresponding delta functions 283 

(red spikes in Figure 6a). Next, we use the trace at NN17 as the master trace to cross-correlate with 284 

all traces within a seismic gather. The cross-correlations aims to preserve the moveout information 285 

such that the time lag at the master trace (NN17) is zero, while the time lags at other traces 286 

correspond to the moveout pattern. Figure 6b shows the resulting cross-correlations with labeled 287 
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time lags. The time lags are directly indicative of the moveout caused by the relative location of 288 

MEQ and receiver locations. The time lags are treated as the input of the neural network whereas, 289 

the location information (easting, northing, depth) is treated as the output. 290 

 291 

 292 

Figure 5: Example snapshot of pressure wave arriving at receivers. 293 

 294 

  295 
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Figure 6: (a) shows an example of synthetic waveforms (black) and first arrival picks converted 296 

to delta functions (red). (b) is the corresponding cross-correlogram computed from using NN17 297 

as master trace to cross-correlate with all traces in the seismic gather. Labeled numbers indicate 298 

time lags, which represent the moveout. 299 

3.3 Probabilistic Multilayer Perceptron 300 

Multilayer perceptrons (MLPs) are the fundamental building blocks of feedforward neural 301 

networks that consist of multiple layers of interconnected nodes and neurons. MLPs are also 302 

commonly referred to as artificial neural networks and deep neural networks. A simple MLP 303 

consists of an input layer, one or more hidden layers, and output layer (Figure 7). Each neuron in 304 

a layer is connected to all the neurons in the previous and next layers, with associated weights 305 

assigned to each connection. Additionally, each neuron has an activation function that determines 306 

its output based on the weighted sum of its inputs. 307 

 308 

Figure 7: A simple MLP that consists of an input, hidden, and output layer. The circles in the 309 

hidden layer represent individual neurons. 310 

 311 

 To express MLPs mathematically, let 𝑋 be an input vector as 𝑋 = (𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛). At 312 

the hidden layer, the neurons can be expressed as: 313 

𝑍 = 𝑎(𝑊ℎ𝑋 + 𝑏ℎ), 314 
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where 𝑍 is the output of the hidden layer and 𝑎 is the activation function, 𝑊ℎ and 𝑏ℎ are the weights 315 

and biases of hidden layer. The activation function introduces nonlinearity to the system so that 316 

the MLP can effectively learn the appropriate weights and biases to solve the nonlinear problem. 317 

Without the activation function, the system would be linear and the training of MLP would not 318 

converge. At the output layer: 319 

�̂� = 𝑎(𝑊𝑜𝑍 + 𝑏𝑜), 320 

where �̂� is the MLP output (prediction). The training process of an MLP involves adjusting the 321 

weights and biases to minimize the error between the predicted output and the target output, 322 

typically using the backpropagation algorithm and gradient descent optimization (Lecun et al, 323 

2015). Some examples of loss function include mean square error (L2 norm) and mean absolute 324 

error (L1 norm). 325 

 326 
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Figure 8: Probabilistic MLP (PMLP) architecture. It accepts cross-correlation time lags as input 327 

and outputs mean (𝜇) and standard deviation (𝜎) of MEQ location. 𝜇 and 𝜎 can then be used to 328 

sample from the Gaussian distribution to obtain MEQ location samples (easting, northing, 329 

depth). We compute the average location as the final location prediction. 330 

 331 

 In earthquake location prediction, uncertainties play a key role in the process of quantifying 332 

the reliability of NN predictions. Standard MLPs are deterministic, meaning they output 333 

deterministic point estimates. Here, we use the probabilistic MLP (PMLP) to predict MEQ 334 

locations from cross-correlation time lags. Figure 8 shows the architecture of PMLP. PMLP 335 

contains a preceding conventional MLP structure, however, instead of directly predicting the 336 

location of MEQs, it predicts the distribution parameters (mean and standard deviation) of MEQ 337 

locations which are assumed to follow a Gaussian distribution. Essentially, PMLP seeks to find 338 

the best distribution parameters that make the output training data (event locations) most probable. 339 

In mathematical terms, PMLP can be expressed as a general nonlinear regressor by: 340 

𝑃𝑀𝐿𝑃(𝜏𝑁) = [𝜇𝑁 , 𝜎𝑁], 341 

where 𝜏 is the cross-correlation time lags, 𝜇 and 𝜎 are mean and standard deviation across N 342 

number of input data (time lags).  343 

 To determine the set of 𝜇 and 𝜎 that can make MEQ locations most probable, we employ 344 

maximum likelihood estimation (MLE). MLE finds the parameters that maximize the likelihood 345 

of observing the MEQ locations given the PMLP regression model. In practice, it is easier to 346 

maximize the log of the likelihood, or equivalently, minimize the negative log-likelihood. The 347 

Gaussian likelihood function, 𝐿, for a single MEQ location (𝑦), is given by: 348 

𝐿(𝑦;  𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−
(𝑦−𝜇)2

2𝜎2  349 

The negative log-likelihood simply means: 350 
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− log(𝐿(𝜏;  𝜇, 𝜎)) = − log (
1

𝜎√2𝜋
𝑒

−
(𝑦−𝜇)2

2𝜎2 ) 351 

By applying the logarithm properties: 352 

− log (
1

𝜎√2𝜋
𝑒

−
(𝑦−𝜇)2

2𝜎2 ) = − log (
1

𝜎√2𝜋
) − log (𝑒

−
(𝑦−𝜇)2

2𝜎2 ) 353 

= log(𝜎√2𝜋) +
(𝑦 − 𝜇)2

2𝜎2
 354 

For optimization purposes, we can leave out the constant term log(√2𝜋), and the resulting 355 

negative log-likelihood, 𝑁𝐿𝐿, (Nix and Weigend, 1994) can be defined as: 356 

𝑁𝐿𝐿 = − log(𝐿(𝜏;  𝜇, 𝜎)) =
1

𝑁
∑ [log 𝜎(𝜏𝑖) +

(𝑦𝑖 − 𝜇(𝜏𝑖))2

2𝜎(𝜏𝑖)2
]

𝑁

𝑖=1

 357 

where 𝜏𝑖 is the cross-correlation time lags, 𝜎 is the standard deviation, 𝑦 is the MEQ location 358 

values (easting, northing, depth), 𝜇 is the mean, and 𝑖 ∈ [1, 𝑁] where 𝑁 is the number of training 359 

dataset. Simply put, the negative log-likelihood loss function finds the parameters (𝜇, 𝜎) that best 360 

predict the MEQ locations in the training dataset. 361 

 We use ReLU as the activation function for all hidden layers. At the final layer, we only 362 

use fully-connected (dense) neurons without activation function for the easting and northing 363 

components as they contain negative and positive values. For the depth output component, we 364 

enforce a ReLU activation as the depth values are always positive. 365 

 In practice, we can apply the trained PMLP to unseen time lags, 𝜏, to predict 𝜇 and 𝜎. For 366 

example, for one set of time lags, the PMLP directly predicts one set of 𝜇 and 𝜎 of the MEQ 367 

location (easting, northing, depth). The predicted 𝜇 and 𝜎 are used to sample from the Gaussian 368 

distribution to obtain the realizations of predicted MEQ locations. Since this process is 369 

probabilistic, multiple sampling yields slightly different locations. This allows repeated sampling 370 
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that produces a range of predictions, which we can then compute the mean as the final MEQ 371 

location prediction; and compute statistical uncertainties from the range of sampled predictions. 372 

Here, we note that the estimated uncertainties come from the trained PMLP regression model, 373 

instead of the error introduced from the input time lags. The uncertainties represent the range of 374 

values that the trained PMLP will produce. 375 

4 Results 376 

This section is divided into three main parts. First, we discuss the performance of PMLP on 377 

synthetic dataset, i.e., training and testing on time lags generated from synthetic events. Second, 378 

we discuss the results of applying the trained PMLP on the 2012 stimulation MEQ dataset. Third, 379 

we discuss the 2014 stimulation MEQ location estimates and interpret our results based on the 380 

location’s geology. 381 

4.1 Synthethic Tests 382 

From the total 20,000 generated dataset, we remove a certain number of bad simulations due to 383 

edge effects, resulting in the new total to be 19,738 datasets.  We randomly split 16,875 (85%) for 384 

training, 1,876 (10%) for validation and 987 (5%) for testing. To select the best trained weights, 385 

we evaluate the Euclidean distance between predictions and ground truth. The Euclidean distance, 386 

𝐷, is calculated by: 387 

𝐷 = √(�̂�𝑖 − 𝐸𝑖)
2

+ (�̂�𝑖 − 𝑁𝑖)
2

+ (�̂�𝑖 − 𝐻𝑖)
2
 388 

where �̂�, �̂�, �̂� are predicted easting, northing, and depth, and 𝐸, 𝑁, 𝐻 are the respective ground 389 

truth. During training, we save the best weights that predict the lowest Euclidean distance on the 390 

validation dataset. Figure 9a shows the training progress in logarithms for better visualization, and 391 
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the best weight is selected at epoch 236 along with the average validation loss of 42 m. During 392 

inference, the trained PMLP samples the Gaussian distribution associated with the MEQ location, 393 

thus generating slightly differing predictions for each sample. Figure 9b shows 300 samples of 394 

location predictions that are based on one input event. As expected, the samples are scattered 395 

around the mean location. For our study, we generate 3,000 samples and compute the 396 

corresponding mean as the final location prediction. 397 

 The average Euclidean distance loss on testing dataset is 41 m. We further examine the 398 

prediction errors on the testing dataset (Figure 10) and compute simple statistics tests to gauge the 399 

prediction performance. For example, the prediction errors have 90% likeliness to fall between [-400 

53, 55] m in easting component; [-62, 59] m in northing component; and [-66, 68] m in depth 401 

component. In addition, we compute the 95% confidence interval, and the errors are approximately 402 

10 m more on each side. In the broader context, the velocity model has dimensions of 403 

approximately 9 km x 9 km x 4 km, and PMLP's prediction errors are less than 100 m, 404 

corresponding to about a 1% error in each dimension.  405 

 406 

Figure 9: (a) shows the training progress of PMLP. Blue curve is the training loss and red curve 407 

is the validation loss. The loss refers to the Euclidean distance. We use the model weights at 408 
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epoch 236 as the final weights as that is when the validation loss is the lowest. (b) shows the 409 

PMLP predictions (300 samples) for one input event. The mean prediction is computed as the 410 

final prediction. 411 

 412 

 413 

 414 

Figure 10: Prediction on testing dataset (n=987). The 95% confidence interval of the prediction 415 

error at easting is [-63.2, 64.8] m, northing is [-73.4, 70.5] m, and depth is [-78.5, 80.8] m. As for 416 

the 90% confidence interval, the prediction error at easting is [-52.9, 54.5] m, northing is [-61.8, 417 

58.9] m, and depth is [-65.7, 68.0] m. 418 

 419 

4.2 Field Application – 2012 Stimulation 420 

Out of the 149 triggered waveforms, we consider 10 events to be outliers as they are out of bounds 421 

i.e., located above stations and far away from the injection zone. The PMLP model requires input 422 

from all eight borehole stations for accurate predictions. Therefore, we can only consider events 423 

that have recorded waveforms at each of these eight stations. This criterion further narrows our 424 

analysis to 113 events with waveforms in those borehole receivers. As the P-wave synthetic 425 

waveforms used in training, we only consider the first arrival picks of the vertical component in 426 

all field waveforms. We assume this is reasonable because all the induced MEQs are located below 427 

the receivers and the vertical component sensor can sufficiently pick up the first arrival waves. 428 

 Before picking the first arrivals, we apply these preprocessing steps to the field waveforms:  429 
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1) We use trim the waveforms using the same start and end time to ensure the event 430 

waveforms are aligned at the same time window. 431 

2) We apply a bandpass of 5 – 15 Hz. 432 

3) Lastly, we normalize the traces based on their maximum value. 433 

 434 

Figure 11: Top panel shows an example of seismic trace. Middle panel shows the corresponding 435 

bandpassed frequency spectra. In the bottom panel, the frequency spectra are summed up in the 436 

vertical component and normalized based on its absolute maximum value. The red line shows the 437 

handpicked first arrival for which the picking location is guided by the onset of energy as 438 

depicted in the bottom panel. 439 

 440 

 To obtain the most accurate first arrival picks, we compute the frequency spectra and stack 441 

the frequency’s amplitudes to use as a guide for picking (Figure 11). The stacked frequencies 442 

illuminate the first arriving energy associated with the MEQ first arrivals. We carefully handpick 443 

the first arrivals, compute the cross-correlations and retrieve the corresponding time lags.  444 



manuscript submitted to JGR: Machine Learning and Computation 

25 

 

 445 

Figure 12: Histogram showing the mean-square-errors between predicted forward and field time 446 

lags for 2012 dataset. We consider the predictions falling within first bin as reliable. 447 

 448 

 Given the encouraging results observed from the application of PMLP in synthetic tests, 449 

we apply the trained PMLP model on the computed field time lags. However, preprocessing is 450 

needed due to the detection of unreliable location estimates within the raw predictions. This is 451 

evidenced by the significant discrepancies in time lag errors when comparing synthetic forward 452 

time lags with field-picked time lags. To address this, we calculate the mean-square-error for time 453 

lags (𝜀) between the field-picked and predicted forward time lags across all predictions, as shown 454 

in Figure 12. The histogram of 𝜀 guides our reliability criteria: predictions with 𝜀 below 500 ms 455 

are deemed reliable, which also corresponds to the most frequent histogram bin. Predicted 456 

locations in this bin have good match between the predicted forward time lags and that from field-457 

picks. After the preprocessing step, we identify a total of 62 reliable predicted locations. Figure 13 458 
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shows the predicted locations and three examples of comparison of predicted forward first arrival 459 

picks vs. field first arrival picks.  460 

 461 

 462 

Figure 13: PMLP predicted MEQs for 2012 stimulation. The left panel shows the cross section 463 

of the predicted location of MEQs. Right panel highlights three examples (A, B, C) to show the 464 

comparison of synthetic (predicted forward) vs. field picked first arrivals. 465 

 466 

 From these predicted MEQ locations, we notice a majority concentrate at depths of 0.5 – 467 

1.2 km. In comparison with the relocated events for 2012 stimulation done via physics-based 468 

inversion (Cladouhos et al., 2016), their predictions concentrate at depths of 0.5 – 1.3 km, which 469 

aligns with those from PMLP prediction. This directly corroborates with casing leak scenario 470 

which causes the induced microseismicity shallower than the intended depths (1.9 – 3.0 km). 471 

Events A, B, and C are three examples of predictions that display significantly good match between 472 

field (red vertical lines) and predicted forward picks (green vertical lines). The aligned depths of 473 

our predictions with those reported by Cladouhos et al. (2016), alongside the closely overlapping 474 
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first arrival picks as evidenced in Events A, B, and C (in Figure 13; right panel), underscores the 475 

accuracy and reliability of PMLP in predicting microseismic locations. 476 

4.3 Field Application – 2014 Stimulation 477 

From the available 334 MEQ waveforms, we select 292 as the remaining events do not contain 478 

seismic traces in all eight stations. As the 2014 raw waveforms contain more noise and the original 479 

data format are less structured, it is essential to preprocess the field waveforms before picking the 480 

first arrivals. First, for each event, we find the most common start and end time within all traces 481 

because many waveforms have different start times. Second, we apply a bandpass filter of 6 – 20 482 

Hz to remove noise of higher and lower frequencies. Third, we demean and normalize the traces 483 

so that the resulting seismograms can be picked easily. 484 

 485 

Figure 14: Similarly for 2014 dataset, we plot the histogram showing the mean-square-errors 486 

between predicted forward and field time lags. We consider the predictions falling within the 487 

first bin as reliable. 488 

 489 
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 Similarly, we first apply the trained PMLP on the 2014 dataset, compute the cross-490 

correlated time lags for each predicted location, and compare them with those from the field picks. 491 

The histogram of the errors is plotted in Figure 14. From the histogram, we see the first bin (250 492 

ms) has the greatest number of predictions, which also means that these predictions are the most 493 

accurate due to their low error between the predicted forward and field picks. This entails a total 494 

of 142 reliable predictions (Figure S1) based on their first arrivals match. However, we notice that 495 

there are two clusters of predictions separated by a noticeable gap (lack of predictions) around 1.8 496 

km depth. In Cladouhos et al. (2016), the physics-based inversion study did not show any location 497 

estimates above 1.8 km depth. Upon inspecting the first arrival match between the synthetic picks 498 

and field picks (Figure S2), we postulate that although the first arrival match is good, we think 499 

these predictions likely stem from incorrect first arrival picks. For instance, the waveforms in the 500 

six examples (Events A-F) contain relatively more noise and our picks may not best represent the 501 

real first arrivals. Following this, we consider it appropriate to only keep the events below 1.8 km 502 

depth (128 events) as the final predictions for interpretation (shown in Figure 15). In total, there 503 

are 128 events used as the final predictions. 504 

 505 
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 506 
Figure 15: Overlay of 2014 stimulation location predictions with interpreted geologic zones 507 

from Cladouhos et al. (2016). The fracture count is determined by counting fractures within the 508 

NWG 55-29 borehole. The error bars are calculated by using the range of location samples 509 

predicted from repeated sampling of the trained PMLP.  510 

 511 

 We cross reference the final predictions with the subsurface geologic information 512 

determined from the NWG 55-29 borehole (Cladouhos et al., 2016) in Figure 15 (right panel). 513 

Additionally, we overlay the MEQ location predictions with the appropriate geologic zones. We 514 

re-reference the MEQ locations relative to the wellbore coordinates for better comparison. The 515 

fracture count in each zone is determined from images captured from a borehole televiewer 516 

(BHTV) survey. For example, in Zone A, there are 5 natural fractures per 0.06 m. We note that 517 

this fracture count is only representative of the region within the borehole. In general, we see that 518 

Zone B – Tuffs and Basalts (173/0.4 m) contains the most fractures, followed by Zone C (157/0.8 519 

m), Zone D (16/0.6 m), and Zone A (5 / 0.06 m). Since natural fractures are more predisposed to 520 

rupture (Rutqvist et al., 2013; Lei et al., 2021) during fluid stimulation, it is reasonable to assume 521 

that the number of MEQs would be higher in regions that contain more natural fractures. Most of 522 

our MEQ predictions (n = 67) are in Zone B, which aligns with the zone having the highest fracture 523 

count. This correlation supports the validity of PMLP predictions in reflecting the geological 524 
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conditions of the subsurface. Our confidence in these predictions is further bolstered by the 525 

excellent match of first arrival picks between synthetic and field traces. We select eight examples 526 

(see Figure S3) and compare their first arrivals with those picked from field, and the data match 527 

appears to match well (Figure S4). From the BHTV fracture counts, Zone C has the second highest 528 

number of fractures (157/0.8 m), also coincides with our predictions in terms of number of MEQ 529 

predictions. While Zones A and D show an equal number of MEQ predictions (n = 16), BHTV 530 

fracture counts reveal more fractures in Zone D (n = 16) than in Zone A (n = 5). It is important to 531 

note that these fracture counts are derived from BHTV images within the borehole and may not 532 

fully represent the entire geological strata. Additionally, fracture counts in Zones B and C are an 533 

order of magnitude higher than in Zones A and D, a pattern that is consistently echoed in our MEQ 534 

predictions. 535 

 The microseismic events predicted by the PMLP form a cloud analogous to that derived 536 

from the physics-based inversion (see Fig. 12 in Cladouhos et al. (2016)), albeit with most of our 537 

predicted events notably clustered to the west of the wellbore. The westward clustering observed 538 

in our predictions may be attributed to the DL model's reliance solely on P-wave picks, as opposed 539 

to the physics-based inversion which utilized both P- and S-wave arrivals. This methodological 540 

difference inherently results in slightly distinct MEQ location predictions. While we acknowledge 541 

that the refinement of first arrival picks could potentially enhance the model's accuracy, the strong 542 

data match between synthetic and field trace first arrivals suggests our current results are 543 

reasonable. The slight difference in the spatial distribution of predicted MEQs is counterbalanced 544 

by the significant advantage of the DL model in terms of inference speed. Once trained, our model 545 

can deliver predictions within seconds, a speed that significantly outperforms traditional source 546 

localization methods.  547 
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 In general, our results indicate that most induced MEQs are located above 2.90 km depth 548 

(until Zone D), with a few outliers. In contrast, Cladouhos et al. (2016) demonstrate that the 549 

relocated MEQs extend down to 3.2 km, with a significant number of events occurring between 550 

depths of 3.05 and 3.2 km. A more in-depth study was done to interpret the natural fractures 551 

(Davatzes and Hickman, 2011), and it is found that fractures are only present at depths of 2.0 km 552 

to approximately 2.7 km. Since injection of fluid increases pore pressure within these fractures, it 553 

reduces the effective normal stress acting on the fracture walls. This reduction in normal stress 554 

decreases the frictional resistance to shear sliding along the fracture plane. As pore pressure 555 

continues to increase, it eventually overcomes the frictional resistance and causes the natural 556 

fractures to slip or rupture, a process known as shear reactivation (Das and Zoback, 2011; Rutqvist 557 

et al., 2013). Based on our findings, we can reasonably conclude that our predictions are accurate 558 

due to the presence of natural fractures matching the depths of predicted MEQs. Therefore, we 559 

postulate that our results could potentially be seen as an improvement to the method used in 560 

Cladouhos et al. (2016).  561 

 As for the uncertainties associated with the prediction, we compute the range (lower and 562 

upper bounds) of location samples generated from repeated predictions. We show the uncertainties 563 

in Figure 15 in the form of error bars. We avoid the use of standard deviation as uncertainties as 564 

we would want to know the full extent of location predictions produced from the repeated 565 

predictions. The uncertainties suggest a lesser variation and stronger confidence in the East-West 566 

component, while more variation in the depth component. This coincides with conventional 567 

earthquake location inversion methods in which the depth component typically shows larger 568 

uncertainties. 569 
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5 Picking Error Sensitivity Analysis 570 

We perform a sensitivity analysis on the synthetic testing dataset to gauge how much the predicted 571 

locations would be affected by errors introduced in first arrival picks. We create four levels of 572 

errors in terms of number of time samples (nt): 5, 10, 15, and 20. We assume that 5-time samples 573 

would be an appropriate margin of error to characterize errors associated with handpicking. Next, 574 

we apply each error level to randomly selected receivers. Then, we compute the average Euclidean 575 

distance loss between the error-perturbed first arrivals and ground truth across the testing dataset. 576 

Table 1 shows the sensitivity of picking errors in accordance with the number of affected receivers. 577 

For example, when there are two random receivers affected with +/- 5-time samples (0.02 s) error, 578 

the average Euclidean distance loss is 0.1855 km. Our sensitivity analysis suggests that PMLP is 579 

highly sensitive to arrival picks. This is as expected because PMLP essentially only considers first-580 

arrivals as input features. Therefore, in our study, we manually review all traces and re-pick first 581 

arrivals whenever it is necessary.  582 

Picking 

errors  

(# nt (s)) 

Number of affected receivers (selected by random) 

0 1 2 3 4 5 6 7 8 

5 (0.02) 0.0410 0.1320 0.1855 0.2170 0.2506 0.2873 0.3023 0.3357 0.3519 

10 (0.04) 0.0410 0.2562 0.3518 0.4088 0.4893 0.5393 0.5624 0.6176 0.6770 

15 (0.06) 0.0410 0.3740 0.5165 0.6118 0.7167 0.7729 0.8229 0.8903 0.9712 

20 (0.08) 0.0411 0.4861 0.6623 0.8018 0.9194 0.9892 1.0799 1.1524 1.2401 

 583 

Table 1: Corresponding Euclidean distance (in km) errors when first arrival picking errors are 584 

introduced. We test four picking errors: 5-, 10-, 15-, and 20-time samples. For each group, we 585 

test a variety of number of affected receivers, ranging from no (zero) receivers affected to all 586 

(eight) receivers affected.  587 

 588 

6 Discussion 589 

In this study, we address and overcome the issue of implementing DL methods to locate field 590 

microseismic events for EGS. In practice, the foremost challenge is the scarcity of training data 591 
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due to the nature of how induced MEQs are difficult to detect (high noise levels and low 592 

magnitude), and thus resulting in limited data samples for DL training. Existing studies that use 593 

DL to locate earthquakes depend on large training samples. We overcome this challenge by 594 

utilizing a field-derived 3D P-wave velocity model to simulate synthetic acoustic waveforms from 595 

numerous artificial MEQs that encompasses the whole velocity model’s spatial extent. 596 

Consequently, we train a probabilistic neural network that trains on waveform features (cross-597 

correlation time lags) and outputs MEQ locations (easting, northing, depth). Through the principle 598 

of transfer learning, this learned knowledge can be applied to previously unseen data, such as 599 

Newberry EGS field waveforms, to accurately obtain field MEQ locations. This technique 600 

overcomes the issue of lack of field training data by essentially generating a highly realistic 601 

training dataset that contains all relevant physics, which facilitates field prediction.  602 

 Our methodology combines speed (inference under few seconds) and precision (good data 603 

match) in predicting MEQ locations, making it suitable for automated picking routines. Using 3D 604 

acoustic wave propagation physics, it can significantly improve preliminary location estimates 605 

from automatically triggered waveforms. The adaptable workflow allows for various 606 

improvements, such as using updated velocity models or more complete waveforms (elastic). 607 

Owing to its core structure as a multilayer perceptron, retraining with new data is computationally 608 

efficient. Our proposed workflow can act as a blueprint for location predictions in other EGS sites. 609 

As long as the site’s velocity model can be estimated, we can simulate a large number of artificial 610 

events and their corresponding realistic synthetic waveforms. Overall, our approach offers a 611 

streamlined, effective solution for MEQ location estimation in EGS sites.  612 

A prevailing question arises: why opt for picking over directly using full waveforms in DL-613 

based source localization methods? Many DL-based methods, especially those using CNNs, take 614 



manuscript submitted to JGR: Machine Learning and Computation 

34 

 

in entire waveforms to predict locations. CNNs extract features through sliding convolution 615 

windows, a process that largely focuses on changes in waveform amplitudes. This feature 616 

extraction method is akin to seismic phase picking, which is also similar to computer vision for 617 

identifying contrasting edges or boundaries. Despite this, low signal-to-noise ratio waveforms can 618 

mislead the feature extraction, which would ultimately introduce errors in location predictions. It 619 

is evident that manual picks offer the most precise seismic phase arrivals. While established 620 

relocation methods such as HypoDD and GlowClust (Trugman and Shearer, 2017) may exist as a 621 

straightforward option to apply those curated picks to, these methods have their limitations. In 622 

sparse seismic networks, these algorithms struggle to optimally refine earthquake locations and 623 

can face convergence issues if initial locations are far from true solutions. As outlined in our 624 

approach, we supply the PMLP with an extensive synthetic dataset for training. The combination 625 

of NNs’ ability to map complex data patterns and extensive training dataset offers a robust solution 626 

in situations with sparse receiver networks. Our proposed transfer learning method basically 627 

computes a global solution of the travel-time-location problem within the confines of the given 628 

velocity model. This avoids the need for initial location estimates. Essentially, the trained neural 629 

network acts as a comprehensive lookup table, correlating travel-times with locations. While 630 

further refinement of travel-time picks can enhance predicted MEQ location accuracy, our method 631 

could offer an improvement to estimate initial MEQ locations during EGS stimulation. 632 

In our study, we operate under the assumption that the employed 3D velocity model, while 633 

broadly representative of the subsurface layers, may not fully capture all lateral heterogeneities. 634 

Despite this limitation, the model provides a more nuanced geological context compared to the 635 

simplified 1D layered models typically used in automated picking software. In practice, 636 
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implementing this 3D model on-site could enhance initial-stage predictions, offering valuable, 637 

rapid feedback for the stimulation process and thereby improving operational efficiency. 638 

In a relevant work by Chen et al. (2022), the study used RF that takes in P-wave travel-639 

time and location coordinates, and predicts MEQ location (x,y,z coordinates). In the study’s field 640 

application example at a hydraulic fracturing site, it used similar transfer learning techniques by 641 

simulating many artificial events in a 3D layered velocity model and apply their trained RF model 642 

on field data to obtain field location predictions. The study noted that when the RF model is trained 643 

on dataset generated from 1D velocity model and applied to unseen data generated from complex 644 

3D velocity model, the prediction accuracy suffers from significant errors, especially for deep 645 

events and events near high contrasting velocity anomalies. The study also used the Monte Carlo 646 

method to estimate its prediction uncertainties by perturbing the original velocity model and 647 

examine its prediction variations. Our proposed workflow provides several improvements and 648 

introduces new advantages. In our proposed method, we use a field-informed high-resolution 3D 649 

P-wave velocity model to simulate synthetic MEQ-waveforms dataset. The velocity model is 650 

created by inverting the Green’s function derived from ambient noise correlations from multiple 651 

Newberry seismic stations. As 3D velocity models contain more physics than that of 1D models, 652 

the forward simulated waveforms are more realistic. Furthermore, our proposed workflow 653 

simplifies the uncertainty estimation. The probabilistic design of the PMLP provides slightly 654 

varied outcomes for predicted samples, allowing for uncertainty quantification. Therefore, we 655 

eliminate the need for perturbing the velocity model and re-running forward modeling, a feature 656 

that could be beneficial for near real-time EGS monitoring. 657 

 There are a few improvements that can be made to our workflow. Acoustic wave modeling 658 

only generates the first arriving P-waves, and as such, our neural network is limited to P-wave 659 
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features (cross-correlation time lags). In future, elastic modeling routines can be considered as they 660 

simulate S-wave components. Since neural networks work best with more features to train, having 661 

both P- and S-wave features is likely to improve the location prediction. This is also especially 662 

useful in noisy traces where the P-wave first arrival is not obvious, but the S-wave is due to its 663 

larger amplitude.  664 

 Moreover, as demonstrated in the sensitivity analysis, our workflow relies largely on the 665 

accuracy of first arrival picks. We attempt to overcome this issue by manually examining all the 666 

traces and repick the incorrect first arrival travel-times. However, we acknowledge that there may 667 

be picking inaccuracies especially when the traces are very noisy. We considered the use of state-668 

of-the-art DL-based phase pickers such as PhaseNet and EQTransformer, but upon testing, we 669 

found that those pickers were not reliable due to inconsistent P-wave picks. In the future, we 670 

believe that developing DL-based phase pickers specifically tailored for induced MEQ waveforms 671 

could significantly improve P-wave picking. These specialized DL-based pickers could accurately 672 

identify first arrival picks. When integrated with our location estimation method, this could create 673 

a comprehensive DL suite for automated waveform picking and location estimation. 674 

 Understanding the limitations of how many synthetic MEQs can influence the inversion 675 

results can be beneficial for long-term EGS monitoring. Ideally, the more data the better it is for 676 

DL generalization at the EGS site, however, the abundance of synthetic MEQ dataset comes at 677 

cost of long simulation and DL training times. As such, it would be helpful to examine the 678 

boundaries of training data size that are needed to produce similar inversion results when compared 679 

to large number of datasets. 680 
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7 Conclusions 681 

Locating microearthquakes (MEQs) in enhanced geothermal systems (EGS) is fundamentally 682 

challenging due to the nonlinear relationship between waveforms and location. While deep 683 

learning (DL) methodologies have shown proficiency in predicting natural earthquake locations 684 

using waveform data, the majority of these studies depend heavily on large amount of field data 685 

for training. As such, the scarcity of field training data in EGS presents considerable challenges 686 

for the implementation of DL-based approaches. To overcome the scarcity of training data, we 687 

leverage transfer learning principles by introducing a practical workflow that accurately predicts 688 

MEQ locations from cross-correlation time lags using probabilistic multilayer perceptrons 689 

(PMLP). Our results on the 2012 Newberry EGS stimulation show major microseismic activity at 690 

depths of 0.5 – 1.2 km, which agrees with the casing leakage scenario that took place in the well 691 

bore. We further apply our methodology to the 2014 stimulation data and found that most of the 692 

MEQs concentrate at 2.0 – 2.9 km depths. This finding aligns with the presence of natural fractures 693 

which extend from 2.0 – 2.7 km. Excellent data (time lags) match indicate the completeness of 694 

inversion and suggest predictions can be trusted. The combination of good data match and the 695 

predisposition of natural fractures having ruptures caused by fluid stimulation lead us to conclude 696 

that the majority of microseismic activity happens shallower than 3.0 km. Training with prior 697 

information specific to an EGS site holds promise for enabling real-time monitoring in such 698 

environments. 699 

 700 

 701 

 702 
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Key Points: 11 
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against known geological features 15 

• Employs probabilistic multilayer perceptrons that map cross-correlation time lags to 16 

microearthquake locations 17 
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Abstract 19 

Enhanced geothermal systems (EGS) are promising for generating clean power by extracting heat 20 

energy from injection and extraction of water in geothermal reservoirs. The stimulation process 21 

involves hydroshearing which reactivates pre-existing cracks for creating permeability and 22 

meanwhile inducing microearthquakes. Locating these microearthquakes provide reliable 23 

feedback on the stimulation progress, but it poses a challenging nonlinear inverse problem. Current 24 

deep learning methods for locating earthquakes require extensive datasets for training, which is 25 

problematic as detected microearthquakes are often limited. To address the scarcity of training 26 

data, we propose a transfer learning workflow using probabilistic multilayer perceptron (PMLP) 27 

which predicts microearthquake locations from cross-correlation time lags in waveforms. Utilizing 28 

a 3D velocity model of Newberry site derived from ambient noise interferometry, we generate 29 

numerous synthetic microearthquakes and 3D acoustic waveforms for PMLP training. Accurate 30 

synthetic tests prompt us to apply the trained network to the 2012 and 2014 stimulation field 31 

waveforms. Predictions on the 2012 stimulation dataset show major microseismic activity at 32 

depths of 0.5–1.2 km, correlating with a known casing leakage scenario. In the 2014 dataset, the 33 

majority of predictions concentrate at 2.0–2.9 km depths, consistent with results obtained from 34 

conventional physics-based inversion, and align with the presence of natural fractures from 2.0–35 

2.7 km. We validate our findings by comparing the synthetic and field picks, demonstrating a 36 

satisfactory match for the first arrivals. By combining the benefits of quick inference speeds and 37 

accurate location predictions, we demonstrate the feasibility of using transfer learning to locate 38 

microseismicity for EGS monitoring. 39 

 40 
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Plain Language Summary 41 

Enhanced geothermal systems (EGS) are an emerging technology that generates clean electricity 42 

by injecting water into underground hot rocks and pumping it back to the surface for power 43 

generation. However, this stimulation process causes tiny earthquakes, known as 44 

microearthquakes. Tracking the location of these microearthquakes is crucial for monitoring the 45 

EGS creation process. Unfortunately, finding where these microearthquakes occur is a complex 46 

task. Using deep learning methods is challenging because of the general lack of microearthquakes 47 

for training. To overcome this, we employ transfer learning, which allows computer models to 48 

train on realistic data, and eventually deploy to real-world EGS microearthquake data. We create 49 

a realistic geological model of the Newberry EGS site and generate many artificial 50 

microearthquake data for deep learning training. During the application on field data from 2012 51 

and 2014 stimulation, the computer model successfully identifies the depth and location of MEQs. 52 

Our results match well with what we already know about the underground structure, such as the 53 

presence of natural fractures in the rock. This study shows that our approach can effectively predict 54 

microearthquake locations even when presented with limited earthquake data for training, which 55 

is promising for monitoring and improving EGS operations in the future. 56 

 57 

  58 
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1 Introduction 59 

Geothermal energy has emerged as a valuable and sustainable resource in the global energy 60 

landscape, which harnesses the Earth's natural heat to generate electricity, providing a reliable and 61 

consistent supply, unlike intermittent resources such as solar or wind power (Muffler & Cataldi, 62 

1978). As a low-emission energy form, geothermal power mitigates greenhouse gas emissions and 63 

reduces the nation's reliance on fossil fuels (Tester et al., 2006). According to the U.S. Energy 64 

Information Administration (EIA, 2023), geothermal energy generation in 2022 reached 65 

approximately 17 billion kWh, positioning the United States as the leading global producer of 66 

geothermal electricity. Moreover, electricity generated from geothermal plants is projected to 67 

increase to 37.2 billion kWh in 2050. Enhanced geothermal systems (EGS) technology harnesses 68 

heat energy produced from areas of young tectonism and volcanism, but contains relatively low 69 

permeability (e.g., Häring et al., 2008; Cladouhos et al., 2016; Schill et al., 2017; Lu, 2018; Tomac 70 

and Sauter, 2018). In an EGS, fluid is injected into the subsurface under carefully controlled 71 

conditions, which caused pre-existing fractures to reopen, enhancing permeability. Increased 72 

permeability allows fluids to circulate in the now-fractured rock and to transport heat to the surface 73 

where electricity can be generated. 74 

 The creation of EGS has been widely known to induce microearthquakes (MEQs) (Zang 75 

et al., 2014; Majer et al., 2007). These MEQs, serving as reservoir stimulation diagnostic 76 

indicators, can locate fluid-induced fractures and monitor EGS stimulation progress such as crack 77 

propagation, permeability evolution, and temperature changes (Izadi and Elsworth, 2013; Fang et 78 

al., 2016). However, elevated occurrence of MEQs may lead to negative public perception 79 

regarding EGS deployment, particularly felt seismicity may be perceived as an isolated annoyance. 80 

Furthermore, there is concern about the cumulative effects of recurrent events and the potential of 81 
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larger earthquakes in the future (Majer et al., 2007). Consequently, there is both a scientific and 82 

societal need to locate and monitor MEQs associated with EGS reservoir stimulation. 83 

 Conventional earthquake location methods involve iteratively minimizing the difference 84 

between picked P- and/or S-wave first arrival times and predicted data at multiple seismic stations 85 

(Geiger, 1912; Tarantola & Valette, 1982; Bondar et al., 2014; Karasözen & Karasözen, 2020). 86 

While these methods have been widely employed in seismology, they exhibit certain limitations. 87 

The accuracy of earthquake location estimates can be affected by convergence issues, particularly 88 

when the initial location guess is not sufficiently close to the true hypocenter, the solution may 89 

converge at a local minimum, leading to inaccurate location estimates. Additionally, conventional 90 

methods can be computationally intensive, particularly when applied to large datasets or in regions 91 

with complex geology (local heterogeneities). As such, most location algorithms rely on one-92 

dimensional (1D) velocity models, where the velocity changes only with depth. Furthermore, 93 

waveform-based methods that are based on time-reversal imaging principles utilize finite 94 

difference to compute time-reversed seismograms and the actual source location is determined by 95 

identifying the point of highest energy concentration (e.g., McMechan, 1982; Chang and 96 

McMechan, 1994; Gajewski and Tessmer, 2005; Zhu, 2014; Li et al., 2020). Wavefield simulation 97 

method is unsurprisingly computationally expensive, and the energy focusing can be ambiguous 98 

for noisy data and very heterogeneous models. Waldhauser and Ellsworth (2000) proposed 99 

hypoDD, a widely used location inversion method that iteratively minimizes the misfit between 100 

theoretical and observed differential travel-times for pairs of earthquakes (double-difference) at 101 

each station. Nonetheless, the system can get very large if all event pairs are used in double-102 

difference methods and reducing the efficiency of location estimation.  103 
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 Deep learning (DL) techniques have been increasingly applied in earthquake seismology. 104 

For example, DL has seen significant developments in earthquake event phase detection (Ross et 105 

al., 2018; Dokht et al., 2019), phase picking (Zhu and Beroza; 2018; Mousavi et al., 2020), and 106 

phase association (Ross et al., 2019; Zhu et al., 2022). For DL-based earthquake location inversion, 107 

a large majority of studies rely heavily on training with labeled field data. Perol et al. (2018) used 108 

convolutional neural network (CNN) that trained on ~2,900 single station events near Guthrie, 109 

Oklahoma, in which the CNN accepts three-component waveforms and predicts earthquake 110 

location groups of six clusters. Later studies improved the earthquake location inversion method 111 

by employing more advanced DL algorithms and utilize multi-station three-component waveforms 112 

as input to predict three-dimensional (3D) locations. For example, Kriegerowski et al. (2019) 113 

employed deep CNN to predict easting, northing, and depth of earthquakes based on ~3,000 events 114 

from Western Bohemia, Czech Republic. Van den Ende and Ampuero (2020) used graph neural 115 

networks to predict the source latitude, longitude, depth, and magnitude based on ~1,300 events 116 

from Southern California. Shen and Shen (2021) used deep CNNs that trained on USGS Combined 117 

Cataglog earthquakes (~1,800) to predict latitude, longitude, depth, and origin time of events. 118 

Zhang et al. (2021) adapted deep CNNs to predict 3D event location probabilities based on ~1,000 119 

events from Central Apennies, Italy. Using single-station waveforms, Mousavi and Beroza (2020) 120 

employed Bayesian neural networks to predict epicenter, depth, and origin time based on the 121 

Stanford Earthquake Data Set (~450k events).  122 

 Comparing natural earthquakes to geothermal induced MEQs reveals several distinct 123 

differences, particularly in terms of their detectability (Fang et al., 2016; Templeton et al., 2020). 124 

MEQs are generally characterized by lower magnitudes and higher scarcity compared to natural 125 

earthquakes. The lower magnitudes make MEQs more challenging to detect, as they are often 126 
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masked by background noise. This results in fewer MEQ events detected in conventional catalogs. 127 

This scarcity of MEQs poses a significant challenge for DL training, as the limited amount of 128 

available data restricts the ability to build robust and accurate DL models for solving the nonlinear 129 

MEQ location inversion problem. Consequently, even though DL algorithms are strong solvers for 130 

nonlinear problems and have quick inference speeds, the data scarcity for training presents as the 131 

major challenge for using DL guided solutions to accurately locate MEQs. Moreover, the accuracy 132 

of predicted locations using conventional earthquake location methods (e.g., minimizing travel-133 

time misfit) highly depends on the velocity model used. Simplified velocity models can result in 134 

less precise location predictions due to the lack of local heterogeneities present in the model. Using 135 

higher resolution velocity models that include more local geological features will incur higher 136 

computation costs. As such, it is pivotal to develop a practical method that combines the benefits 137 

of DL (quick inference times and strong nonlinear solving abilities), address the paucity of field 138 

training data, and integrates high-resolution realistic velocity models, to estimate induced MEQ 139 

locations for EGS monitoring. 140 

 In this study, we present a transfer learning workflow using probabilistic multilayer 141 

perceptron (PMLP) to accurately predict MEQ locations from waveform data. Transfer learning 142 

involves applying a machine learning model, initially trained on one dataset, to a different but 143 

related dataset. The knowledge transfer technique is especially beneficial in applications scenarios 144 

where collecting extensive training data is impractical or unfeasible. This approach serves as the 145 

basis of our study to locate field MEQs at the Newberry EGS site. The workflow encompasses 146 

three parts. Firstly, we use a high-resolution 3D velocity model created by Matzel et al. (2014) to 147 

simulate numerous synthetic MEQ events using 3D acoustic finite-difference modeling. From the 148 

synthetic waveforms, we extract its first arrivals. In practice, since we do not have the MEQs event 149 



manuscript submitted to JGR: Machine Learning and Computation 

8 

 

origin time, we compute the cross-correlation of the first arrivals such that the first arrival of the 150 

master trace is at zero time lag. The time lags at other receivers contain the same moveout pattern 151 

as the first arrivals. Secondly, we train a PMLP that inputs cross-correlation time lags and outputs 152 

the locations (x, y, z) of MEQs. Lastly, we apply the trained PMLP onto the field dataset to obtain 153 

field MEQ location predictions. We are essentially leveraging transfer learning principles by 154 

allowing the neural network to train on realistic or physics-informed synthetic dataset, and then 155 

apply its knowledge learned onto field waveforms to predict the induced MEQ locations.  156 

 This manuscript is organized as follows. Firstly, we provide some background on the 157 

Newberry EGS and its field collected dataset. Secondly, we introduce our methodology, including 158 

the Newberry 3D velocity model, synthetic training dataset generation, and PMLP. Lastly, we 159 

discuss and interpret our results, and showcase our potential improvements to the previous 160 

understanding of Newberry EGS microseismicity. 161 

2 Newberry EGS 162 

Newberry Volcano is a shield volcano located in central Oregon, about 20 mi (35 km) south of the 163 

city of Bend and approximately 40 mi (65 km) east of the crest of the Cascade Range. The 164 

Newberry EGS was operated by AltaRock Energy and Davenport Newberry to test and 165 

demonstrate the EGS technology. After an extensive study of the state of the stress for the area 166 

(Cladouhos et al., 2011a; Davatzes and Hickman, 2011), this location was selected due to a very 167 

low permeability rate as well as a large conductive thermal anomaly that yields high-temperatures 168 

(Cladouhos et al., 2011b), making it ideal to test the creation of an EGS. Borehole logs reveal 169 

natural fractures extending from approximately depths of 2,000 m to 2,700 m. At these depths, the 170 

interpreted lithology consists of tuffs, basalt-andesite, and granodiorite. The EGS demonstration 171 
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was stimulated two times, first in 2012 and later in 2014, to induce hydroshearing in the reservoir 172 

and enhance the movement of fluids through the system (Cladouhos et al., 2016).  173 

 In the 2012 fluid stimulation, there was a suspected casing leakage which caused induced 174 

MEQs at shallower than the intended depths. In the fall of 2014, casing repairs and re-stimulations 175 

were made. In the drilling well, the perforated liner is used to create multiple pathways for fluid 176 

injection into the rock formation, enabling efficient fracturing and increased heat exchange 177 

between the injected fluid and the surrounding hot rocks. The perforated liner starts at 1,912 m 178 

(6,272 ft) to 3,045 m (9,990 ft), along with a blank liner extending from 2,289 m (7,509 ft) to 2,493 179 

m (8,177 ft). The depths at which the perforated liner is installed (1,912 m - 3,045 m) is considered 180 

the targeted depth for EGS stimulations. The experiment had a monitoring array of seven surface 181 

seismic stations and eight borehole stations. Figure 1 shows the general vicinity of Newberry EGS 182 

site. For the purposes of our study, we only show the borehole stations because the recorded 183 

waveforms are frequently missing at the surface stations. As such, we only work on data traces 184 

from the eight borehole stations throughout our study. 185 

 186 
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 187 

Figure 1: Aerial view of Newberry EGS site. The eight NN stations are borehole seismic 188 

stations. Events in blue are from the initial location catalog from the 2012 stimulation. Events in 189 

green are the corresponding locations of 2014 stimulation. 190 

 191 

2.1 Microseismicity of the 2012 and 2014 EGS Stimulation 192 

The 2012 stimulation lasted from Sept. 1, 2012, to Dec. 31, 2012. About 40,000 m3 of water were 193 

injected with about 90% of the events were above the casing shoe (depths less than 1,830m (6,000 194 

ft)), suggesting that injected fluid had leaked out of the casing to stimulate relatively shallow and 195 

cool rock. In the summer of 2013, caliper and video logs confirmed that there was both a horizontal 196 

crack in the casing at 683 m (2,240 ft) depth and a leak in the parasitic aeration string (AltaRock, 197 

2014). In 2014, casing repairs were made, and second stimulation was conducted on Sept. 22, 198 
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2014, until Nov. 30, 2014. As for microseismicity, the seismic acquisition software automatically 199 

identified events, generated preliminary P- and S-wave picks and locations.  200 

 During the 2012 stimulation, about 175 events were located with magnitudes between M 201 

0.0 and M 2.3. As for the 2014 stimulation, about 398 events were located with magnitudes 202 

between M 0.0 and M 2.2 (Cladouhos et al., 2016). 203 

 As for the data availability (http://fracture.lbl.gov/Newberry/Location.txt – assessed 204 

October 2019), there were only 149 datasets comprising waveforms and locations for the 2012 205 

stimulation. For the 2014 stimulation, only 334 datasets are available.   206 

3 Methodology 207 

The main objective of this study is to develop DL algorithms to predict the locations of MEQs 208 

induced in the Newberry EGS, using waveform features, specifically cross-correlation time lags. 209 

The workflow is summarized in Figure 2. The workflow methodology can be divided into four 210 

parts. Firstly, we obtain a realistic seismic velocity model that is derived from field observations. 211 

Secondly, we simulate numerous synthetic MEQs, and their corresponding waveforms based on 212 

the field-informed velocity model. Thirdly, we use a neural network (PMLP in this study) to map 213 

the relationship from cross-correlation time lags (derived from waveforms) to MEQ locations 214 

(x,y,z). Lastly, we apply the trained PMLP onto the field waveforms to obtain Newberry MEQ 215 

location predictions. 216 

 217 

 218 

http://fracture.lbl.gov/Newberry/Location.txt
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Figure 2: The workflow of this study begins with using a realistic velocity model derived from 219 

field measurements to generate numerous random MEQs. Next, we simulate the corresponding 220 

MEQ waveforms using 3D acoustic forward modeling. Following this, we extract cross-221 

correlation time lags from these waveforms. These time lags are then utilized as inputs for our 222 

neural network, with the MEQ locations serving as outputs. After the neural network is 223 

adequately trained, we implement transfer learning, by applying this trained neural network to 224 

the actual field waveforms to obtain accurate location predictions. 225 

 226 

3.1 Newberry Seismic Velocity Model 227 

Matzel et al. (2014) computed ambient noise correlations from 22 seismic stations in the Newberry 228 

network, together with 12 additional stations from the nearby CC (Cascade Chain), UO (University 229 

of Oregon), and UW (University of Washington) seismic networks. The Green’s functions that 230 

emerged from the cross-correlation waveforms were treated as seismic record and inverted for the 231 

best fitting 1D model along each path, resulting in Vp, Vs, and Qs models. For this study, we use 232 

the Vp model as a basis for our study.  233 

The original format of velocity model is in latitude, longitude, and altitude (elevation above 234 

sea level). As such, we apply these preprocessing steps to convert the location to appropriate 235 

scales: 236 

1) We first convert the latitude and longitude to easting and northing coordinates using 237 

the open-source software UTM (https://github.com/Turbo87/utm).  238 

2) Next, we convert the altitude to depth below ground by subtracting altitude from the 239 

local topography.  240 

3) Due to the significantly larger easting and northing values compared to depth, we 241 

normalize these values by subtracting them from the easting and northing coordinates 242 

https://github.com/Turbo87/utm
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of centroid of the 15 stations. This ensures the new coordinates system is centered 243 

around the seismic stations. 244 

4) Finally, we upsample the original velocity model from spatial sampling (dx, dy, dz) 245 

of 500 m to 25 m to satisfy seismic modeling numerical stability requirements (Igel, 246 

2017). 247 

Similarly, we also preprocess the locations of the field MEQ events. We overlay the 248 

velocity model with 2012 and 2014 stimulation initially located MEQ events in Figure 3. The 2012 249 

stimulation MEQs are scattered as far as ~2 km away from the well bore, with the majority of 250 

events lying at depths of 2.0 – 3 km. These initial location estimates are incorrect (see Figures 3a 251 

and 3b) as there was a casing leak and most of the MEQs were later relocated to much shallower 252 

depths (0.6 – 1.3 km). As for the 2014 stimulation MEQs, the initial locations are noticeable at the 253 

wrong depths (Figures 3a and 3b) as the fluid injection was correctly stimulated at intended depths 254 

of ~ 1.9 – 3.0 km (Cladouhos et al., 2016). Moreover, we note that the velocity model completely 255 

covers the spatial extent of all the MEQs. This allows us to generate synthetic MEQs anywhere 256 

within the velocity model and simulate their corresponding waveforms.  257 
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 258 

Figure 3: 3D P-wave velocity model of Newberry EGS site generated by Matzel et al. (2014). 259 

(a) represents the East-West cross section, (b) is the North-South cross section, and (c) is the 260 

aerial view of the location. Blue dots are initially located events from 2012 stimulation and green 261 

dots are from 2014 stimulation. In the downloaded raw dataset, there are 149 events for 2012 262 

stimulation and 344 events for 2014 stimulation.  263 

 264 

3.2 Synthetic MEQs, 3D Acoustic Waveforms, and Cross-correlation Time Lags 265 

From the velocity model, we generate 10,000 artificial events across the entire extent of velocity 266 

model, and another 10,000 events to focus on the regions below the seismic stations which is also 267 

the injection zone (Figure 4). We note that the artificial MEQ events concentrate at the regions 268 

with field events. Next, we perform acoustic wave seismic modeling using the open-source 269 

Madagascar software (https://www.reproducibility.org/wiki/Main_Page) to generate the synthetic 270 

waveforms.  271 

https://www.reproducibility.org/wiki/Main_Page
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 272 

Figure 4: 10,000 synthetic events (purple) covering almost the entire spatial extent of velocity 273 

model. There are an additional 10,000 events covering the regions below the seismic stations. 274 

Blue dots are initially located events from 2012 stimulation and green dots are from 2014 275 

stimulation. 276 

 277 

Figure 5 shows an example snapshot of P-wave arriving at the receivers. The P-wave is analogous 278 

to the first arrivals emanated from induced MEQs during fluid stimulation. Figure 6a shows an 279 

example of waveforms generated (in black) from seismic modeling. It is important to highlight 280 

that the moveout pattern is caused by the relative MEQ location to receivers. For different MEQs 281 

at other locations, the time taken for first arrivals to arrive at the receivers cause different moveout 282 

patterns. We pick the first arrivals from the waveforms and create corresponding delta functions 283 

(red spikes in Figure 6a). Next, we use the trace at NN17 as the master trace to cross-correlate with 284 

all traces within a seismic gather. The cross-correlations aims to preserve the moveout information 285 

such that the time lag at the master trace (NN17) is zero, while the time lags at other traces 286 

correspond to the moveout pattern. Figure 6b shows the resulting cross-correlations with labeled 287 
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time lags. The time lags are directly indicative of the moveout caused by the relative location of 288 

MEQ and receiver locations. The time lags are treated as the input of the neural network whereas, 289 

the location information (easting, northing, depth) is treated as the output. 290 

 291 

 292 

Figure 5: Example snapshot of pressure wave arriving at receivers. 293 

 294 

  295 



manuscript submitted to JGR: Machine Learning and Computation 

17 

 

Figure 6: (a) shows an example of synthetic waveforms (black) and first arrival picks converted 296 

to delta functions (red). (b) is the corresponding cross-correlogram computed from using NN17 297 

as master trace to cross-correlate with all traces in the seismic gather. Labeled numbers indicate 298 

time lags, which represent the moveout. 299 

3.3 Probabilistic Multilayer Perceptron 300 

Multilayer perceptrons (MLPs) are the fundamental building blocks of feedforward neural 301 

networks that consist of multiple layers of interconnected nodes and neurons. MLPs are also 302 

commonly referred to as artificial neural networks and deep neural networks. A simple MLP 303 

consists of an input layer, one or more hidden layers, and output layer (Figure 7). Each neuron in 304 

a layer is connected to all the neurons in the previous and next layers, with associated weights 305 

assigned to each connection. Additionally, each neuron has an activation function that determines 306 

its output based on the weighted sum of its inputs. 307 

 308 

Figure 7: A simple MLP that consists of an input, hidden, and output layer. The circles in the 309 

hidden layer represent individual neurons. 310 

 311 

 To express MLPs mathematically, let 𝑋 be an input vector as 𝑋 = (𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛). At 312 

the hidden layer, the neurons can be expressed as: 313 

𝑍 = 𝑎(𝑊ℎ𝑋 + 𝑏ℎ), 314 
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where 𝑍 is the output of the hidden layer and 𝑎 is the activation function, 𝑊ℎ and 𝑏ℎ are the weights 315 

and biases of hidden layer. The activation function introduces nonlinearity to the system so that 316 

the MLP can effectively learn the appropriate weights and biases to solve the nonlinear problem. 317 

Without the activation function, the system would be linear and the training of MLP would not 318 

converge. At the output layer: 319 

�̂� = 𝑎(𝑊𝑜𝑍 + 𝑏𝑜), 320 

where �̂� is the MLP output (prediction). The training process of an MLP involves adjusting the 321 

weights and biases to minimize the error between the predicted output and the target output, 322 

typically using the backpropagation algorithm and gradient descent optimization (Lecun et al, 323 

2015). Some examples of loss function include mean square error (L2 norm) and mean absolute 324 

error (L1 norm). 325 

 326 
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Figure 8: Probabilistic MLP (PMLP) architecture. It accepts cross-correlation time lags as input 327 

and outputs mean (𝜇) and standard deviation (𝜎) of MEQ location. 𝜇 and 𝜎 can then be used to 328 

sample from the Gaussian distribution to obtain MEQ location samples (easting, northing, 329 

depth). We compute the average location as the final location prediction. 330 

 331 

 In earthquake location prediction, uncertainties play a key role in the process of quantifying 332 

the reliability of NN predictions. Standard MLPs are deterministic, meaning they output 333 

deterministic point estimates. Here, we use the probabilistic MLP (PMLP) to predict MEQ 334 

locations from cross-correlation time lags. Figure 8 shows the architecture of PMLP. PMLP 335 

contains a preceding conventional MLP structure, however, instead of directly predicting the 336 

location of MEQs, it predicts the distribution parameters (mean and standard deviation) of MEQ 337 

locations which are assumed to follow a Gaussian distribution. Essentially, PMLP seeks to find 338 

the best distribution parameters that make the output training data (event locations) most probable. 339 

In mathematical terms, PMLP can be expressed as a general nonlinear regressor by: 340 

𝑃𝑀𝐿𝑃(𝜏𝑁) = [𝜇𝑁 , 𝜎𝑁], 341 

where 𝜏 is the cross-correlation time lags, 𝜇 and 𝜎 are mean and standard deviation across N 342 

number of input data (time lags).  343 

 To determine the set of 𝜇 and 𝜎 that can make MEQ locations most probable, we employ 344 

maximum likelihood estimation (MLE). MLE finds the parameters that maximize the likelihood 345 

of observing the MEQ locations given the PMLP regression model. In practice, it is easier to 346 

maximize the log of the likelihood, or equivalently, minimize the negative log-likelihood. The 347 

Gaussian likelihood function, 𝐿, for a single MEQ location (𝑦), is given by: 348 

𝐿(𝑦;  𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−
(𝑦−𝜇)2

2𝜎2  349 

The negative log-likelihood simply means: 350 
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− log(𝐿(𝜏;  𝜇, 𝜎)) = − log (
1

𝜎√2𝜋
𝑒

−
(𝑦−𝜇)2

2𝜎2 ) 351 

By applying the logarithm properties: 352 

− log (
1

𝜎√2𝜋
𝑒

−
(𝑦−𝜇)2

2𝜎2 ) = − log (
1

𝜎√2𝜋
) − log (𝑒

−
(𝑦−𝜇)2

2𝜎2 ) 353 

= log(𝜎√2𝜋) +
(𝑦 − 𝜇)2

2𝜎2
 354 

For optimization purposes, we can leave out the constant term log(√2𝜋), and the resulting 355 

negative log-likelihood, 𝑁𝐿𝐿, (Nix and Weigend, 1994) can be defined as: 356 

𝑁𝐿𝐿 = − log(𝐿(𝜏;  𝜇, 𝜎)) =
1

𝑁
∑ [log 𝜎(𝜏𝑖) +

(𝑦𝑖 − 𝜇(𝜏𝑖))2

2𝜎(𝜏𝑖)2
]

𝑁

𝑖=1

 357 

where 𝜏𝑖 is the cross-correlation time lags, 𝜎 is the standard deviation, 𝑦 is the MEQ location 358 

values (easting, northing, depth), 𝜇 is the mean, and 𝑖 ∈ [1, 𝑁] where 𝑁 is the number of training 359 

dataset. Simply put, the negative log-likelihood loss function finds the parameters (𝜇, 𝜎) that best 360 

predict the MEQ locations in the training dataset. 361 

 We use ReLU as the activation function for all hidden layers. At the final layer, we only 362 

use fully-connected (dense) neurons without activation function for the easting and northing 363 

components as they contain negative and positive values. For the depth output component, we 364 

enforce a ReLU activation as the depth values are always positive. 365 

 In practice, we can apply the trained PMLP to unseen time lags, 𝜏, to predict 𝜇 and 𝜎. For 366 

example, for one set of time lags, the PMLP directly predicts one set of 𝜇 and 𝜎 of the MEQ 367 

location (easting, northing, depth). The predicted 𝜇 and 𝜎 are used to sample from the Gaussian 368 

distribution to obtain the realizations of predicted MEQ locations. Since this process is 369 

probabilistic, multiple sampling yields slightly different locations. This allows repeated sampling 370 
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that produces a range of predictions, which we can then compute the mean as the final MEQ 371 

location prediction; and compute statistical uncertainties from the range of sampled predictions. 372 

Here, we note that the estimated uncertainties come from the trained PMLP regression model, 373 

instead of the error introduced from the input time lags. The uncertainties represent the range of 374 

values that the trained PMLP will produce. 375 

4 Results 376 

This section is divided into three main parts. First, we discuss the performance of PMLP on 377 

synthetic dataset, i.e., training and testing on time lags generated from synthetic events. Second, 378 

we discuss the results of applying the trained PMLP on the 2012 stimulation MEQ dataset. Third, 379 

we discuss the 2014 stimulation MEQ location estimates and interpret our results based on the 380 

location’s geology. 381 

4.1 Synthethic Tests 382 

From the total 20,000 generated dataset, we remove a certain number of bad simulations due to 383 

edge effects, resulting in the new total to be 19,738 datasets.  We randomly split 16,875 (85%) for 384 

training, 1,876 (10%) for validation and 987 (5%) for testing. To select the best trained weights, 385 

we evaluate the Euclidean distance between predictions and ground truth. The Euclidean distance, 386 

𝐷, is calculated by: 387 

𝐷 = √(�̂�𝑖 − 𝐸𝑖)
2

+ (�̂�𝑖 − 𝑁𝑖)
2

+ (�̂�𝑖 − 𝐻𝑖)
2
 388 

where �̂�, �̂�, �̂� are predicted easting, northing, and depth, and 𝐸, 𝑁, 𝐻 are the respective ground 389 

truth. During training, we save the best weights that predict the lowest Euclidean distance on the 390 

validation dataset. Figure 9a shows the training progress in logarithms for better visualization, and 391 
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the best weight is selected at epoch 236 along with the average validation loss of 42 m. During 392 

inference, the trained PMLP samples the Gaussian distribution associated with the MEQ location, 393 

thus generating slightly differing predictions for each sample. Figure 9b shows 300 samples of 394 

location predictions that are based on one input event. As expected, the samples are scattered 395 

around the mean location. For our study, we generate 3,000 samples and compute the 396 

corresponding mean as the final location prediction. 397 

 The average Euclidean distance loss on testing dataset is 41 m. We further examine the 398 

prediction errors on the testing dataset (Figure 10) and compute simple statistics tests to gauge the 399 

prediction performance. For example, the prediction errors have 90% likeliness to fall between [-400 

53, 55] m in easting component; [-62, 59] m in northing component; and [-66, 68] m in depth 401 

component. In addition, we compute the 95% confidence interval, and the errors are approximately 402 

10 m more on each side. In the broader context, the velocity model has dimensions of 403 

approximately 9 km x 9 km x 4 km, and PMLP's prediction errors are less than 100 m, 404 

corresponding to about a 1% error in each dimension.  405 

 406 

Figure 9: (a) shows the training progress of PMLP. Blue curve is the training loss and red curve 407 

is the validation loss. The loss refers to the Euclidean distance. We use the model weights at 408 
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epoch 236 as the final weights as that is when the validation loss is the lowest. (b) shows the 409 

PMLP predictions (300 samples) for one input event. The mean prediction is computed as the 410 

final prediction. 411 

 412 

 413 

 414 

Figure 10: Prediction on testing dataset (n=987). The 95% confidence interval of the prediction 415 

error at easting is [-63.2, 64.8] m, northing is [-73.4, 70.5] m, and depth is [-78.5, 80.8] m. As for 416 

the 90% confidence interval, the prediction error at easting is [-52.9, 54.5] m, northing is [-61.8, 417 

58.9] m, and depth is [-65.7, 68.0] m. 418 

 419 

4.2 Field Application – 2012 Stimulation 420 

Out of the 149 triggered waveforms, we consider 10 events to be outliers as they are out of bounds 421 

i.e., located above stations and far away from the injection zone. The PMLP model requires input 422 

from all eight borehole stations for accurate predictions. Therefore, we can only consider events 423 

that have recorded waveforms at each of these eight stations. This criterion further narrows our 424 

analysis to 113 events with waveforms in those borehole receivers. As the P-wave synthetic 425 

waveforms used in training, we only consider the first arrival picks of the vertical component in 426 

all field waveforms. We assume this is reasonable because all the induced MEQs are located below 427 

the receivers and the vertical component sensor can sufficiently pick up the first arrival waves. 428 

 Before picking the first arrivals, we apply these preprocessing steps to the field waveforms:  429 
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1) We use trim the waveforms using the same start and end time to ensure the event 430 

waveforms are aligned at the same time window. 431 

2) We apply a bandpass of 5 – 15 Hz. 432 

3) Lastly, we normalize the traces based on their maximum value. 433 

 434 

Figure 11: Top panel shows an example of seismic trace. Middle panel shows the corresponding 435 

bandpassed frequency spectra. In the bottom panel, the frequency spectra are summed up in the 436 

vertical component and normalized based on its absolute maximum value. The red line shows the 437 

handpicked first arrival for which the picking location is guided by the onset of energy as 438 

depicted in the bottom panel. 439 

 440 

 To obtain the most accurate first arrival picks, we compute the frequency spectra and stack 441 

the frequency’s amplitudes to use as a guide for picking (Figure 11). The stacked frequencies 442 

illuminate the first arriving energy associated with the MEQ first arrivals. We carefully handpick 443 

the first arrivals, compute the cross-correlations and retrieve the corresponding time lags.  444 
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 445 

Figure 12: Histogram showing the mean-square-errors between predicted forward and field time 446 

lags for 2012 dataset. We consider the predictions falling within first bin as reliable. 447 

 448 

 Given the encouraging results observed from the application of PMLP in synthetic tests, 449 

we apply the trained PMLP model on the computed field time lags. However, preprocessing is 450 

needed due to the detection of unreliable location estimates within the raw predictions. This is 451 

evidenced by the significant discrepancies in time lag errors when comparing synthetic forward 452 

time lags with field-picked time lags. To address this, we calculate the mean-square-error for time 453 

lags (𝜀) between the field-picked and predicted forward time lags across all predictions, as shown 454 

in Figure 12. The histogram of 𝜀 guides our reliability criteria: predictions with 𝜀 below 500 ms 455 

are deemed reliable, which also corresponds to the most frequent histogram bin. Predicted 456 

locations in this bin have good match between the predicted forward time lags and that from field-457 

picks. After the preprocessing step, we identify a total of 62 reliable predicted locations. Figure 13 458 
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shows the predicted locations and three examples of comparison of predicted forward first arrival 459 

picks vs. field first arrival picks.  460 

 461 

 462 

Figure 13: PMLP predicted MEQs for 2012 stimulation. The left panel shows the cross section 463 

of the predicted location of MEQs. Right panel highlights three examples (A, B, C) to show the 464 

comparison of synthetic (predicted forward) vs. field picked first arrivals. 465 

 466 

 From these predicted MEQ locations, we notice a majority concentrate at depths of 0.5 – 467 

1.2 km. In comparison with the relocated events for 2012 stimulation done via physics-based 468 

inversion (Cladouhos et al., 2016), their predictions concentrate at depths of 0.5 – 1.3 km, which 469 

aligns with those from PMLP prediction. This directly corroborates with casing leak scenario 470 

which causes the induced microseismicity shallower than the intended depths (1.9 – 3.0 km). 471 

Events A, B, and C are three examples of predictions that display significantly good match between 472 

field (red vertical lines) and predicted forward picks (green vertical lines). The aligned depths of 473 

our predictions with those reported by Cladouhos et al. (2016), alongside the closely overlapping 474 
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first arrival picks as evidenced in Events A, B, and C (in Figure 13; right panel), underscores the 475 

accuracy and reliability of PMLP in predicting microseismic locations. 476 

4.3 Field Application – 2014 Stimulation 477 

From the available 334 MEQ waveforms, we select 292 as the remaining events do not contain 478 

seismic traces in all eight stations. As the 2014 raw waveforms contain more noise and the original 479 

data format are less structured, it is essential to preprocess the field waveforms before picking the 480 

first arrivals. First, for each event, we find the most common start and end time within all traces 481 

because many waveforms have different start times. Second, we apply a bandpass filter of 6 – 20 482 

Hz to remove noise of higher and lower frequencies. Third, we demean and normalize the traces 483 

so that the resulting seismograms can be picked easily. 484 

 485 

Figure 14: Similarly for 2014 dataset, we plot the histogram showing the mean-square-errors 486 

between predicted forward and field time lags. We consider the predictions falling within the 487 

first bin as reliable. 488 

 489 
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 Similarly, we first apply the trained PMLP on the 2014 dataset, compute the cross-490 

correlated time lags for each predicted location, and compare them with those from the field picks. 491 

The histogram of the errors is plotted in Figure 14. From the histogram, we see the first bin (250 492 

ms) has the greatest number of predictions, which also means that these predictions are the most 493 

accurate due to their low error between the predicted forward and field picks. This entails a total 494 

of 142 reliable predictions (Figure S1) based on their first arrivals match. However, we notice that 495 

there are two clusters of predictions separated by a noticeable gap (lack of predictions) around 1.8 496 

km depth. In Cladouhos et al. (2016), the physics-based inversion study did not show any location 497 

estimates above 1.8 km depth. Upon inspecting the first arrival match between the synthetic picks 498 

and field picks (Figure S2), we postulate that although the first arrival match is good, we think 499 

these predictions likely stem from incorrect first arrival picks. For instance, the waveforms in the 500 

six examples (Events A-F) contain relatively more noise and our picks may not best represent the 501 

real first arrivals. Following this, we consider it appropriate to only keep the events below 1.8 km 502 

depth (128 events) as the final predictions for interpretation (shown in Figure 15). In total, there 503 

are 128 events used as the final predictions. 504 

 505 
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 506 
Figure 15: Overlay of 2014 stimulation location predictions with interpreted geologic zones 507 

from Cladouhos et al. (2016). The fracture count is determined by counting fractures within the 508 

NWG 55-29 borehole. The error bars are calculated by using the range of location samples 509 

predicted from repeated sampling of the trained PMLP.  510 

 511 

 We cross reference the final predictions with the subsurface geologic information 512 

determined from the NWG 55-29 borehole (Cladouhos et al., 2016) in Figure 15 (right panel). 513 

Additionally, we overlay the MEQ location predictions with the appropriate geologic zones. We 514 

re-reference the MEQ locations relative to the wellbore coordinates for better comparison. The 515 

fracture count in each zone is determined from images captured from a borehole televiewer 516 

(BHTV) survey. For example, in Zone A, there are 5 natural fractures per 0.06 m. We note that 517 

this fracture count is only representative of the region within the borehole. In general, we see that 518 

Zone B – Tuffs and Basalts (173/0.4 m) contains the most fractures, followed by Zone C (157/0.8 519 

m), Zone D (16/0.6 m), and Zone A (5 / 0.06 m). Since natural fractures are more predisposed to 520 

rupture (Rutqvist et al., 2013; Lei et al., 2021) during fluid stimulation, it is reasonable to assume 521 

that the number of MEQs would be higher in regions that contain more natural fractures. Most of 522 

our MEQ predictions (n = 67) are in Zone B, which aligns with the zone having the highest fracture 523 

count. This correlation supports the validity of PMLP predictions in reflecting the geological 524 



manuscript submitted to JGR: Machine Learning and Computation 

30 

 

conditions of the subsurface. Our confidence in these predictions is further bolstered by the 525 

excellent match of first arrival picks between synthetic and field traces. We select eight examples 526 

(see Figure S3) and compare their first arrivals with those picked from field, and the data match 527 

appears to match well (Figure S4). From the BHTV fracture counts, Zone C has the second highest 528 

number of fractures (157/0.8 m), also coincides with our predictions in terms of number of MEQ 529 

predictions. While Zones A and D show an equal number of MEQ predictions (n = 16), BHTV 530 

fracture counts reveal more fractures in Zone D (n = 16) than in Zone A (n = 5). It is important to 531 

note that these fracture counts are derived from BHTV images within the borehole and may not 532 

fully represent the entire geological strata. Additionally, fracture counts in Zones B and C are an 533 

order of magnitude higher than in Zones A and D, a pattern that is consistently echoed in our MEQ 534 

predictions. 535 

 The microseismic events predicted by the PMLP form a cloud analogous to that derived 536 

from the physics-based inversion (see Fig. 12 in Cladouhos et al. (2016)), albeit with most of our 537 

predicted events notably clustered to the west of the wellbore. The westward clustering observed 538 

in our predictions may be attributed to the DL model's reliance solely on P-wave picks, as opposed 539 

to the physics-based inversion which utilized both P- and S-wave arrivals. This methodological 540 

difference inherently results in slightly distinct MEQ location predictions. While we acknowledge 541 

that the refinement of first arrival picks could potentially enhance the model's accuracy, the strong 542 

data match between synthetic and field trace first arrivals suggests our current results are 543 

reasonable. The slight difference in the spatial distribution of predicted MEQs is counterbalanced 544 

by the significant advantage of the DL model in terms of inference speed. Once trained, our model 545 

can deliver predictions within seconds, a speed that significantly outperforms traditional source 546 

localization methods.  547 
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 In general, our results indicate that most induced MEQs are located above 2.90 km depth 548 

(until Zone D), with a few outliers. In contrast, Cladouhos et al. (2016) demonstrate that the 549 

relocated MEQs extend down to 3.2 km, with a significant number of events occurring between 550 

depths of 3.05 and 3.2 km. A more in-depth study was done to interpret the natural fractures 551 

(Davatzes and Hickman, 2011), and it is found that fractures are only present at depths of 2.0 km 552 

to approximately 2.7 km. Since injection of fluid increases pore pressure within these fractures, it 553 

reduces the effective normal stress acting on the fracture walls. This reduction in normal stress 554 

decreases the frictional resistance to shear sliding along the fracture plane. As pore pressure 555 

continues to increase, it eventually overcomes the frictional resistance and causes the natural 556 

fractures to slip or rupture, a process known as shear reactivation (Das and Zoback, 2011; Rutqvist 557 

et al., 2013). Based on our findings, we can reasonably conclude that our predictions are accurate 558 

due to the presence of natural fractures matching the depths of predicted MEQs. Therefore, we 559 

postulate that our results could potentially be seen as an improvement to the method used in 560 

Cladouhos et al. (2016).  561 

 As for the uncertainties associated with the prediction, we compute the range (lower and 562 

upper bounds) of location samples generated from repeated predictions. We show the uncertainties 563 

in Figure 15 in the form of error bars. We avoid the use of standard deviation as uncertainties as 564 

we would want to know the full extent of location predictions produced from the repeated 565 

predictions. The uncertainties suggest a lesser variation and stronger confidence in the East-West 566 

component, while more variation in the depth component. This coincides with conventional 567 

earthquake location inversion methods in which the depth component typically shows larger 568 

uncertainties. 569 
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5 Picking Error Sensitivity Analysis 570 

We perform a sensitivity analysis on the synthetic testing dataset to gauge how much the predicted 571 

locations would be affected by errors introduced in first arrival picks. We create four levels of 572 

errors in terms of number of time samples (nt): 5, 10, 15, and 20. We assume that 5-time samples 573 

would be an appropriate margin of error to characterize errors associated with handpicking. Next, 574 

we apply each error level to randomly selected receivers. Then, we compute the average Euclidean 575 

distance loss between the error-perturbed first arrivals and ground truth across the testing dataset. 576 

Table 1 shows the sensitivity of picking errors in accordance with the number of affected receivers. 577 

For example, when there are two random receivers affected with +/- 5-time samples (0.02 s) error, 578 

the average Euclidean distance loss is 0.1855 km. Our sensitivity analysis suggests that PMLP is 579 

highly sensitive to arrival picks. This is as expected because PMLP essentially only considers first-580 

arrivals as input features. Therefore, in our study, we manually review all traces and re-pick first 581 

arrivals whenever it is necessary.  582 

Picking 

errors  

(# nt (s)) 

Number of affected receivers (selected by random) 

0 1 2 3 4 5 6 7 8 

5 (0.02) 0.0410 0.1320 0.1855 0.2170 0.2506 0.2873 0.3023 0.3357 0.3519 

10 (0.04) 0.0410 0.2562 0.3518 0.4088 0.4893 0.5393 0.5624 0.6176 0.6770 

15 (0.06) 0.0410 0.3740 0.5165 0.6118 0.7167 0.7729 0.8229 0.8903 0.9712 

20 (0.08) 0.0411 0.4861 0.6623 0.8018 0.9194 0.9892 1.0799 1.1524 1.2401 

 583 

Table 1: Corresponding Euclidean distance (in km) errors when first arrival picking errors are 584 

introduced. We test four picking errors: 5-, 10-, 15-, and 20-time samples. For each group, we 585 

test a variety of number of affected receivers, ranging from no (zero) receivers affected to all 586 

(eight) receivers affected.  587 

 588 

6 Discussion 589 

In this study, we address and overcome the issue of implementing DL methods to locate field 590 

microseismic events for EGS. In practice, the foremost challenge is the scarcity of training data 591 
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due to the nature of how induced MEQs are difficult to detect (high noise levels and low 592 

magnitude), and thus resulting in limited data samples for DL training. Existing studies that use 593 

DL to locate earthquakes depend on large training samples. We overcome this challenge by 594 

utilizing a field-derived 3D P-wave velocity model to simulate synthetic acoustic waveforms from 595 

numerous artificial MEQs that encompasses the whole velocity model’s spatial extent. 596 

Consequently, we train a probabilistic neural network that trains on waveform features (cross-597 

correlation time lags) and outputs MEQ locations (easting, northing, depth). Through the principle 598 

of transfer learning, this learned knowledge can be applied to previously unseen data, such as 599 

Newberry EGS field waveforms, to accurately obtain field MEQ locations. This technique 600 

overcomes the issue of lack of field training data by essentially generating a highly realistic 601 

training dataset that contains all relevant physics, which facilitates field prediction.  602 

 Our methodology combines speed (inference under few seconds) and precision (good data 603 

match) in predicting MEQ locations, making it suitable for automated picking routines. Using 3D 604 

acoustic wave propagation physics, it can significantly improve preliminary location estimates 605 

from automatically triggered waveforms. The adaptable workflow allows for various 606 

improvements, such as using updated velocity models or more complete waveforms (elastic). 607 

Owing to its core structure as a multilayer perceptron, retraining with new data is computationally 608 

efficient. Our proposed workflow can act as a blueprint for location predictions in other EGS sites. 609 

As long as the site’s velocity model can be estimated, we can simulate a large number of artificial 610 

events and their corresponding realistic synthetic waveforms. Overall, our approach offers a 611 

streamlined, effective solution for MEQ location estimation in EGS sites.  612 

A prevailing question arises: why opt for picking over directly using full waveforms in DL-613 

based source localization methods? Many DL-based methods, especially those using CNNs, take 614 
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in entire waveforms to predict locations. CNNs extract features through sliding convolution 615 

windows, a process that largely focuses on changes in waveform amplitudes. This feature 616 

extraction method is akin to seismic phase picking, which is also similar to computer vision for 617 

identifying contrasting edges or boundaries. Despite this, low signal-to-noise ratio waveforms can 618 

mislead the feature extraction, which would ultimately introduce errors in location predictions. It 619 

is evident that manual picks offer the most precise seismic phase arrivals. While established 620 

relocation methods such as HypoDD and GlowClust (Trugman and Shearer, 2017) may exist as a 621 

straightforward option to apply those curated picks to, these methods have their limitations. In 622 

sparse seismic networks, these algorithms struggle to optimally refine earthquake locations and 623 

can face convergence issues if initial locations are far from true solutions. As outlined in our 624 

approach, we supply the PMLP with an extensive synthetic dataset for training. The combination 625 

of NNs’ ability to map complex data patterns and extensive training dataset offers a robust solution 626 

in situations with sparse receiver networks. Our proposed transfer learning method basically 627 

computes a global solution of the travel-time-location problem within the confines of the given 628 

velocity model. This avoids the need for initial location estimates. Essentially, the trained neural 629 

network acts as a comprehensive lookup table, correlating travel-times with locations. While 630 

further refinement of travel-time picks can enhance predicted MEQ location accuracy, our method 631 

could offer an improvement to estimate initial MEQ locations during EGS stimulation. 632 

In our study, we operate under the assumption that the employed 3D velocity model, while 633 

broadly representative of the subsurface layers, may not fully capture all lateral heterogeneities. 634 

Despite this limitation, the model provides a more nuanced geological context compared to the 635 

simplified 1D layered models typically used in automated picking software. In practice, 636 
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implementing this 3D model on-site could enhance initial-stage predictions, offering valuable, 637 

rapid feedback for the stimulation process and thereby improving operational efficiency. 638 

In a relevant work by Chen et al. (2022), the study used RF that takes in P-wave travel-639 

time and location coordinates, and predicts MEQ location (x,y,z coordinates). In the study’s field 640 

application example at a hydraulic fracturing site, it used similar transfer learning techniques by 641 

simulating many artificial events in a 3D layered velocity model and apply their trained RF model 642 

on field data to obtain field location predictions. The study noted that when the RF model is trained 643 

on dataset generated from 1D velocity model and applied to unseen data generated from complex 644 

3D velocity model, the prediction accuracy suffers from significant errors, especially for deep 645 

events and events near high contrasting velocity anomalies. The study also used the Monte Carlo 646 

method to estimate its prediction uncertainties by perturbing the original velocity model and 647 

examine its prediction variations. Our proposed workflow provides several improvements and 648 

introduces new advantages. In our proposed method, we use a field-informed high-resolution 3D 649 

P-wave velocity model to simulate synthetic MEQ-waveforms dataset. The velocity model is 650 

created by inverting the Green’s function derived from ambient noise correlations from multiple 651 

Newberry seismic stations. As 3D velocity models contain more physics than that of 1D models, 652 

the forward simulated waveforms are more realistic. Furthermore, our proposed workflow 653 

simplifies the uncertainty estimation. The probabilistic design of the PMLP provides slightly 654 

varied outcomes for predicted samples, allowing for uncertainty quantification. Therefore, we 655 

eliminate the need for perturbing the velocity model and re-running forward modeling, a feature 656 

that could be beneficial for near real-time EGS monitoring. 657 

 There are a few improvements that can be made to our workflow. Acoustic wave modeling 658 

only generates the first arriving P-waves, and as such, our neural network is limited to P-wave 659 
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features (cross-correlation time lags). In future, elastic modeling routines can be considered as they 660 

simulate S-wave components. Since neural networks work best with more features to train, having 661 

both P- and S-wave features is likely to improve the location prediction. This is also especially 662 

useful in noisy traces where the P-wave first arrival is not obvious, but the S-wave is due to its 663 

larger amplitude.  664 

 Moreover, as demonstrated in the sensitivity analysis, our workflow relies largely on the 665 

accuracy of first arrival picks. We attempt to overcome this issue by manually examining all the 666 

traces and repick the incorrect first arrival travel-times. However, we acknowledge that there may 667 

be picking inaccuracies especially when the traces are very noisy. We considered the use of state-668 

of-the-art DL-based phase pickers such as PhaseNet and EQTransformer, but upon testing, we 669 

found that those pickers were not reliable due to inconsistent P-wave picks. In the future, we 670 

believe that developing DL-based phase pickers specifically tailored for induced MEQ waveforms 671 

could significantly improve P-wave picking. These specialized DL-based pickers could accurately 672 

identify first arrival picks. When integrated with our location estimation method, this could create 673 

a comprehensive DL suite for automated waveform picking and location estimation. 674 

 Understanding the limitations of how many synthetic MEQs can influence the inversion 675 

results can be beneficial for long-term EGS monitoring. Ideally, the more data the better it is for 676 

DL generalization at the EGS site, however, the abundance of synthetic MEQ dataset comes at 677 

cost of long simulation and DL training times. As such, it would be helpful to examine the 678 

boundaries of training data size that are needed to produce similar inversion results when compared 679 

to large number of datasets. 680 
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7 Conclusions 681 

Locating microearthquakes (MEQs) in enhanced geothermal systems (EGS) is fundamentally 682 

challenging due to the nonlinear relationship between waveforms and location. While deep 683 

learning (DL) methodologies have shown proficiency in predicting natural earthquake locations 684 

using waveform data, the majority of these studies depend heavily on large amount of field data 685 

for training. As such, the scarcity of field training data in EGS presents considerable challenges 686 

for the implementation of DL-based approaches. To overcome the scarcity of training data, we 687 

leverage transfer learning principles by introducing a practical workflow that accurately predicts 688 

MEQ locations from cross-correlation time lags using probabilistic multilayer perceptrons 689 

(PMLP). Our results on the 2012 Newberry EGS stimulation show major microseismic activity at 690 

depths of 0.5 – 1.2 km, which agrees with the casing leakage scenario that took place in the well 691 

bore. We further apply our methodology to the 2014 stimulation data and found that most of the 692 

MEQs concentrate at 2.0 – 2.9 km depths. This finding aligns with the presence of natural fractures 693 

which extend from 2.0 – 2.7 km. Excellent data (time lags) match indicate the completeness of 694 

inversion and suggest predictions can be trusted. The combination of good data match and the 695 

predisposition of natural fractures having ruptures caused by fluid stimulation lead us to conclude 696 

that the majority of microseismic activity happens shallower than 3.0 km. Training with prior 697 

information specific to an EGS site holds promise for enabling real-time monitoring in such 698 

environments. 699 

 700 

 701 

 702 
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Figure S1. Predictions (n=142) from the first bin in the histogram of Figure 14. Here, we 

select six events (Events A, B, C, D, E, and F) to compare their first arrivals match between 

the synthetic and that of field. There is a noticeable lack of predictions around 1.8 km 

depth. 
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Figure S2. Comparison of synthetic (green vertical line) vs. field (red vertical line) first 

arrivals for selected events in Figure S1. 
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Figure S3. Reproduced from Figure 15 in the main text, but without labels. We randomly 

select eight example events (Event A, B, C, D, E, F, G, and H) for the comparison of 

synthetic vs. field first arrivals. 

 

 

 

 

 

 

 

 

 

  



 

 

5 

 

 

Figure S4. Comparison of synthetic (green line) vs. field (red line) first arrivals from the 

selected events in Figure S3. 

 


