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Abstract

We present an artificial neural network (ANN) model that reconstructs > 30 keV electron flux measurements near the geo-

magnetic equator from low-Earth-orbit (LEO) observations, exploiting the global coherent nature of the high-energy trapped

electrons that constitute the radiation belts. To provide training data, we analyze magnetic conjunctions between one of National

Oceanic and Atmospheric Administration’s (NOAA’s) Polar Orbiting Environmental Satellites (POES) and National Aeronau-

tics and Space Administration’s (NASA’s) Van Allen Probes. These conjunctions occur when the satellites are connected along

the same magnetic field line and allow for a direct comparison of satellites’ electron flux measurements for one integral energy

channel, > 30 keV and over 64,000 such conjunctions have been identified. For each conjunction, we fit the equatorial pitch

angle distribution (PAD) parameterized by the function JD = C·sinNα. The resulting conjunction dataset contains the POES

electron flux measurements, L and MLT coordinates, geomagnetic activity AE index, and C and N coefficients from the PAD

fit for each conjunction. We test combinations of input variables from the conjunction dataset and achieve the best model

performance when we use all the input variables during training. We present our model’s prediction for the out-of-sample data

that agrees well with observations, R2 > 0.80. We demonstrate the ability to nowcast and reconstruct equatorial electron flux

measurements from LEO without the need for an in-situ equatorial satellite. The model can be expanded to include existing

LEO data and has the potential to be used as a basis of future radiation-belt monitoring LEO constellations.
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• Out-of-sample reconstruction of electron flux measurements agree well with Van Allen 11 

Probes observations, R2 > 0.8  12 
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Abstract 13 

We present an artificial neural network (ANN) model that reconstructs > 30 keV electron flux 14 

measurements near the geomagnetic equator from low-Earth-orbit (LEO) observations, 15 

exploiting the global coherent nature of the high-energy trapped electrons that constitute the 16 

radiation belts. To provide training data, we analyze magnetic conjunctions between one of 17 

National Oceanic and Atmospheric Administration’s (NOAA’s) Polar Orbiting Environmental 18 

Satellites (POES) and National Aeronautics and Space Administration’s (NASA’s) Van Allen 19 

Probes. These conjunctions occur when the satellites are connected along the same magnetic 20 

field line and allow for a direct comparison of satellites’ electron flux measurements for one 21 

integral energy channel, > 30 keV and over 64,000 such conjunctions have been identified. For 22 

each conjunction, we fit the equatorial pitch angle distribution (PAD) parameterized by the 23 

function 𝐽! = C	 ⋅ sin"𝛼. The resulting conjunction dataset contains the POES electron flux 24 

measurements, L and MLT coordinates, geomagnetic activity AE index, and C and N coefficients 25 

from the PAD fit for each conjunction. We test combinations of input variables from the 26 

conjunction dataset and achieve the best model performance when we use all the input variables 27 

during training. We present our model’s prediction for the out-of-sample data that agrees well 28 

with observations, R2 > 0.80. We demonstrate the ability to nowcast and reconstruct equatorial 29 

electron flux measurements from LEO without the need for an in-situ equatorial satellite. The 30 

model can be expanded to include existing LEO data and has the potential to be used as a basis 31 

of future radiation-belt monitoring LEO constellations. 32 

Plain Language Summary 33 

We present a machine learning model trained on a dataset that uses the global coherent nature of 34 

the radiation belts to reconstruct electron flux measurements. We establish conjunctions, or 35 

times, when the National Oceanic and Atmospheric Administration’s Polar Orbiting 36 

Environmental Satellites (POES) and the National Aeronautics and Space Administration’s Van 37 

Allen Probes are connected along the same magnetic field line and measuring the same electron 38 

population. Our conjunction dataset contains electron flux measurements, positional coordinates, 39 

and geomagnetic activity measurements. We use the conjunction dataset to train our machine 40 

learning model to reconstruct equatorial electron flux measurements. We show that the model 41 
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performs well for data it was not trained on. Our current work demonstrates that we can monitor 42 

in situ radiation belt fluxes using only relatively smaller and cost-effective satellites with a neural 43 

network model instead of the more traditional high-altitude satellites. The ability to predict 44 

radiation belt dynamics, and thus space weather, has become increasingly important for the 45 

broader society due to an increasing satellite infrastructure that is vulnerable to energetic 46 

electrons. 47 

1 Introduction 48 

The Earth’s Van Allen radiation belts are dynamic regions of trapped, energetic charged 49 

particles (Schulz & Lanzerotti, 1974; Van Allen et al., 1958). Violation of the adiabatic 50 

invariants induces competing transport, acceleration, and loss processes which greatly affect the 51 

radiation belts’ structure (Reeves et al., 2003). Under quiet conditions, the radiation belts have a 52 

two-zone structure with a well-defined slot region between the belts around L = 2, the McIlwain 53 

(1961) parameter that labels geomagnetic field lines by their approximate equatorial crossing 54 

radii.  Under active conditions, when geomagnetic storm and substorm activity is intensified, the 55 

slot region is filled as energetic particles are injected into the Earth’s inner magnetosphere and 56 

accelerated locally within this region by radial diffusion and wave-particle interactions (Li & 57 

Hudson, 2019; Reeves et al., 2016). Recovery from this enhanced state has been attributed to 58 

electron loss caused by pitch angle diffusion into the loss cone resulting from wave-particle 59 

interactions as well as outward radial diffusion to the magnetopause (Li & Hudson, 2019; Lyons 60 

et al., 1972; Thorne et al., 2013).  61 

The subsequent precipitation of electrons can interfere with satellite systems by gradually 62 

degrading electronic systems onboard (Lanzerotti et al., 1998; DeForest, 1972). The National 63 

Aeronautics and Space Administration (NASA) Van Allen Probes (formerly known as the 64 

Radiation Belt Storm Probes, RBSP) were launched in August 2012 to understand how charged 65 

particles evolve within the radiation belts. While the mission concluded in 2019, its electron flux 66 

measurements are well calibrated and validated (Claudepierre et al., 2021; Mauk et al., 2013). 67 

RBSP’s Magnetic Electron Ion Spectrometers (MagEIS), while pitch-angle resolved, were 68 

nevertheless limited in pitch angle (a) coverage, particularly for precipitating electron fluxes, 69 

with the minimum observed equatorial pitch angle (aeq) being greater than 10 - 20 degrees 70 
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(Claudepierre et al., 2021). Additionally, with only two probes, RBSP was at times limited in its 71 

spatiotemporal coverage of the radiation belts due to the probes’ spacing and geostationary 72 

transfer orbit (GTO) at any given point during its operation (Mauk et al., 2013). On the other 73 

hand, satellites in low-Earth-orbit (LEO), such as the National Oceanic and Atmospheric 74 

Administration (NOAA) Polar Orbiting Environmental Satellites (POES), do not have the same 75 

limitations. At present, POES contains five spacecraft in polar orbit covering different magnetic 76 

local time (MLT) swaths, each with the ability to measure deep within the loss cone while 77 

covering the entire radiation belt region roughly four times per 100 minute orbit (Evans, 2000). 78 

Therefore, POES’ measurements are complementary to RBSP’s and can be used to measure and 79 

study electron precipitation in a way that is not accessible to RBSP (e.g., H. Chen et al., 2023; 80 

Fung et al., 1996; Lazaro et al., 2022; Rodger et al., 2010a).  Furthermore, during active times, 81 

changes to the equatorial pitch angle distributions of electrons as measured from a GTO-style 82 

orbit are reflected in LEO measurements, as particles diffuse to lower pitch angles. This leads to 83 

a global coherence between all pitch-angles, and can be observed between the two sets of 84 

measurements (Kanekal et al., 2001).  85 

Machine learning (ML) has become an increasingly common method in reconstructing 86 

electron fluxes and can be used for further exploiting the relationship between GTO and LEO 87 

observations (Camporeale, 2019). Even before the launch of RBSP, neural networks were being 88 

used to reconstruct GTO on the limited data available at the time (e.g., Fukata et al., 2002; 89 

Kitamura et al., 2011; Koons & Gorney, 1991; Ling et al., 2010). Since the launch of RBSP and 90 

the large quantity of high-resolution, well-calibrated data that it produced, neural networks have 91 

been used in reconstructing and forecasting primarily relativistic electrons (Botek et al., 2023; 92 

Chu et al., 2021; Ma et al., 2022; Pires de Lima et al., 2020; Zhelavskaya et al., 2021). For 93 

example, Y. Chen et al. (2019) developed the PreMevE model that forecasts 1 MeV spin-94 

averaged electron flux distributions spanning hours to 1-day from POES to LANL GEO. Updates 95 

to the PreMevE include work by Pires de Lima et al. (2020) on PreMevE 2.0 and by Sinha et al. 96 

(2021) on PreMevE2E that focus on other ML methods and a further prediction (2-day) time 97 

window. Other works investigate both non-relativistic and relativistic energy channels. The 98 

SHELLS model was developed by Claudepierre & O’Brien (2020) and updated by Boyd et al. 99 

(2023) and is a neural network with nowcasting ability for 1-min averaged 350 keV and 1 MeV 100 

electron fluxes using POES inputs. The model uses spin-averaged flux, and the updated version 101 
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incorporates radial, angular, and energy dependence to allow for user specification of the 102 

electron environment. The authors note that the current SHELLs model is unlikely to capture 103 

rapid (< 1 min) temporal changes (Boyd et al., 2023). 104 

In our study, we build upon and extend these earlier studies by using flux measurements 105 

from POES to nowcast RBSP at a much lower energy range, electrons > 30 keV, for times when 106 

POES and RBSP are in magnetic conjunction. We use windows in L, MLT, and time to establish 107 

magnetic conjugacy between the low-altitude POES and the geostationary RBSP. Figure 1 108 

illustrates a typical magnetic conjunction at L = 4 (described further in Section 2.2). By 109 

establishing magnetic conjunctions, we investigate times when the two satellites are connected 110 

along the same magnetic field line and can therefore provide a more complete equatorial pitch 111 

angle distribution (PAD) as the two satellites measure the same, streaming electron populations. 112 

Electrons at energies of > 30 keV play an important role in seeding local acceleration processes 113 

(Jaynes et al., 2015); during heightened geomagnetic activity, tens to hundreds of keV electrons 114 

are injected into the inner magnetosphere from the magnetotail and can supply energy to excited 115 

chorus waves that accelerate ~100s keV electrons to multi-MeV energies over the following few 116 

hours through resonant wave-particle interactions. Despite magnetic conjunctions between RBSP 117 

and POES occurring frequently, using them to establish a ML training set for energies as low as 118 

~30 keV has not yet been done to the best of the author’s knowledge. In this study, we 119 

demonstrate that an artificial neural network (ANN) model trained on our conjunction dataset 120 

can accurately predict equatorial flux measurements for the outer radiation belt at > 30 keV, 121 

using only LEO based electron flux measurements, LEO satellite ephemeris data, and 122 

geomagnetic indices (i.e., AE). This allows for the nowcasting of GTO from potentially any LEO 123 

satellite at any time resolution without the need for large, expensive, in situ GTO missions such 124 

as RBSP. 125 
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 126 

Figure 1. Schematic showing RBSP in conjunction with POES. (a) POES 90º and 0º Detector 127 
Telescopes’ orientation with respect to the magnetic field line for a specific latitude. Note that 128 
throughout POES’ orbits, the angle of the two detector telescopes with respect to the magnetic 129 
field line will change. (b) Equatorial Pitch Angle Distribution from the innermost nine RBSP 130 
pitch-angle bins (circles) together with the and POES 90º and 0º (squares) that cover the lowest 131 
pitch angle range. The distribution is fitted using the simple function  𝐽! = C	 ⋅ sin"𝛼, a scaled 132 
sine function. The loss cone is shown in yellow at the ends of the distribution. (c) POES in low-133 
Earth-orbit and RBSP in a geostationary transfer orbit magnetically conjuncted on the nightside 134 
along L = 4, highlighted by yellow. 135 

2 Data and Methods 136 

 In section 2.1, we introduce the data used for our ANN model and the two satellites we 137 

use in our study, one in GTO and one from LEO. In section 2.2, we define our conjunction 138 

criteria and establish our conjunction data set. In section 2.3, we present our ANN model. 139 

2.1 Instrumentation and Data 140 

In order to obtain the equatorial electron flux measurements, we use data from NASA’s 141 

Van Allen Probes (RBSP) mission launched in August 2012 and deactivated in 2019 (Mauk et 142 

al., 2013). In its time of operation the twin satellites, RBSP-A and RBSP-B, were in a highly 143 
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elliptical geostationary transfer orbit (GTO) with a perigee of ~600 km and an apogee of ~5.8 144 

Earth’s Radii (RE) at ~10° inclinations and with a varying separation between ~0.1 to 5 RE 145 

(Mauk et al., 2013). The Magnetic Electron Ion Spectrometer (MagEIS) sensors on RBSP 146 

measured pitch-angle resolved electron flux data with energies ranging from roughly 30 keV to 4 147 

MeV at an 11 second spin time cadence (Blake et al., 2013; Spence et al., 2013). For this study, 148 

we use level 3 data from MagEIS, which we refer to as ‘RBSP’, that have been corrected for 149 

background contamination (Claudepierre et al., 2015). 150 

In order to obtain LEO measurements, we use low-altitude measurements provided by 151 

NOAA’s POES and the European Organisation for the Exploitation of Meteorological Satellites 152 

(EUMETSAT) Meteorological Operational Satellite (MetOp). This network of spacecraft is in 153 

near polar, Sun-synchronous orbits at altitudes of roughly 800-850 km with ~100 min orbital 154 

periods. Each spacecraft operates in a different magnetic local time (MLT) sector, which 155 

together as a network provides extensive spatiotemporal coverage. In our work, we use data from 156 

only one spacecraft, the EUMETSAT/METOP-2 spacecraft which we refer to as ‘POES’ that 157 

orbits roughly in the 10-22 MLT meridional plane, for demonstration purposes. The Medium 158 

Energy Proton and Electron Detector (MEPED) on POES measures the energetic protons and 159 

electrons ranging from 30 keV to 200 MeV via two solid-state detector telescopes at a 2-second 160 

time cadence (Evans, 2000; Green, 2013). For this study, we use data from one energy channel, 161 

the integral electron channel E1 (> 30 keV). The MEPED sensor has one telescope oriented to 162 

the zenith direction (the so-called “0-degree telescope”, POES 0) and the other perpendicular to 163 

the zenith direction (the so-called “90-degree telescope”, POES 90). Only when at the polar 164 

regions is this orientation ideal to differentiate precipitating (POES 0) and trapped or quasi-165 

trapped electrons (POES 90) with upper and lower limits with in ±15° viewing (Rodger et al., 166 

2010b, 2010a). 167 

In addition to the electron flux measurements, we use the satellites’ magnetic ephemeris 168 

data (i.e., L-shell value (L) and MLT) defined using the Olson and Pfitzer 1997 (static) quiet 169 

field model, OP77 (Olson & Pfitzer, 1977). For geomagnetic index measurements, we use the 170 

Auroral Electrojet (AE) Index from the OMNI dataset and retain the AE values over a look-back 171 

window of three hours before the conjunction. Since AE measurements are provided at a 5-172 

minute cadence, 36 data points make up this time series for each conjunction. 173 
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Predictor Full Name Description Unit 
POES 0 log10(POES 0 Flux) Logarithm of the electron integral flux 

measured in cm-2 s-1 str-1  
Unitless 

POES 90 log10(POES 90 Flux) Logarithm of the electron integral flux 
measured in cm-2 s-1 str-1 

Unitless 

L L-shell Location at which a magnetic field line 
intersects with the equatorial plane 

RE 

MLT Magnetic Local Time Local time based on Earth’s magnetic field, 
Midnight = 00 MLT, Noon = 12 MLT 

hr 

AE Auroral Electrojet Index Measure of Auroral Zone Magnetic Activity 
at time of conjunction, AE(-0min) 

nT 

AE TS AE Index Time Series Look-back window of three hours (5 min 
cadence) at time of conjunction,  

AE(-5min) through AE(-175min) 

nT 

Table 1. Description of the Predictor Variables for the ANN. The variables consist of the 174 
logarithmic flux measurements from POES0 and POES90, L and MLT of each conjunction, AE 175 
at the time of the conjunction, and AE over a look-back window of three hours (36 data points). 176 

2.2 Conjunction Identification Methodology  177 

To ensure that POES and RBSP are connected by the same geomagnetic field line, we 178 

define magnetic conjunctions between the two spacecraft based on magnetic and temporal 179 

coordinates. Figure 1 shows a schematic view of a single conjunction. To establish magnetic 180 

proximity, we use the magnetic ephemeris data of RBSP and POES (i.e., L and MLT), using 181 

OP77 (Olson & Pfitzer, 1977).  We use the OP77 model because it is simple and computationally 182 

efficient, yet sufficiently accurate in the inner magnetosphere for our purposes of conjunction 183 

identification.  While there may be some uncertainty in the low-to-high altitude mapping as 184 

result of the OP77 model, other models (e.g., the Tsyganenko model, T89; Tsyganenko, 1989) 185 

also introduce uncertainty, since they require solar wind parameters (which are not always 186 

available, or may not always produce the geoeffective that is expected), they are not necessarily 187 

more accurate in the dipolar regions of the inner magnetosphere, and they take much longer to 188 

compute (Yang & Wang, 2021). We interpolated RBSP’s magnetic ephemeris data to the same 189 

time cadence as POES (2 seconds) since it moves relatively slowly in L and MLT compared to 190 

POES and set small tolerances in L-shell (dL < 0.1 L) and magnetic local time (dMLT < 0.5 hr) 191 

between the two spacecraft to identify conjunctions. Additionally, to establish temporal 192 

proximity, we set a tolerance in conjunction time (dt < 5 seconds). Using this approach, we 193 

identify 73,831 conjunctions between POES and RBSPA and 73,093 conjunctions between 194 
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POES and RBSPB between 01-Jan-2014 to 01-Jul-2019.  195 

For each identified conjunction, we numerically integrate RBSP’s differential fluxes with 196 

respect to energy to match POES’ integral flux measurements for the > 30 keV channel. To 197 

verify the flux measurements, we restrict the RBSP flux measurements to the lowest pitch angle 198 

(a) bins within 16 degrees, i.e., a < 16° or a > 164°, ensuring that the RBSP flux measurements 199 

include fully or nearly precipitating electrons near the loss cone, and thus be the best match with 200 

POES fluxes. We compare POES with RBSP integral flux for >30 keV electrons from 01-Jan-201 

2014 to 01-Jul-2019 using a scatterplot in Figure 2. Figure 2a and 2b are colored by L-shell. 202 

Figure 2c and 2d are normalized by the bin count and therefore indicate where the data resides in 203 

the plot. The plots show that POES 90 (Figure 2a and 2c) is better correlated to RBSP, compared 204 

to POES 0 (Figure 2b and 2c), as expected, since these are predominantly trapped fluxes near the 205 

edge of the loss-cone. It should also be noted that with RBSP’s limited pitch angle coverage, 206 

RBSP is measuring a population with a higher pitch angle range compared to POES 90 and 0. As 207 

a result, RBSP’s flux is most likely dominated by trapped and/or quasi-trapped particles which 208 

would degrade the correlation between RBSP and truly precipitating fluxes from POES 0 209 

(Rodger et al., 2010b). In addition, fluxes at higher L are in better agreement (less spread) than at 210 

lower L-shells. This is partly because POES’ orientation and viewing with respect to the 211 

magnetic field line changes ±15° throughout its orbit and subsequent L coverage (Rodger et al., 212 

2010a). A future correction factor may be needed to adjust the POES data. 213 
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 214 

Figure 2. A comparison of RBSP (equatorial) versus POES (LEO) Fluxes. RBSP data is 215 
restricted in pitch angle to be the edges of the pitch angle distribution, a< 16° or a > 164°, to 216 
give the most meaningly comparison, and restricted in flux to be the integral flux matching the 217 
POES > 30 keV channel. (a) and (b) are direct comparisons of flux of RBSP to POES90 and 218 
POES0, respectively, colored by L-shell. (c) and (d) are the distribution of conjunctions colored 219 
by, colored by log10(bin count) of POES90 and POES0, respectively. The normalized histogram 220 
values closer to 0 (red) indicate that there are more conjunctions for that bin compared to values 221 
closer to -2 (blue).  222 

With the identified set of conjunctions and with the flux relationship verified, we are now 223 

able to map the POES PA to its equatorial PA and plot the equatorial PAD for each conjunction 224 

(refer to the inset panels in Figure 3a for example conjunctions). We assume each conjunction’s 225 

equatorial PAD to be in the simple form of  𝐽! = 𝐶	 ⋅ sin"𝛼 where the 𝐽! is the unidirectional 226 

differential flux and 𝛼 is the pitch angle, , following previous studies that have found such a 227 

functional form to be sufficiently accurate to represent equatorial PADs (Greeley et al., 2024; Gu 228 

et al., 2011; Vampola, 1997). Following the method established by Gu et al. (2011), we perform 229 

a linear regression to fit each conjunction’s equatorial PAD by applying the least squares 230 
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method. To do so, we convert 𝐽! = 𝐶	 ⋅ sin"𝛼 from linear to log space, log#$ 𝐽! =231 

log#$ 𝐶 + 𝑁	log#$ (sin 𝛼). This becomes a simple linear function where the C and N coefficients 232 

in log space are intercept and slope of the resulting linear relationship, respectively. These 233 

coefficients characterize the equatorial PAD and will serve as our ML model’s target (output) 234 

variables. To ensure representative fitting, we only fit conjunctions with more than eight data 235 

points (two from POES and at least six from RBSP). The coefficient of determination (R2) 236 

indicates the quality and amount of variation captured in the linear regression and serves as 237 

another quality safeguard for our conjunctions. We set a threshold based on the R2 value to filter 238 

out poorly fit conjunctions. 239 

Each conjunction in our data set is fitted in this manner and the R2 values are plotted in 240 

Figure 3a, against the conjunctions’ L-shell value and colored by the log10(Flux90°), where 241 

Flux90° refers to the equatorial flux at 90 degrees. To provide a sense of what various 242 

distributions might look like, the inset panels in Figure 3a show examples of a poor and a good 243 

fit, respectively, based on the coefficient of determination. We note that most of the conjunctions 244 

above L = 3 are fitted well using this method, which coincides with our region of interest in the 245 

outer radiation belt. It should be noted that for the inner zone or regions of L < 3, there is much 246 

more variability in the R2 values a dramatic decrease in flux (and therefore the N coefficient), 247 

indicating contamination by more energetic protons and requiring a different calibrated database 248 

(Fung et al., 1996). We plot the mean of the R2 values for each 0.1 L bin as red circles with black 249 

outlines, error bars in red indicating the standard deviation. We establish a R2 > 0.8 threshold 250 

(red line) to filter out poor fits (e.g. highly peaked, butterfly, or flattop PADs), instead of a hard 251 

L-shell cutoff. This threshold maintains suitable L-shell coverage, as shown in Figure 3b, ensures 252 

good accuracy and retains a sufficient amount of data for out fitting procedure. The histogram is 253 

binned into 0.1 L bins and contains the 43,711conjunctions with R2 > 0.8. 254 

In our conjunction dataset, the POES 90 and POES 0 electron flux measurements capture 255 

locally mirroring and precipitating electron flux in LEO and the AE index time series captures 256 

geomagnetic activity and therefore serve as a proxy for relevant wave-particle interactions. The 257 

complete conjunction dataset also includes the POES magnetic ephemeris data (L and MLT) and 258 

the C and N coefficients characterizing the equatorial PAD. We thus create a comprehensive 259 

dataset focused on electron precipitation, ideal for a ML model. 260 
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 261 

Figure 3. An Overview of the Conjunction Dataset. (a) R2 scores of the Conjunction Dataset 262 
versus L-shell, colored by the logarithmic of the 90 degree equatorial flux (log10(Flux90°)). For 263 
every 0.1 L bin, the mean (red dots) and standard deviation (red bars) of the R2 score is shown. 264 
The inset pitch angle distributions (PADs) show an example of a poor (left) and good (right) 265 
PAD fit, based on the R2 score of the fit. Only conjunctions with a score R2 > 0.8 (above red line) 266 
are used for the neural net. (b) Histogram of the number of conjunctions between RBSPA 267 
(orange) and RBSPB (blue) with POES above the R2 > 0.8 threshold (depicted as the red line in 268 
panel (a)). The total number of conjunctions that meet this criterion is NTOT = 43,711. 269 

2.3 Neural Network Model 270 

In this study, we use a Multi-layer Perceptron (MLP) Regressor ANN model since these 271 

models are able to model nonlinear relationships well including the coupled, physical processes 272 

(i.e. global coherence) linking the low and high altitude flux measurements (Bortnik et al., 2016; 273 

Hornik et al., 1989). We use only RBSPB in the training of the model, as RBSPB and RBSPA 274 

were in nearly identical orbits with the same coverage in L and MLT space (Mauk et al., 2013). 275 

For preprocessing of the data, we transform POES and RBSPB fluxes into logarithmic space and 276 

remove any zero flux values and remove any missing or corrupted (i.e. NaN) values. When we 277 

remove NaN values, 5,122 conjunctions are removed from the training set mainly due to the AE 278 

index’s availability ending in March 2018. We also withhold the year of 2014 from training and 279 

reserve it for validation (4,456 conjunctions). Therefore, the training set retains 12,551 280 

conjunctions for the time range 01-Jan-2015 to 01-Mar-2018. We standardize our data to have a 281 

zero mean and unit variance following SciKit-Learn’s preprocessing module (Pedregosa et al., 282 
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2011). We split our conjunction dataset into a train (70%, 8,785 conjunctions) and test (30%, 283 

3,766 conjunctions) set.   284 

To select the best set of feature values, we begin by investigating feature importance and 285 

evaluating the performance of 5 separate models with different permutations of inputs listed in 286 

Table 1 and illustrated in Figure 4). To motivate the models’ hyperparameter choices, we 287 

perform an exhaustive 3-fold cross-validated grid search over the hyperparameters through 288 

SciKit-Learn’s GridSearchCV optimizer (Pedregosa et al., 2011). We achieve the highest 289 

coefficient of determination between the observed and predicted flux (both in training, R2 = 0.94 290 

and in testing, R2 = 0.96) when all parameters are used as inputs and (i.e. Model #5). Our 291 

resulting feed forward, fully connected ANN contains 40 input neurons which include the POES 292 

90 and POES 0 flux measurements, the L and MLT coordinates, and the 36 AE data points from 293 

the three-hour timeseries described above.  294 

The 40 inputs are mapped to the two outputs (the C and N coefficients from the equatorial 295 

PAD fitting defined earlier in section 2.2) via two hidden layers of size 100 nodes each. The 296 

ANN uses the rectified linear unit, relu, activation function in the hidden layers and a linear 297 

activation function in the output layer. By definition, the MLP Regressor optimizes the squared 298 

error using stochastic gradient descent (SGD) with L2 regularization (Pedregosa et al., 2011). 299 

Our ANN uses the adaptive moment estimation, Adam, solver which is an extension of SGD that 300 

combines the ability of an adaptive learning rate with the ability to deal with sparse gradients 301 

(Kingma & Ba, 2017). The selected number of hidden layers and respective nodes, the activation 302 

function, and the solver are a result of the hyperparameter optimization of the grid search. 303 

Table 2. Permutations of inputs for the 5 models (corresponding with Figure 4). Model #1 uses 304 
L, MLT, and POES90 as inputs while Model #5 uses L, MLT, POES 90 and 0, and the full AE 305 

Inputs L MLT POES 
90 

POES 
0 

AE AE TS Mean cross-
validated  
R2 score 

Model #1 x x x    0.88 
Model #2 x x x  x  0.89 
Model #3 x x x x   0.90 
Model #4 x x x x x  0.91 
Model #5 x x x x x x 0.93 
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timeseries with 36 data points. Last column reports the mean cross-validated coefficient of 306 
determination value, R2, for each model. 307 

 308 

Figure 4. Schematic of the ANN model. Permutations of inputs for the 5 models are denoted by 309 
the colored bars on the left side of the schematic. For model #5, there are 40 inputs including L-310 
shell, MLT, POES 90, POES 0, and the AE timeseries. The AE time series represents the AE 311 
index taken at a 5-minute cadence over the 3 hour window before the conjunction time, AE(-0 312 
min) through AE(-175 min) resulting in 36 data points. There are 2 hidden layers of size 100 313 
each and 2 outputs, the C and N coefficients from the 𝐽 = 𝐶	 ⋅ sin"𝛼 fits. Through an exhaustive 314 
grid search cross validation of the 5 separate models, the best performance (R2) was achieved 315 
when all 40 inputs were used (i.e. Model #5). 316 

3 Results 317 

The results of our ANN model trained on our conjunction dataset for the out-of-sample 318 

validation period (year of 2014) are shown in Figure 5. We note that the first two thirds of the 319 

year 2014 (until August) are relatively quiet in terms of geomagnetic activity and the last third of 320 

the year (from September onward) contains higher geomagnetic activity. Using 2014, we can 321 

evaluate our model’s ability to predict out-of-sample GTO fluxes across various levels of 322 

geomagnetic activity and the POES time cadence (2 seconds). Figure 5a-c show the (a) observed 323 

and (b) predicted 60° Flux and (c) RMSE between Figures 5a and 5b for RBSPB. The flux 324 

measurements (Figure 5a) are observed MagEIS integral flux >30 keV equatorial measurements 325 
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averaged into 0.1 L and 1-day bins. Due to its off-equatorial orbit, the typical pitch angle of the 326 

observations is roughly a » 60° (with the average being a = 55°). We compare the observed data 327 

to the model’s (b) predicted ~60° Flux, by using a = 55° and the predicted C and N values for the 328 

𝐽! = C	 ⋅ sin"𝛼 fit. We quantify the agreement between (a) observed and (b) predicted with the 329 

(c) RMSE between figures 5a and 5b. Figure 5d-5f show the (d) fitted and (e) predicted 90° 330 

Fluxes and (f) RMSE between figures 5d and 5e for RBSPB. The flux measurements (Figure 5d) 331 

are MagEIS >30 keV equatorial, integral flux measurements fitted in the same way but showing 332 

the inferred, strictly equatorial values (that are often not directly observed by RBSP) with a=90°.  333 

We can present the equatorial flux at GTO and directly compare it to the output of the model at 334 

aeq. As seen in the error metrics, there is good agreement between the (a) observed and (b) 335 

predicted 60° electron flux measurements and between the (d) fitted and (e) predicted 90° 336 

electron flux measurements. 337 

The regions where agreement is poorer are demarcated with a red contour in Figures 5a 338 

and 5c indicating where RMSE > 0.6 for the 60° and 90° Flux values.  While these regions could 339 

initially suggest that the model is not performing adequately, it should be noted that the large 340 

error generally results from areas where the observed flux values are very low.  To illustrate this 341 

point further, we transfer the red contours directly on to the observed fluxes values (i.e., from 342 

Figure 5c to Figure 5a and from Figure 5f to Figure 5d) where it becomes clear that the regions 343 

of large RMSE map directly on to regions of low fluxes, and hence small fluctuations in model 344 

predictions result in large errors.  This trend is also reassuring because the large errors occur in 345 

regions that are of less importance from a space weather hazard perspective, whereas regions of 346 

high fluxes (and hence important for space weather applications) have low errors and excellent 347 

model performance.   348 
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349 
Figure 5. Equatorial Flux Results for the year 2014. The top 3 panels represent RBSPB’s (a) 350 

observed 60° Flux (b) predicted 60° Flux, and (c) RMSE between (a) and (b) data. The bottom 3 351 

panels represent RBSPB’s (d) fitted 90° Flux, (e) predicted 90° Flux, and (f) RMSE between (d) 352 
and (e) data. RBSPB’s observed data from 2014 is out-of-sample and fitted to a 𝐽! = C	 ⋅ sin"𝛼 353 
function whereas predicted data is reconstructed in a similar form from the ANN model’s C and 354 

N outputs. The RBSPB fitted 90° Flux (d) are filtered by R2 > 0.8. The red contours highlight 355 

RMSE = 0.6 for the 60° and 90° Flux. 356 
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To further assess the agreement between the observed, fitted, and predicted data, we bin 357 

and average the electron flux measurements within 0.1-L and 1-day bins. We plot the coefficient 358 

of determination (R2) as a function of L-shell (Figure 6a). The model’s performance peaks at R2 359 

= 0.9 for the L-shell values containing the highest outer radiation belt fluxes, 4 < L < 5.5, for 360 

both a = 60° and a = 90°. We plot the mean absolute percent error (MAPE) as a function of L-361 

shell (6b) in linear space as defined in Morley et al., (2018). The MAPE for a = 60° is a factor of 362 

~2 higher for 3 < L < 4 and then similar for L > 4.5 when compared to the MAPE for a = 90. 363 

Both profiles peak MAPE ~200 - 300% around L = 4.5, a region that the predicted flux is not as 364 

low as the observed and fitted flux. With the coefficient of determination and MAPE peaking at 365 

the same L » 4.5, the large, corresponding errors could be the result of differencing two small 366 

flux levels that have a higher degree of uncertainty and may suggest the need more training on 367 

quiet times (especially considering the solar cycle was in its declining phase for the years 2015-368 

2019). We note that there is additional source of uncertainty added from the fitting process for 369 

figures 5d-f, when a = 90°. 370 

We investigate the flux measurements further by plotting the magnitude of the (6c) 371 

observed 60° flux against the predicted 60° flux and the (6d) fitted 90° flux against the predicted 372 

90° flux. In figure 6c, the highest L-shell values correspond to the highest magnitude of fluxes. 373 

The linear relationship for figure 6c is defined as y = 1.35x - 2.73 with a coefficient of 374 

determination of R2 = 0.82. In figure 6d, the AE values positively correlate with the magnitude 375 

of fluxes. The linear relationship for figure 6d is defined as y = 1.27x - 2.14 with a coefficient of 376 

determination of R2 = 0.83. Both out-of-sample comparisons (6c and 6d) indicates good 377 

agreement between the model’s predictions and observations. 378 
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 379 

Figure 6. Error Metrics of the ANN model for the year 2014. For panels (a) and (b), RBSPB 60° 380 

Flux is represented in blue and RBSPB 90° Flux in red. (a) Coefficient of Determination as a 381 
function of L-shell. (b) Mean Absolute Percent Error (MAPE) as a function of L-shell. (c) 382 

Comparison of the observed and predicted log10(Flux60°), flux at a = 60°. The data is colored by 383 
L-shell. The linear relationship is defined as y = 1.35x-2.73 with R2 = 0.82. (d) Comparison of 384 
the fitted and predicted log10(Flux90°), flux at aeq. The data is colored by AE max. The linear 385 
relationship is defined as y = 1.27x-2.14 with R2 = 0.83. 386 

4 Conclusions 387 

Here we describe the development of an ANN model that is able to accurately predict in 388 

situ, equatorial fluxes and PADs based only on LEO fluxes, location of observation, and the AE 389 

geomagnetic index.  We produce a conjunction dataset of 64,200 conjunctions between the 390 

equatorial, high altitude GTO RBSP satellite, and the polar LEO POES spacecraft. This 391 

conjunction dataset serves as our training set for developing an ANN model to predict RBSP 392 

PADs based only on the coincident POES fluxes (which cover only a small fraction of the PAD 393 
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near the loss-cone). We show that our ANN accurately predicts GTO electron flux measurements 394 

at 60° and 90° pitch angles, across the entire PAD, with high errors occurring only in regions 395 

with very low fluxes, which are of less importance from a space weather hazards perspective.  396 

The ANN model is able to reconstruct GTO fluxes at POES’ time cadence (2 seconds) for the 397 

out-of-sample data from year 2014 which was withheld from training and represents a range of 398 

geomagnetic conditions. This ability of the ANN model indicates that the model can be used in 399 

the reconstruction of equatorial electron flux measurements for times without RBSP data (e.g., 400 

before or after RBSP’s launch or time of missing or null data). 401 

The implications arising from this work are that the type of in situ, high energy electron 402 

fluxes observed by a relatively large, expensive, and complex missions such as RBSP can be 403 

predicted with high accuracy from the relatively low-cost, simple LEO missions as demonstrated 404 

with the POES satellite.  Using the remaining four POES spacecraft (e.g., Evans, 2000; Green, 405 

2013; Green et al., 2021), it is immediately possible to create a similar model with existing data 406 

that is able to resolve MLT in several bins.  This work also suggests that real-time, operational 407 

monitoring of the radiation belts with high temporal and spatial resolution could be readily 408 

achieved in the future with a constellation of low-cost CubeSats (similar to ELFIN; 409 

Angelopoulos et al., (2020)) deployed at LEO orbits, combined with the type of ML model 410 

presented in this paper to infer equatorial fluxes and PADs across a range of energies.  411 
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Key Points: 6 

• A dataset of 64,200 conjunctions and a neural network is used to predict equatorial flux 7 

measurements for > 30 keV electrons 8 

• The conjunction-trained neural network requires low-Earth-orbit electron fluxes, L and 9 

MLT, and AE measurements as sole inputs 10 

• Out-of-sample reconstruction of electron flux measurements agree well with Van Allen 11 

Probes observations, R2 > 0.8  12 
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Abstract 13 

We present an artificial neural network (ANN) model that reconstructs > 30 keV electron flux 14 

measurements near the geomagnetic equator from low-Earth-orbit (LEO) observations, 15 

exploiting the global coherent nature of the high-energy trapped electrons that constitute the 16 

radiation belts. To provide training data, we analyze magnetic conjunctions between one of 17 

National Oceanic and Atmospheric Administration’s (NOAA’s) Polar Orbiting Environmental 18 

Satellites (POES) and National Aeronautics and Space Administration’s (NASA’s) Van Allen 19 

Probes. These conjunctions occur when the satellites are connected along the same magnetic 20 

field line and allow for a direct comparison of satellites’ electron flux measurements for one 21 

integral energy channel, > 30 keV and over 64,000 such conjunctions have been identified. For 22 

each conjunction, we fit the equatorial pitch angle distribution (PAD) parameterized by the 23 

function 𝐽! = C	 ⋅ sin"𝛼. The resulting conjunction dataset contains the POES electron flux 24 

measurements, L and MLT coordinates, geomagnetic activity AE index, and C and N coefficients 25 

from the PAD fit for each conjunction. We test combinations of input variables from the 26 

conjunction dataset and achieve the best model performance when we use all the input variables 27 

during training. We present our model’s prediction for the out-of-sample data that agrees well 28 

with observations, R2 > 0.80. We demonstrate the ability to nowcast and reconstruct equatorial 29 

electron flux measurements from LEO without the need for an in-situ equatorial satellite. The 30 

model can be expanded to include existing LEO data and has the potential to be used as a basis 31 

of future radiation-belt monitoring LEO constellations. 32 

Plain Language Summary 33 

We present a machine learning model trained on a dataset that uses the global coherent nature of 34 

the radiation belts to reconstruct electron flux measurements. We establish conjunctions, or 35 

times, when the National Oceanic and Atmospheric Administration’s Polar Orbiting 36 

Environmental Satellites (POES) and the National Aeronautics and Space Administration’s Van 37 

Allen Probes are connected along the same magnetic field line and measuring the same electron 38 

population. Our conjunction dataset contains electron flux measurements, positional coordinates, 39 

and geomagnetic activity measurements. We use the conjunction dataset to train our machine 40 

learning model to reconstruct equatorial electron flux measurements. We show that the model 41 
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performs well for data it was not trained on. Our current work demonstrates that we can monitor 42 

in situ radiation belt fluxes using only relatively smaller and cost-effective satellites with a neural 43 

network model instead of the more traditional high-altitude satellites. The ability to predict 44 

radiation belt dynamics, and thus space weather, has become increasingly important for the 45 

broader society due to an increasing satellite infrastructure that is vulnerable to energetic 46 

electrons. 47 

1 Introduction 48 

The Earth’s Van Allen radiation belts are dynamic regions of trapped, energetic charged 49 

particles (Schulz & Lanzerotti, 1974; Van Allen et al., 1958). Violation of the adiabatic 50 

invariants induces competing transport, acceleration, and loss processes which greatly affect the 51 

radiation belts’ structure (Reeves et al., 2003). Under quiet conditions, the radiation belts have a 52 

two-zone structure with a well-defined slot region between the belts around L = 2, the McIlwain 53 

(1961) parameter that labels geomagnetic field lines by their approximate equatorial crossing 54 

radii.  Under active conditions, when geomagnetic storm and substorm activity is intensified, the 55 

slot region is filled as energetic particles are injected into the Earth’s inner magnetosphere and 56 

accelerated locally within this region by radial diffusion and wave-particle interactions (Li & 57 

Hudson, 2019; Reeves et al., 2016). Recovery from this enhanced state has been attributed to 58 

electron loss caused by pitch angle diffusion into the loss cone resulting from wave-particle 59 

interactions as well as outward radial diffusion to the magnetopause (Li & Hudson, 2019; Lyons 60 

et al., 1972; Thorne et al., 2013).  61 

The subsequent precipitation of electrons can interfere with satellite systems by gradually 62 

degrading electronic systems onboard (Lanzerotti et al., 1998; DeForest, 1972). The National 63 

Aeronautics and Space Administration (NASA) Van Allen Probes (formerly known as the 64 

Radiation Belt Storm Probes, RBSP) were launched in August 2012 to understand how charged 65 

particles evolve within the radiation belts. While the mission concluded in 2019, its electron flux 66 

measurements are well calibrated and validated (Claudepierre et al., 2021; Mauk et al., 2013). 67 

RBSP’s Magnetic Electron Ion Spectrometers (MagEIS), while pitch-angle resolved, were 68 

nevertheless limited in pitch angle (a) coverage, particularly for precipitating electron fluxes, 69 

with the minimum observed equatorial pitch angle (aeq) being greater than 10 - 20 degrees 70 
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(Claudepierre et al., 2021). Additionally, with only two probes, RBSP was at times limited in its 71 

spatiotemporal coverage of the radiation belts due to the probes’ spacing and geostationary 72 

transfer orbit (GTO) at any given point during its operation (Mauk et al., 2013). On the other 73 

hand, satellites in low-Earth-orbit (LEO), such as the National Oceanic and Atmospheric 74 

Administration (NOAA) Polar Orbiting Environmental Satellites (POES), do not have the same 75 

limitations. At present, POES contains five spacecraft in polar orbit covering different magnetic 76 

local time (MLT) swaths, each with the ability to measure deep within the loss cone while 77 

covering the entire radiation belt region roughly four times per 100 minute orbit (Evans, 2000). 78 

Therefore, POES’ measurements are complementary to RBSP’s and can be used to measure and 79 

study electron precipitation in a way that is not accessible to RBSP (e.g., H. Chen et al., 2023; 80 

Fung et al., 1996; Lazaro et al., 2022; Rodger et al., 2010a).  Furthermore, during active times, 81 

changes to the equatorial pitch angle distributions of electrons as measured from a GTO-style 82 

orbit are reflected in LEO measurements, as particles diffuse to lower pitch angles. This leads to 83 

a global coherence between all pitch-angles, and can be observed between the two sets of 84 

measurements (Kanekal et al., 2001).  85 

Machine learning (ML) has become an increasingly common method in reconstructing 86 

electron fluxes and can be used for further exploiting the relationship between GTO and LEO 87 

observations (Camporeale, 2019). Even before the launch of RBSP, neural networks were being 88 

used to reconstruct GTO on the limited data available at the time (e.g., Fukata et al., 2002; 89 

Kitamura et al., 2011; Koons & Gorney, 1991; Ling et al., 2010). Since the launch of RBSP and 90 

the large quantity of high-resolution, well-calibrated data that it produced, neural networks have 91 

been used in reconstructing and forecasting primarily relativistic electrons (Botek et al., 2023; 92 

Chu et al., 2021; Ma et al., 2022; Pires de Lima et al., 2020; Zhelavskaya et al., 2021). For 93 

example, Y. Chen et al. (2019) developed the PreMevE model that forecasts 1 MeV spin-94 

averaged electron flux distributions spanning hours to 1-day from POES to LANL GEO. Updates 95 

to the PreMevE include work by Pires de Lima et al. (2020) on PreMevE 2.0 and by Sinha et al. 96 

(2021) on PreMevE2E that focus on other ML methods and a further prediction (2-day) time 97 

window. Other works investigate both non-relativistic and relativistic energy channels. The 98 

SHELLS model was developed by Claudepierre & O’Brien (2020) and updated by Boyd et al. 99 

(2023) and is a neural network with nowcasting ability for 1-min averaged 350 keV and 1 MeV 100 

electron fluxes using POES inputs. The model uses spin-averaged flux, and the updated version 101 
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incorporates radial, angular, and energy dependence to allow for user specification of the 102 

electron environment. The authors note that the current SHELLs model is unlikely to capture 103 

rapid (< 1 min) temporal changes (Boyd et al., 2023). 104 

In our study, we build upon and extend these earlier studies by using flux measurements 105 

from POES to nowcast RBSP at a much lower energy range, electrons > 30 keV, for times when 106 

POES and RBSP are in magnetic conjunction. We use windows in L, MLT, and time to establish 107 

magnetic conjugacy between the low-altitude POES and the geostationary RBSP. Figure 1 108 

illustrates a typical magnetic conjunction at L = 4 (described further in Section 2.2). By 109 

establishing magnetic conjunctions, we investigate times when the two satellites are connected 110 

along the same magnetic field line and can therefore provide a more complete equatorial pitch 111 

angle distribution (PAD) as the two satellites measure the same, streaming electron populations. 112 

Electrons at energies of > 30 keV play an important role in seeding local acceleration processes 113 

(Jaynes et al., 2015); during heightened geomagnetic activity, tens to hundreds of keV electrons 114 

are injected into the inner magnetosphere from the magnetotail and can supply energy to excited 115 

chorus waves that accelerate ~100s keV electrons to multi-MeV energies over the following few 116 

hours through resonant wave-particle interactions. Despite magnetic conjunctions between RBSP 117 

and POES occurring frequently, using them to establish a ML training set for energies as low as 118 

~30 keV has not yet been done to the best of the author’s knowledge. In this study, we 119 

demonstrate that an artificial neural network (ANN) model trained on our conjunction dataset 120 

can accurately predict equatorial flux measurements for the outer radiation belt at > 30 keV, 121 

using only LEO based electron flux measurements, LEO satellite ephemeris data, and 122 

geomagnetic indices (i.e., AE). This allows for the nowcasting of GTO from potentially any LEO 123 

satellite at any time resolution without the need for large, expensive, in situ GTO missions such 124 

as RBSP. 125 
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 126 

Figure 1. Schematic showing RBSP in conjunction with POES. (a) POES 90º and 0º Detector 127 
Telescopes’ orientation with respect to the magnetic field line for a specific latitude. Note that 128 
throughout POES’ orbits, the angle of the two detector telescopes with respect to the magnetic 129 
field line will change. (b) Equatorial Pitch Angle Distribution from the innermost nine RBSP 130 
pitch-angle bins (circles) together with the and POES 90º and 0º (squares) that cover the lowest 131 
pitch angle range. The distribution is fitted using the simple function  𝐽! = C	 ⋅ sin"𝛼, a scaled 132 
sine function. The loss cone is shown in yellow at the ends of the distribution. (c) POES in low-133 
Earth-orbit and RBSP in a geostationary transfer orbit magnetically conjuncted on the nightside 134 
along L = 4, highlighted by yellow. 135 

2 Data and Methods 136 

 In section 2.1, we introduce the data used for our ANN model and the two satellites we 137 

use in our study, one in GTO and one from LEO. In section 2.2, we define our conjunction 138 

criteria and establish our conjunction data set. In section 2.3, we present our ANN model. 139 

2.1 Instrumentation and Data 140 

In order to obtain the equatorial electron flux measurements, we use data from NASA’s 141 

Van Allen Probes (RBSP) mission launched in August 2012 and deactivated in 2019 (Mauk et 142 

al., 2013). In its time of operation the twin satellites, RBSP-A and RBSP-B, were in a highly 143 
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elliptical geostationary transfer orbit (GTO) with a perigee of ~600 km and an apogee of ~5.8 144 

Earth’s Radii (RE) at ~10° inclinations and with a varying separation between ~0.1 to 5 RE 145 

(Mauk et al., 2013). The Magnetic Electron Ion Spectrometer (MagEIS) sensors on RBSP 146 

measured pitch-angle resolved electron flux data with energies ranging from roughly 30 keV to 4 147 

MeV at an 11 second spin time cadence (Blake et al., 2013; Spence et al., 2013). For this study, 148 

we use level 3 data from MagEIS, which we refer to as ‘RBSP’, that have been corrected for 149 

background contamination (Claudepierre et al., 2015). 150 

In order to obtain LEO measurements, we use low-altitude measurements provided by 151 

NOAA’s POES and the European Organisation for the Exploitation of Meteorological Satellites 152 

(EUMETSAT) Meteorological Operational Satellite (MetOp). This network of spacecraft is in 153 

near polar, Sun-synchronous orbits at altitudes of roughly 800-850 km with ~100 min orbital 154 

periods. Each spacecraft operates in a different magnetic local time (MLT) sector, which 155 

together as a network provides extensive spatiotemporal coverage. In our work, we use data from 156 

only one spacecraft, the EUMETSAT/METOP-2 spacecraft which we refer to as ‘POES’ that 157 

orbits roughly in the 10-22 MLT meridional plane, for demonstration purposes. The Medium 158 

Energy Proton and Electron Detector (MEPED) on POES measures the energetic protons and 159 

electrons ranging from 30 keV to 200 MeV via two solid-state detector telescopes at a 2-second 160 

time cadence (Evans, 2000; Green, 2013). For this study, we use data from one energy channel, 161 

the integral electron channel E1 (> 30 keV). The MEPED sensor has one telescope oriented to 162 

the zenith direction (the so-called “0-degree telescope”, POES 0) and the other perpendicular to 163 

the zenith direction (the so-called “90-degree telescope”, POES 90). Only when at the polar 164 

regions is this orientation ideal to differentiate precipitating (POES 0) and trapped or quasi-165 

trapped electrons (POES 90) with upper and lower limits with in ±15° viewing (Rodger et al., 166 

2010b, 2010a). 167 

In addition to the electron flux measurements, we use the satellites’ magnetic ephemeris 168 

data (i.e., L-shell value (L) and MLT) defined using the Olson and Pfitzer 1997 (static) quiet 169 

field model, OP77 (Olson & Pfitzer, 1977). For geomagnetic index measurements, we use the 170 

Auroral Electrojet (AE) Index from the OMNI dataset and retain the AE values over a look-back 171 

window of three hours before the conjunction. Since AE measurements are provided at a 5-172 

minute cadence, 36 data points make up this time series for each conjunction. 173 
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Predictor Full Name Description Unit 
POES 0 log10(POES 0 Flux) Logarithm of the electron integral flux 

measured in cm-2 s-1 str-1  
Unitless 

POES 90 log10(POES 90 Flux) Logarithm of the electron integral flux 
measured in cm-2 s-1 str-1 

Unitless 

L L-shell Location at which a magnetic field line 
intersects with the equatorial plane 

RE 

MLT Magnetic Local Time Local time based on Earth’s magnetic field, 
Midnight = 00 MLT, Noon = 12 MLT 

hr 

AE Auroral Electrojet Index Measure of Auroral Zone Magnetic Activity 
at time of conjunction, AE(-0min) 

nT 

AE TS AE Index Time Series Look-back window of three hours (5 min 
cadence) at time of conjunction,  

AE(-5min) through AE(-175min) 

nT 

Table 1. Description of the Predictor Variables for the ANN. The variables consist of the 174 
logarithmic flux measurements from POES0 and POES90, L and MLT of each conjunction, AE 175 
at the time of the conjunction, and AE over a look-back window of three hours (36 data points). 176 

2.2 Conjunction Identification Methodology  177 

To ensure that POES and RBSP are connected by the same geomagnetic field line, we 178 

define magnetic conjunctions between the two spacecraft based on magnetic and temporal 179 

coordinates. Figure 1 shows a schematic view of a single conjunction. To establish magnetic 180 

proximity, we use the magnetic ephemeris data of RBSP and POES (i.e., L and MLT), using 181 

OP77 (Olson & Pfitzer, 1977).  We use the OP77 model because it is simple and computationally 182 

efficient, yet sufficiently accurate in the inner magnetosphere for our purposes of conjunction 183 

identification.  While there may be some uncertainty in the low-to-high altitude mapping as 184 

result of the OP77 model, other models (e.g., the Tsyganenko model, T89; Tsyganenko, 1989) 185 

also introduce uncertainty, since they require solar wind parameters (which are not always 186 

available, or may not always produce the geoeffective that is expected), they are not necessarily 187 

more accurate in the dipolar regions of the inner magnetosphere, and they take much longer to 188 

compute (Yang & Wang, 2021). We interpolated RBSP’s magnetic ephemeris data to the same 189 

time cadence as POES (2 seconds) since it moves relatively slowly in L and MLT compared to 190 

POES and set small tolerances in L-shell (dL < 0.1 L) and magnetic local time (dMLT < 0.5 hr) 191 

between the two spacecraft to identify conjunctions. Additionally, to establish temporal 192 

proximity, we set a tolerance in conjunction time (dt < 5 seconds). Using this approach, we 193 

identify 73,831 conjunctions between POES and RBSPA and 73,093 conjunctions between 194 
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POES and RBSPB between 01-Jan-2014 to 01-Jul-2019.  195 

For each identified conjunction, we numerically integrate RBSP’s differential fluxes with 196 

respect to energy to match POES’ integral flux measurements for the > 30 keV channel. To 197 

verify the flux measurements, we restrict the RBSP flux measurements to the lowest pitch angle 198 

(a) bins within 16 degrees, i.e., a < 16° or a > 164°, ensuring that the RBSP flux measurements 199 

include fully or nearly precipitating electrons near the loss cone, and thus be the best match with 200 

POES fluxes. We compare POES with RBSP integral flux for >30 keV electrons from 01-Jan-201 

2014 to 01-Jul-2019 using a scatterplot in Figure 2. Figure 2a and 2b are colored by L-shell. 202 

Figure 2c and 2d are normalized by the bin count and therefore indicate where the data resides in 203 

the plot. The plots show that POES 90 (Figure 2a and 2c) is better correlated to RBSP, compared 204 

to POES 0 (Figure 2b and 2c), as expected, since these are predominantly trapped fluxes near the 205 

edge of the loss-cone. It should also be noted that with RBSP’s limited pitch angle coverage, 206 

RBSP is measuring a population with a higher pitch angle range compared to POES 90 and 0. As 207 

a result, RBSP’s flux is most likely dominated by trapped and/or quasi-trapped particles which 208 

would degrade the correlation between RBSP and truly precipitating fluxes from POES 0 209 

(Rodger et al., 2010b). In addition, fluxes at higher L are in better agreement (less spread) than at 210 

lower L-shells. This is partly because POES’ orientation and viewing with respect to the 211 

magnetic field line changes ±15° throughout its orbit and subsequent L coverage (Rodger et al., 212 

2010a). A future correction factor may be needed to adjust the POES data. 213 
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 214 

Figure 2. A comparison of RBSP (equatorial) versus POES (LEO) Fluxes. RBSP data is 215 
restricted in pitch angle to be the edges of the pitch angle distribution, a< 16° or a > 164°, to 216 
give the most meaningly comparison, and restricted in flux to be the integral flux matching the 217 
POES > 30 keV channel. (a) and (b) are direct comparisons of flux of RBSP to POES90 and 218 
POES0, respectively, colored by L-shell. (c) and (d) are the distribution of conjunctions colored 219 
by, colored by log10(bin count) of POES90 and POES0, respectively. The normalized histogram 220 
values closer to 0 (red) indicate that there are more conjunctions for that bin compared to values 221 
closer to -2 (blue).  222 

With the identified set of conjunctions and with the flux relationship verified, we are now 223 

able to map the POES PA to its equatorial PA and plot the equatorial PAD for each conjunction 224 

(refer to the inset panels in Figure 3a for example conjunctions). We assume each conjunction’s 225 

equatorial PAD to be in the simple form of  𝐽! = 𝐶	 ⋅ sin"𝛼 where the 𝐽! is the unidirectional 226 

differential flux and 𝛼 is the pitch angle, , following previous studies that have found such a 227 

functional form to be sufficiently accurate to represent equatorial PADs (Greeley et al., 2024; Gu 228 

et al., 2011; Vampola, 1997). Following the method established by Gu et al. (2011), we perform 229 

a linear regression to fit each conjunction’s equatorial PAD by applying the least squares 230 
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method. To do so, we convert 𝐽! = 𝐶	 ⋅ sin"𝛼 from linear to log space, log#$ 𝐽! =231 

log#$ 𝐶 + 𝑁	log#$ (sin 𝛼). This becomes a simple linear function where the C and N coefficients 232 

in log space are intercept and slope of the resulting linear relationship, respectively. These 233 

coefficients characterize the equatorial PAD and will serve as our ML model’s target (output) 234 

variables. To ensure representative fitting, we only fit conjunctions with more than eight data 235 

points (two from POES and at least six from RBSP). The coefficient of determination (R2) 236 

indicates the quality and amount of variation captured in the linear regression and serves as 237 

another quality safeguard for our conjunctions. We set a threshold based on the R2 value to filter 238 

out poorly fit conjunctions. 239 

Each conjunction in our data set is fitted in this manner and the R2 values are plotted in 240 

Figure 3a, against the conjunctions’ L-shell value and colored by the log10(Flux90°), where 241 

Flux90° refers to the equatorial flux at 90 degrees. To provide a sense of what various 242 

distributions might look like, the inset panels in Figure 3a show examples of a poor and a good 243 

fit, respectively, based on the coefficient of determination. We note that most of the conjunctions 244 

above L = 3 are fitted well using this method, which coincides with our region of interest in the 245 

outer radiation belt. It should be noted that for the inner zone or regions of L < 3, there is much 246 

more variability in the R2 values a dramatic decrease in flux (and therefore the N coefficient), 247 

indicating contamination by more energetic protons and requiring a different calibrated database 248 

(Fung et al., 1996). We plot the mean of the R2 values for each 0.1 L bin as red circles with black 249 

outlines, error bars in red indicating the standard deviation. We establish a R2 > 0.8 threshold 250 

(red line) to filter out poor fits (e.g. highly peaked, butterfly, or flattop PADs), instead of a hard 251 

L-shell cutoff. This threshold maintains suitable L-shell coverage, as shown in Figure 3b, ensures 252 

good accuracy and retains a sufficient amount of data for out fitting procedure. The histogram is 253 

binned into 0.1 L bins and contains the 43,711conjunctions with R2 > 0.8. 254 

In our conjunction dataset, the POES 90 and POES 0 electron flux measurements capture 255 

locally mirroring and precipitating electron flux in LEO and the AE index time series captures 256 

geomagnetic activity and therefore serve as a proxy for relevant wave-particle interactions. The 257 

complete conjunction dataset also includes the POES magnetic ephemeris data (L and MLT) and 258 

the C and N coefficients characterizing the equatorial PAD. We thus create a comprehensive 259 

dataset focused on electron precipitation, ideal for a ML model. 260 
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 261 

Figure 3. An Overview of the Conjunction Dataset. (a) R2 scores of the Conjunction Dataset 262 
versus L-shell, colored by the logarithmic of the 90 degree equatorial flux (log10(Flux90°)). For 263 
every 0.1 L bin, the mean (red dots) and standard deviation (red bars) of the R2 score is shown. 264 
The inset pitch angle distributions (PADs) show an example of a poor (left) and good (right) 265 
PAD fit, based on the R2 score of the fit. Only conjunctions with a score R2 > 0.8 (above red line) 266 
are used for the neural net. (b) Histogram of the number of conjunctions between RBSPA 267 
(orange) and RBSPB (blue) with POES above the R2 > 0.8 threshold (depicted as the red line in 268 
panel (a)). The total number of conjunctions that meet this criterion is NTOT = 43,711. 269 

2.3 Neural Network Model 270 

In this study, we use a Multi-layer Perceptron (MLP) Regressor ANN model since these 271 

models are able to model nonlinear relationships well including the coupled, physical processes 272 

(i.e. global coherence) linking the low and high altitude flux measurements (Bortnik et al., 2016; 273 

Hornik et al., 1989). We use only RBSPB in the training of the model, as RBSPB and RBSPA 274 

were in nearly identical orbits with the same coverage in L and MLT space (Mauk et al., 2013). 275 

For preprocessing of the data, we transform POES and RBSPB fluxes into logarithmic space and 276 

remove any zero flux values and remove any missing or corrupted (i.e. NaN) values. When we 277 

remove NaN values, 5,122 conjunctions are removed from the training set mainly due to the AE 278 

index’s availability ending in March 2018. We also withhold the year of 2014 from training and 279 

reserve it for validation (4,456 conjunctions). Therefore, the training set retains 12,551 280 

conjunctions for the time range 01-Jan-2015 to 01-Mar-2018. We standardize our data to have a 281 

zero mean and unit variance following SciKit-Learn’s preprocessing module (Pedregosa et al., 282 
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2011). We split our conjunction dataset into a train (70%, 8,785 conjunctions) and test (30%, 283 

3,766 conjunctions) set.   284 

To select the best set of feature values, we begin by investigating feature importance and 285 

evaluating the performance of 5 separate models with different permutations of inputs listed in 286 

Table 1 and illustrated in Figure 4). To motivate the models’ hyperparameter choices, we 287 

perform an exhaustive 3-fold cross-validated grid search over the hyperparameters through 288 

SciKit-Learn’s GridSearchCV optimizer (Pedregosa et al., 2011). We achieve the highest 289 

coefficient of determination between the observed and predicted flux (both in training, R2 = 0.94 290 

and in testing, R2 = 0.96) when all parameters are used as inputs and (i.e. Model #5). Our 291 

resulting feed forward, fully connected ANN contains 40 input neurons which include the POES 292 

90 and POES 0 flux measurements, the L and MLT coordinates, and the 36 AE data points from 293 

the three-hour timeseries described above.  294 

The 40 inputs are mapped to the two outputs (the C and N coefficients from the equatorial 295 

PAD fitting defined earlier in section 2.2) via two hidden layers of size 100 nodes each. The 296 

ANN uses the rectified linear unit, relu, activation function in the hidden layers and a linear 297 

activation function in the output layer. By definition, the MLP Regressor optimizes the squared 298 

error using stochastic gradient descent (SGD) with L2 regularization (Pedregosa et al., 2011). 299 

Our ANN uses the adaptive moment estimation, Adam, solver which is an extension of SGD that 300 

combines the ability of an adaptive learning rate with the ability to deal with sparse gradients 301 

(Kingma & Ba, 2017). The selected number of hidden layers and respective nodes, the activation 302 

function, and the solver are a result of the hyperparameter optimization of the grid search. 303 

Table 2. Permutations of inputs for the 5 models (corresponding with Figure 4). Model #1 uses 304 
L, MLT, and POES90 as inputs while Model #5 uses L, MLT, POES 90 and 0, and the full AE 305 

Inputs L MLT POES 
90 

POES 
0 

AE AE TS Mean cross-
validated  
R2 score 

Model #1 x x x    0.88 
Model #2 x x x  x  0.89 
Model #3 x x x x   0.90 
Model #4 x x x x x  0.91 
Model #5 x x x x x x 0.93 
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timeseries with 36 data points. Last column reports the mean cross-validated coefficient of 306 
determination value, R2, for each model. 307 

 308 

Figure 4. Schematic of the ANN model. Permutations of inputs for the 5 models are denoted by 309 
the colored bars on the left side of the schematic. For model #5, there are 40 inputs including L-310 
shell, MLT, POES 90, POES 0, and the AE timeseries. The AE time series represents the AE 311 
index taken at a 5-minute cadence over the 3 hour window before the conjunction time, AE(-0 312 
min) through AE(-175 min) resulting in 36 data points. There are 2 hidden layers of size 100 313 
each and 2 outputs, the C and N coefficients from the 𝐽 = 𝐶	 ⋅ sin"𝛼 fits. Through an exhaustive 314 
grid search cross validation of the 5 separate models, the best performance (R2) was achieved 315 
when all 40 inputs were used (i.e. Model #5). 316 

3 Results 317 

The results of our ANN model trained on our conjunction dataset for the out-of-sample 318 

validation period (year of 2014) are shown in Figure 5. We note that the first two thirds of the 319 

year 2014 (until August) are relatively quiet in terms of geomagnetic activity and the last third of 320 

the year (from September onward) contains higher geomagnetic activity. Using 2014, we can 321 

evaluate our model’s ability to predict out-of-sample GTO fluxes across various levels of 322 

geomagnetic activity and the POES time cadence (2 seconds). Figure 5a-c show the (a) observed 323 

and (b) predicted 60° Flux and (c) RMSE between Figures 5a and 5b for RBSPB. The flux 324 

measurements (Figure 5a) are observed MagEIS integral flux >30 keV equatorial measurements 325 



manuscript submitted to Space Weather 

 

averaged into 0.1 L and 1-day bins. Due to its off-equatorial orbit, the typical pitch angle of the 326 

observations is roughly a » 60° (with the average being a = 55°). We compare the observed data 327 

to the model’s (b) predicted ~60° Flux, by using a = 55° and the predicted C and N values for the 328 

𝐽! = C	 ⋅ sin"𝛼 fit. We quantify the agreement between (a) observed and (b) predicted with the 329 

(c) RMSE between figures 5a and 5b. Figure 5d-5f show the (d) fitted and (e) predicted 90° 330 

Fluxes and (f) RMSE between figures 5d and 5e for RBSPB. The flux measurements (Figure 5d) 331 

are MagEIS >30 keV equatorial, integral flux measurements fitted in the same way but showing 332 

the inferred, strictly equatorial values (that are often not directly observed by RBSP) with a=90°.  333 

We can present the equatorial flux at GTO and directly compare it to the output of the model at 334 

aeq. As seen in the error metrics, there is good agreement between the (a) observed and (b) 335 

predicted 60° electron flux measurements and between the (d) fitted and (e) predicted 90° 336 

electron flux measurements. 337 

The regions where agreement is poorer are demarcated with a red contour in Figures 5a 338 

and 5c indicating where RMSE > 0.6 for the 60° and 90° Flux values.  While these regions could 339 

initially suggest that the model is not performing adequately, it should be noted that the large 340 

error generally results from areas where the observed flux values are very low.  To illustrate this 341 

point further, we transfer the red contours directly on to the observed fluxes values (i.e., from 342 

Figure 5c to Figure 5a and from Figure 5f to Figure 5d) where it becomes clear that the regions 343 

of large RMSE map directly on to regions of low fluxes, and hence small fluctuations in model 344 

predictions result in large errors.  This trend is also reassuring because the large errors occur in 345 

regions that are of less importance from a space weather hazard perspective, whereas regions of 346 

high fluxes (and hence important for space weather applications) have low errors and excellent 347 

model performance.   348 
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349 
Figure 5. Equatorial Flux Results for the year 2014. The top 3 panels represent RBSPB’s (a) 350 

observed 60° Flux (b) predicted 60° Flux, and (c) RMSE between (a) and (b) data. The bottom 3 351 

panels represent RBSPB’s (d) fitted 90° Flux, (e) predicted 90° Flux, and (f) RMSE between (d) 352 
and (e) data. RBSPB’s observed data from 2014 is out-of-sample and fitted to a 𝐽! = C	 ⋅ sin"𝛼 353 
function whereas predicted data is reconstructed in a similar form from the ANN model’s C and 354 

N outputs. The RBSPB fitted 90° Flux (d) are filtered by R2 > 0.8. The red contours highlight 355 

RMSE = 0.6 for the 60° and 90° Flux. 356 
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To further assess the agreement between the observed, fitted, and predicted data, we bin 357 

and average the electron flux measurements within 0.1-L and 1-day bins. We plot the coefficient 358 

of determination (R2) as a function of L-shell (Figure 6a). The model’s performance peaks at R2 359 

= 0.9 for the L-shell values containing the highest outer radiation belt fluxes, 4 < L < 5.5, for 360 

both a = 60° and a = 90°. We plot the mean absolute percent error (MAPE) as a function of L-361 

shell (6b) in linear space as defined in Morley et al., (2018). The MAPE for a = 60° is a factor of 362 

~2 higher for 3 < L < 4 and then similar for L > 4.5 when compared to the MAPE for a = 90. 363 

Both profiles peak MAPE ~200 - 300% around L = 4.5, a region that the predicted flux is not as 364 

low as the observed and fitted flux. With the coefficient of determination and MAPE peaking at 365 

the same L » 4.5, the large, corresponding errors could be the result of differencing two small 366 

flux levels that have a higher degree of uncertainty and may suggest the need more training on 367 

quiet times (especially considering the solar cycle was in its declining phase for the years 2015-368 

2019). We note that there is additional source of uncertainty added from the fitting process for 369 

figures 5d-f, when a = 90°. 370 

We investigate the flux measurements further by plotting the magnitude of the (6c) 371 

observed 60° flux against the predicted 60° flux and the (6d) fitted 90° flux against the predicted 372 

90° flux. In figure 6c, the highest L-shell values correspond to the highest magnitude of fluxes. 373 

The linear relationship for figure 6c is defined as y = 1.35x - 2.73 with a coefficient of 374 

determination of R2 = 0.82. In figure 6d, the AE values positively correlate with the magnitude 375 

of fluxes. The linear relationship for figure 6d is defined as y = 1.27x - 2.14 with a coefficient of 376 

determination of R2 = 0.83. Both out-of-sample comparisons (6c and 6d) indicates good 377 

agreement between the model’s predictions and observations. 378 
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 379 

Figure 6. Error Metrics of the ANN model for the year 2014. For panels (a) and (b), RBSPB 60° 380 

Flux is represented in blue and RBSPB 90° Flux in red. (a) Coefficient of Determination as a 381 
function of L-shell. (b) Mean Absolute Percent Error (MAPE) as a function of L-shell. (c) 382 

Comparison of the observed and predicted log10(Flux60°), flux at a = 60°. The data is colored by 383 
L-shell. The linear relationship is defined as y = 1.35x-2.73 with R2 = 0.82. (d) Comparison of 384 
the fitted and predicted log10(Flux90°), flux at aeq. The data is colored by AE max. The linear 385 
relationship is defined as y = 1.27x-2.14 with R2 = 0.83. 386 

4 Conclusions 387 

Here we describe the development of an ANN model that is able to accurately predict in 388 

situ, equatorial fluxes and PADs based only on LEO fluxes, location of observation, and the AE 389 

geomagnetic index.  We produce a conjunction dataset of 64,200 conjunctions between the 390 

equatorial, high altitude GTO RBSP satellite, and the polar LEO POES spacecraft. This 391 

conjunction dataset serves as our training set for developing an ANN model to predict RBSP 392 

PADs based only on the coincident POES fluxes (which cover only a small fraction of the PAD 393 
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near the loss-cone). We show that our ANN accurately predicts GTO electron flux measurements 394 

at 60° and 90° pitch angles, across the entire PAD, with high errors occurring only in regions 395 

with very low fluxes, which are of less importance from a space weather hazards perspective.  396 

The ANN model is able to reconstruct GTO fluxes at POES’ time cadence (2 seconds) for the 397 

out-of-sample data from year 2014 which was withheld from training and represents a range of 398 

geomagnetic conditions. This ability of the ANN model indicates that the model can be used in 399 

the reconstruction of equatorial electron flux measurements for times without RBSP data (e.g., 400 

before or after RBSP’s launch or time of missing or null data). 401 

The implications arising from this work are that the type of in situ, high energy electron 402 

fluxes observed by a relatively large, expensive, and complex missions such as RBSP can be 403 

predicted with high accuracy from the relatively low-cost, simple LEO missions as demonstrated 404 

with the POES satellite.  Using the remaining four POES spacecraft (e.g., Evans, 2000; Green, 405 

2013; Green et al., 2021), it is immediately possible to create a similar model with existing data 406 

that is able to resolve MLT in several bins.  This work also suggests that real-time, operational 407 

monitoring of the radiation belts with high temporal and spatial resolution could be readily 408 

achieved in the future with a constellation of low-cost CubeSats (similar to ELFIN; 409 

Angelopoulos et al., (2020)) deployed at LEO orbits, combined with the type of ML model 410 

presented in this paper to infer equatorial fluxes and PADs across a range of energies.  411 
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