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Abstract

We propose the lag 1 autocorrelation of daily precipitation as a simple diagnostic of tropical precipitation in climate models.

This metric generally has a relatively uniform distribution of positive values over the tropics. However, selected land regions are

characterized by exceptionally low autocorrelation values. Low values correspond to the dominance of high-frequency variance

in precipitation. Consistent with previous work, we show that CMIP6 climate models overestimate the autocorrelation. Global

kilometer-scale models capture the observed autocorrelation pattern when deep convection is explicitly simulated. When a deep

convection parameterization is used, the autocorrelation increases across the tropics, suggesting that land surface-atmosphere

interactions are not responsible for the changes in precipitation variability. Furthermore, an accurate simulation of convectively

coupled equatorial waves does not necessarily lead to a correct representation of the autocorrelation, and vice versa. This

suggests other driving processes for the autocorrelation pattern.

1



P
os
te
d
on

5
M
ar

20
24

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
96
77
38
.8
2
89
35
30
/v

1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

2



P
os
te
d
on

5
M
ar

20
24

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
96
77
38
.8
2
89
35
30
/v

1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

3



Figure.





Figure.





Figure.





Figure.





Figure.





manuscript submitted to Geophysical Research Letters

Autocorrelation – A Simple Diagnostic for Tropical1

Precipitation in Global Kilometer-Scale Climate2

Models3

Dorian Spät 1, Michela Biasutti 2, David Schuhbauer 1, Aiko Voigt 1
4

1University of Vienna, Department of Meteorology and Geophysics, Vienna, Austria5
2Columbia University, Lamont-Doherty Earth Observatory, 10964 Palisades NY, United States6

Key Points:7

• A robust lag 1 autocorrelation pattern of daily precipitation exists in the tropics8

across different observations.9

• Global kilometer-scale climate models capture the observed autocorrelation pat-10

tern, CMIP models do not.11

• Convectively coupled equatorial waves are likely not driving the autocorrelation12

pattern.13
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Abstract14

We propose the lag 1 autocorrelation of daily precipitation as a simple diagnostic15

of tropical precipitation in climate models. This metric generally has a relatively uni-16

form distribution of positive values over the tropics. However, selected land regions are17

characterized by exceptionally low autocorrelation values. Low values correspond to the18

dominance of high-frequency variance in precipitation. Consistent with previous work,19

we show that CMIP6 climate models overestimate the autocorrelation. Global kilometer-20

scale models capture the observed autocorrelation pattern when deep convection is ex-21

plicitly simulated. When a deep convection parameterization is used, the autocorrela-22

tion increases across the tropics, suggesting that land surface-atmosphere interactions23

are not responsible for the changes in precipitation variability. Furthermore, an accu-24

rate simulation of convectively coupled equatorial waves does not necessarily lead to a25

correct representation of the autocorrelation, and vice versa. This suggests other driv-26

ing processes for the autocorrelation pattern.27

Plain Language Summary28

Rainfall in the tropics is influenced by many atmospheric processes that depend29

on geographic location. We use the lag 1 autocorrelation a metric for the day-to-day per-30

sistence of rainfall. We find that rainfall is very persistent in most parts of the tropics31

with a few exceptions over land, e.g. the Sahel, where high-frequency rainfall events dom-32

inate. Our results show that models with a horizontal resolution of a few kilometers re-33

produce the autocorrelation pattern, in contrast to coarser climate models. We also an-34

alyze atmospheric waves and find that the degree to which a model captures these waves35

has no clear impact on its ability to capture rainfall persistence. Processes on smaller36

scales, like mesoscale convective systems and convective organization, could be key to37

understand the origin of the pattern.38

1 Introduction39

Precipitation in the tropics is, for the most part, the result of deep convection and40

is modulated by an intricate interplay of various different processes. The convective sys-41

tems associated with most tropical rainfall are not of purely random nature, but are of-42

ten organized by larger scale dynamics, ranging from mesoscale convective systems (MCSs)43

to synoptic scale convectively coupled equatorial waves (CCEWs) and the planetary scale44

Madden-Julian Oscillation (MJO) (Feng et al., 2021; Cheng et al., 2023; Wheeler & Ki-45

ladis, 1999; Cho et al., 2004; Kiladis et al., 2009). Thus, the day to day variability or rather46

persistence of tropical precipitation varies by location. Some of these geographic distinc-47

tions are captured by the lag 1 autocorrelation of daily precipitation, as presented by48

Roehrig et al. (2013) using precipitation observations from GPCP, and as shown below.49

Simply put, lag 1 autocorrelation is a measure of persistence. For example, high persis-50

tence of precipitation over several days will result in a high lag 1 autocorrelation. High51

variance of precipitation over the same period, on the other hand, will result in a low52

lag 1 autocorrelation.53

Roehrig et al. (2013) further showed that the global climate models (GCMs) that54

are part of CMIP5 (Coupled Model Intercomparison Project Phase 5) all overestimate55

the lag 1 autocorrelation in the western Sahel region compared to GPCP. Consistently,56

Moon et al. (2019) found an overestimation of precipitation persistence in CMIP5 mod-57

els compared to observations. This suggests that low resolution GCMs may be misrep-58

resenting deep convection, its organization, or its coupling to the larger scale (e.g. CCEWs),59

which is consistent with previous work showing that CMIP models generally misinter-60

pret tropical precipitation (Palmer & Stevens, 2019; Fiedler et al., 2020).61
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Unlike low resolution GCMs, kilometer-scale models are run with horizontal grid62

spacings of a few kilometers and with deep convection simulated explicitly. As a result,63

many precipitation characteristics, such as diurnal cycle, location and spatial propaga-64

tion have been shown to be more accurately represented in kilometer-scale models (Stevens65

et al., 2020). Kilometer-scale models can also simulate many aspects of MCSs and re-66

lated processes, which is not possible for most low resolution GCMs (see Feng et al. (2023)67

and sources within). The ability to correctly simulate MSCs is crucial, since MCSs pro-68

duce more than 50 % of tropical precipitation (Feng et al., 2021). Considering larger scale69

dynamics, Judt and Rios-Berrios (2021) illustrated that the Model for Prediction Across70

Scales-Atmosphere (MPAS-A) produces much more realistic precipitation variances as-71

sociated with what we will call fast CCEWs (lower frequency limit of 0.2 day−1) when72

the resolution is refined to a few kilometers and deep convection is explicitly simulated.73

Moreover, Tomassini (2018) demonstrated that convection and African easterly waves74

(a type of fast CCEWs) are dynamically linked through mesoscale circulations, which75

poses a challenge to deep convection parameterizations. Kilometer-scale models, on the76

other hand, explicitly represent this mesoscale coupling mechanism and therefore could77

remedy shortcomings of traditional GCMs with respect to the lag 1 autocorrelation pat-78

tern in the tropics.79

This study aims to introduce the lag 1 autocorrelation of daily precipitation as a80

simple diagnostic to assess tropical precipitation variability in kilometer-scale climate81

models. To this end, we first address the question of whether the lag 1 autocorrelation82

pattern is robust across different satellite-based observations and gauge station time se-83

ries. We then investigate whether global kilometer-scale models are capable of produc-84

ing a lag 1 autocorrelation pattern comparable to the observations. Finally, we analyze85

convectively coupled equatorial waves as a possible cause of the lag 1 autocorrelation pat-86

tern and discuss other possible drivers.87

The paper is structured as follows. In Section 2 data and methods are detailed. We88

present the lag 1 autocorrelation of daily precipitation in Section 3.1 for multiple obser-89

vations, global kilometer-scale simulations, and CMIP6 models. In Section 3.2 we ex-90

amine the contribution of CCEWs to tropical precipitation variance and its connection91

to the lag 1 autocorrelation. Conclusions and further discussion are given in Section 4.92

2 Data and Methods93

2.1 Data94

We use simulation data from two global kilometer-scale climate models, ICON-Sapphire95

(Hohenegger et al., 2023) and IFS coupled to the FESOM ocean model (Rackow et al.,96

n.d.), produced as part of the nextGEMS project. We analyze the latest cycle 3 simu-97

lations (covering 2020-2024) but also include cycle 2 simulations (covering 2020) of the98

IFS model and coarser simulations with IFS coupled to the NEMO ocean model. The99

simulations span different periods, but results are robust already for one simulated sea-100

son. In Table A1 we summarize key aspects of the nextGEMS simulations we use. While101

ICON simulations were always run without deep convection parameterization, IFS was102

run both with and without deep convection parameterization at both resolutions. In the103

IFS-4km-on simulation, a reduced cloud base mass flux was used in the deep convection104

parameterization (Rackow et al., n.d.).105

Complementary, we also include global kilometer-scale simulations with MPAS-A106

(Skamarock et al., 2012) presented by Judt and Rios-Berrios (2021) (for the period Au-107

gust 1st to September 10th 2016). We analyze simulations at 3.75 km and at 7.5 km res-108

olution, with and without deep convection parameterization. Furthermore, we utilize a109

number of amip style simulations of the CMIP6 ensemble (Eyring et al., 2016) (for the110
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period 1979-2014, see Appendix B for the list of models) as low resolution model refer-111

ence.112

As observation reference we use three global precipitation datasets that are satellite-113

based and gauge-corrected: IMERG version 06 final run (Huffman, G.J. et al., 2019), MSWEP114

V2.2 (Beck et al., 2019) and GPCP version 1.3 (Adler et al., 2017). For the analysis we115

select an overlapping period from 2001 to 2020. In addition, we also include gauge mea-116

surement series from 1994 to 1999 (NOAA National Centers of Environmental Informa-117

tion., 1999).118

To allow for an accurate comparison, all 2D fields are interpolated to a common119

1° x 1° grid, before performing further analysis (except for the MPAS-A data, which are120

on a 2.5° x 2.5° grid).121

2.2 Autocorrelation Diagnostic122

Inspired by Roehrig et al. (2013), we calculate the lag τ autocorrelation rs for daily123

precipitation time series X(t) for every grid cell. Although our results are robust to the124

choice of the correlation coefficient, we differ from Roehrig et al. (2013), in that we do125

not use the Pearson coefficient, but the Spearman coefficient. The latter measures how126

well a given relationship between two variables (in our case between a time series and127

a copy of that same time series shifted by lag=τ) can be described by a monotone func-128

tion, rather than a linear function. We believe that this approach is more suitable for129

daily precipitation. rs is defined as follows:130

rs = ρR(X),R(X)(τ) =
cov(R(Xt+τ ), R(Xt))

var(R(X), R(X))
. (1)

Here cov(R(Xt+τ ), R(Xt)) is the autocovariance of the rank R of X, which is nor-131

malized by the variance var(R(X), R(X)), which means rs ∈ [−1, 1]. Overbars denote132

time means. Like Roehrig et al. (2013), we use a lag of τ = 1 because at this timescale133

the autocorrelation potentially captures the influence of large-scale processes such as CCEWs134

on precipitation, but no processes related to the diurnal cycle. We investigate individ-135

ual seasons, so the ranks R range from 1 to 92 for the JAS season, for example. From136

here on, we will refer to the lag 1 autocorrelation simply as autocorrelation.137

2.3 Wave Filtering138

We apply the wave filtering method developed by Wheeler and Kiladis (1999) to139

analyze six types of CCEWs and the MJO, here ordered from slow (low frequency) to140

fast (high frequency): MJO, equatorial Rossby (ER), mixed Rossby gravity (MRG), Kelvin,141

tropical depression (TD), eastward inertio-gravity waves (EIG, with n = 0) and west-142

ward inertio-gravity waves (WIG, with n = 1). For the filtering we use the full time-143

series, between 20°S and 20°N. We furthermore remove the first three harmonics of the144

seasonal cycle, detrend the signal and taper the ends to zero, as described by Wheeler145

and Kiladis (1999). To retain the full wave signal in regions where convection only oc-146

curs in one hemisphere, we do not apply a symmetric/anitsymmetric decomposition (Kiladis147

et al., 2009). The filter parameters for the different wave types are the same as in Schlueter148

et al. (2019) for all waves except WIG waves, for which we choose the parameters in Wheeler149

and Kiladis (1999). We moreover distinguish between slow and fast Kelvin waves, with150

a cutoff frequency of 0.2 day−1, to make the lower frequency limit of the fast Kelvin waves151

match the one of the TD and the EIG waves. The two Kelvin wave types share the cut-152

off frequency, which results in a small overlap of the filters. The Kelvin wave splitting153

is still relevant, however, since the autocorrelation corresponds to the ratio of high to154

low frequency variance on the order of a few days, and the Kelvin filter band ranges from155
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0.05 to 0.4 day−1. We will refer to MJO, ER, MRG and slow Kelvin as slow waves and156

to fast Kelvin, TD, EIG and WIG as fast waves. The filtering is done using a Python157

script, which we partly based on Miyachi (2023) and Medeiros (2023). We validated the158

script by comparing our results for the IMERG data against the Tropical Rainfall Mea-159

suring Mission based results in Schlueter et al. (2019). We estimate the variance of pre-160

cipitation explained by CCEWs by calculating the squared Pearson correlation coeffi-161

cient between the precipitation anomalies (without the first three harmonics of the sea-162

sonal cycle, detrended and tapered) and the wave filtered precipitation anomalies respec-163

tively (Schlueter et al., 2019).164

3 Results165

3.1 Lag 1 Autocorrelation of Daily Precipitation in the Tropics166

The autocorrelation pattern for daily precipitation in the tropics described by Roehrig167

et al. (2013) for GPCP also holds for IMERG and MSWEP, with some differences in the168

absolute values (see Figure C1). For the subsequent analysis we focus on IMERG, since169

it compares best to the gauge data in regions of low autocorrelation (not shown) and un-170

like MSWEP is not influenced by reanalysis. The IMERG autocorrelation is therefore171

also depicted in (a) and (b) of Figure 1, together with gauge station data (indicated by172

the circles). There are some outliers when comparing the gauge stations with IMERG,173

e.g. in the Pacific, where individual stations show very low autocorrelation values. We174

do not believe that the differences are due to the different periods covered by the satel-175

lite and ground-based observations, since there is very little interannual variability in the176

autocorrelation. Instead, we believe that the differences are due to the local perspective177

of the stations, while the satellite-based grid cells cover an area of 1°x1°.178

Overall, the autocorrelation is positive throughout the tropics and especially over179

the ocean, which is highlighted by the mean autocorrelation values over tropical land and180

ocean, depicted in Figure 2 for July-September (JAS). During JAS, there are two dis-181

tinctive exceptional regions over land, the Sahel together with equatorial Africa, as well182

as the most northern part of South America at the border to Central America, with con-183

siderably lower (slightly negative) values of autocorrelation. During DJF, regions with184

similarly low autocorrelation are located in Africa, south of the equator and in South185

America. To some extend also parts of the maritime continent show considerably lower186

autocorrelation values than the surrounding ocean during DJF. Interestingly, these pat-187

terns can not simply be described as a land-sea contrast, as clarified by the pattern of188

autocorrelation over the Asian monsoon and the Gulf of Mexico regions. From here on,189

we will focus on JAS, since during this season the most pronounced low autocorrelation190

region over Africa exists, where we will more specifically focus on the Sahel domain.191

The multi-model mean autocorrelation of a broad selection of CMIP6 simulations192

(see Figure 1) captures the observed pattern in broad strokes, but clearly overestimates193

the persistence of rainfall everywhere and especially over Africa. This is summarized by194

the region means for the Sahel domain, tropical land and tropical ocean in Figure 2. The195

drastic overestimation of the autocorrelation in the Sahel domain, is similar to the find-196

ings of Roehrig et al. (2013) for CMIP5 models. The CMIP6 models also overestimate197

the autocorrelation over tropical land and ocean, whereas the difference to the observa-198

tions is smallest over the ocean. These low resolution GCM models all use deep convec-199

tion parameterization schemes; we next contrast their behavior with kilometer-scale mod-200

els without convective parameterizations.201

Panels (c) and (d) of Figure 1 depict the autocorrelation maps for ICON-5km. The202

model captures key features that we also find in the observations. Especially the regions203

of low autocorrelation are captured by the ICON-5km simulation, with the African re-204

gion during JAS being the most pronounced. The mean autocorrelation values are in the205
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Figure 1. Lag 1 autocorrelation of daily precipitation on a 1° x 1° grid, datapoints with less

than 1 mm/day mean precipitation are masked. IMERG for JAS in panel (a) and for DJF in

panel (b). ICON-5km for JAS in panel (c) and for DJF in panel (d). IFS-4km-off for JAS in

panel (e) and for DJF in panel (f). The circles in (a) and (b) indicate gauge station data. Sta-

tions with less than 1 mm/day mean precipitation are not shown. Black dashed lines indicate the

domains for the further analysis: the Sahel domain (10°E-30°W, 5°N-15°N) the tropical domain

(20°S-20°N) and the CCEW domain (5°N-15°N).

observational range in the Sahel region and generally also over tropical land (see Fig-206

ure 2). However, the autocorrelation over the tropical ocean is lower than in the three207

observations.208

The autocorrelation maps for IFS-4km-off are displayed in panels (e) and (f) of Fig-209

ure 1. Again, the pattern matches the observations, but it is a little noisier than the IMERG210

and the ICON-5km data, since for this model setup we only have one simulated year.211

However, this shows that data from one single season is already enough for the autocor-212

relation pattern to appear. The mean autocorrelation values for IFS-4km-off in Figure213

2 are close to the upper end of the observational range, or slightly above for the Sahel.214

A number of additional simulations with the IFS model, produced within the nextGEMS215

project are available. IFS-4km-on, from the latest cycle 3 simulations is run with the deep216

convection scheme turned on, but a reduced vertical mass flux. Additionally, there are217

the 9 km simulations IFS-9km-off and IFS-9km-on. These simulations allow us to ex-218

plore the influence of the deep convection paraterization scheme on the autocorrelation219

in the IFS model. Autocorrelation increases over the Sahel, tropical land and tropical220

ocean for both the 4.4 and the 9 km resolution IFS simulations (see Figure 2) when the221

deep convection parameterization is turned on. In fact, the increase in autocorrelation222

is relatively uniform across the tropics in both cases, with virtually no differences be-223

tween land and ocean. This suggests that surface-atmosphere interactions are not driv-224

ing factors for changes in the autocorrelation, when the deep convection parameteriza-225

tion is turned on.226

MPAS-A also captures the autocorrelation pattern at both 3.75 and 7.5 km res-227

olution when the deep convection is simulated explicitly (not shown). The mean auto-228
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Figure 2. Mean lag 1 autocorrelation of daily precipitation calculated for July-September

(JAS). In the first row calculated for the Sahel domain (10°E-30°W, 5°N-15°N), the second row

for tropical land and in the third row for tropical ocean (20°S-20°N). Depicted in the first col-

umn from the left are the values for the observations, in the second column for the nextGEMS

cycle 3 simulations, in the third column for different nextGEMS IFS simulations (cycle 2 and 3),

in the fourth column for two MPAS-A simulations (simulation period only from August 1st to

September 10th 2016) and in the fifth column the CMIP6 mean is depicted. Dotted bars indicate

simulations with active deep convection parameterization. Gridpoints with less than 1 mm/day

mean precipitation are not included.
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Figure 3. Relative power spectra calculated from daily precipitation, with the observations in

(a), the nextGEMS cycle 3 simulations in (b) and the different nextGEMS IFS simulations (cycle

2 and 3) in (c). Gridpoints with less than 1 mm/day mean precipitation are not included.

correlation values for the MPAS-A-7.5km simulations in Figure 2 are consistent with the229

influence of the deep convection parameterization on the autocorrelation in IFS. As for230

the IFS model, the autocorrelation increases when the deep convection parameterization231

is turned on. The increase is much stronger over the Sahel than over the rest of the trop-232

ics in MPAS-A-7.5km (similarly in MPAS-A-3.75km, not shown). However, it should be233

kept in mind that these simulations only cover a range of 40 days.234

The increase in autocorrelation when the deep convection parameterization is turned235

on is caused by an increase in high frequency variance (meaning on the time-scale of a236

few days) relative to low frequency variance in the IFS model. This is demonstrated in237

Figure 3, which depicts the tropical mean relative power spectra of daily precipitation238

for the nextGEMS simulations and the observations for JAS. When the IFS model is run239

with deep convection treated explicitly, the relative power spectra agree very well with240

ICON-5km and the observations. Whereas, when the parameterization is turned on, power241

shifts to lower frequencies and the spectra drop out of the observational range.242

3.2 Relative CCEW Contribution to Precipitation Variance243

A considerable fraction of the precipitation variance that underlies the power spec-244

tra presented in Figure 3 are related to CCEWs. To investigate the role of CCEWs in245

the origin of the autocorrelation pattern we therefore calculate the precipitation vari-246

ance fraction on a daily time-scale for the different wave types in the CCEW band de-247

fined in Schlueter et al. (2019) for JAS (see Figure 1). Following Schlueter et al. (2019)248

this is achieved by calculating the squared Pearson correlation coefficients between pre-249

cipitation anomalies and wave filtered precipitation anomalies of the latitudinal mean250

of the CCEW band. We subsequently take the longitudinal mean, to generate the mean251

values presented in Figure 4. Since this correlation method does not take interactions252

between waves into account, the sum of the precipitation variance fractions attributed253

to CCEWs can be interpreted as the maximum variance fraction explainable by CCEWs254

(Schlueter et al., 2019). It should be noted that only a small part of the WIG frequency255

spectrum can be filtered from daily data, which is why they only contribute relatively256

small variance fractions at this time-scale.257

Differences in the summed CCEW variance fraction in the observations in Figure258

4 are as large as 10 percentage points between IMERG and GPCP, which delivers the259

highest summed fraction of more than 45 %. These differences arise mainly due to dif-260

ferences in the slow CCEW fractions (MJO, ER and MRG).261
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Figure 4. Precipitation variance fractions attributed to convectively coupled equatorial waves

(CCEWs) calculated as the squared Pearson correlation between precipitation anomalies and

wave filtered precipitation anomalies for July-September (JAS) in the CCEW band (5°N-15°N).

From left to right, the first three bars depict the mean values for the observations, the next two

bars the values for the nextGEMS cycle 3 simulations and the last four bars the values for differ-

ent nextGEMS IFS simulations (cycle 2 and 3). The fractions over the bars denote the summed

variance fractions of the fast waves over the summed variance fractions of the slow waves.

The ICON-5km simulations produce a summed CCEW variance fraction smaller262

than the observational range. The variance fractions for the slow CCEWs are compa-263

rable to IMERG, but the model produces lower values for both fast and slow Kelvin and264

EIG waves.265

For the IFS simulations with the deep convection parameterization turned on, the266

summed CCEW variance fractions are close to the upper end of the observational range.267

The simulations with deep convection simulated explicitly, on the other hand, deliver summed268

CCEW variance fractions that are considerably smaller and closer to the one of ICON-269

5km. The changes between deep convection parameterization on and off simulations are270

not uniform across wave types. For example, there are differences in the variance frac-271

tions of the TD waves. The comparably small fractions for this wave type in IFS-4km-272

off and IFS-9km-off are also a difference to the ICON-5km simulation, which in turn de-273

livers smaller fractions for Kelvin and EIG waves. The largest changes, however, are in274

the variance fractions of the slow waves, which are particularly pronounced for the IFS-275

9km simulations. These changes are related to the autocorrelation in the sense that the276

larger variance fraction in the slow waves, when the deep convection parameterization277

is turned on, increases the power in the lower frequencies of the power spectrum (see Fig-278

ure 3).279

The overall importance of CCEWs in the origin of the tropical autocorrelation pat-280

tern is difficult to accurately quantify. However, we find that the ICON-5km and the IFS-281

4km-off models, while accurately reproducing the autocorrelation pattern, produce summed282

CCEW variance fractions lower than the observational range. The IFS-4km-on model283

on the other hand, produces CCEW variance fractions close to the observations, while284

overestimating autocorrelation across the tropics.285
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4 Conclusions286

We study the lag 1 autocorrelation of daily precipitation as an easy-to-compute di-287

agnostic of tropical precipitation variability in kilometer-scale climate models. The di-288

agnostic is helpful to investigate the persistence of precipitation across the tropics.289

Our results shows that the autocorrelation pattern first presented by Roehrig et290

al. (2013) is robust across satellite-based observations and gauge stations. The pattern291

can be summarized as one of largest autocorrelation over ocean; smaller, but still pos-292

itive autocorrelation over tropical land; and much smaller or even negative autocorre-293

lation in the core of the rainy regions of Africa and South America. The kilometer-scale294

climate models of the nextGEMS project and MPAS-A produce a similar pattern, in con-295

trast to a wide range of CMIP6 models. In the IFS model the autocorrelation is very com-296

parable to observations when the deep convection is simulated explicitly, but overesti-297

mated across the tropics when the deep convection parameterization is turned on. This298

effect occurs over several horizontal resolutions and even if the parameterized vertical299

mass flux is strongly reduced. Hence, we find a distinct dependence on the representa-300

tion of deep convection, rather than simply horizontal resolution, independent of the sur-301

face being land or ocean. This result is confirmed by our analysis of global kilometer-302

scale MPAS-A simulations, which show the same dependence on the representation of303

deep convection.304

We attribute precipitation variance to different kinds of convectively coupled equa-305

torial waves (CCEW). When deep convection is treated explicitly, the power spectrum306

of precipitation becomes whiter, reducing fractional variance from CCEW as a set, and307

specifically by depressing the role of slow waves. We show that a climate model with deep308

convection parameterization turned on, namely IFS-4km-on, produces CCEW related309

precipitation fractions that compare relatively well to the observations and at the same310

time overestimate the autocorrelation. On the other hand different kilometer-scale mod-311

els, ICON-5km and IFS-4km-off, reproduce the autocorrelation pattern, but underesti-312

mate the CCEW related precipitation fraction. In the IFS model, turning off the deep313

convection parameterization leads to a decrease of variance fractions related to slow CCEWs314

and an increase in the variance fraction related to tropical depression type waves. The315

latter is in contrast to what Judt and Rios-Berrios (2021) reported for MPAS-A. Tak-316

ing these findings into account, we assume that CCEWs, while probably playing a role,317

are not the main driving factor for the observed autocorrelation pattern.318

The origin of the autocorrelation pattern could lie on scales finer than those of CCEWs.319

A comparison of the maps of the autocorrelation and observation-based statistics of meso-320

cale convective systems (MCSs) from Feng et al. (2021) indicates that the regions of low321

autocorrelation are also regions with high MCS precipitation fractions and MCS num-322

bers. However, there are also regions over the ocean (e.g. the Indian ocean) where this323

association does not hold. Moreover, Mathon et al. (2002) showed that over the central324

Sahel, where autocorrelation is low, organized MCSs (OMCSs), account for 90 % of the325

seasonal precipitation, while only representing 12 % of the total MCS count. The low326

frequency of OMCSs may therefore indicate that MCSs are not the main drivers of the327

autocorrelation pattern either. A deeper analysis of MCSs and convective organization328

on even smaller scales in the nextGEMS simulations is necessary to further constrain the329

mechanisms behind the autocorrelation pattern.330

Regardless the exact composition of phenomena that lead to the observed pattern331

of autocorrelation of daily precipitation, the autocorrelation is an easily computed met-332

ric that encapsulates these underlying atmospheric processes and provides a simple di-333

agnostic for tropical precipitation in GCMs. Our finding that kilometer-scale models are334

able to reproduce the autocorrelation pattern furthermore demonstrates that these mod-335

els offer a unique possibility to study tropical precipitation and the related atmospheric336

dynamics.337
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T., Redler, R., . . . Kölling, T. (2023). nextGEMS: output of the model de-484

velopment cycle 2 simulations for ICON and IFS. World Data Center for485

Climate (WDCC) at DKRZ. Retrieved from https://doi.org/10.26050/486

WDCC/nextGEMS cyc2 doi: 10.26050/WDCC/nextGEMS cyc2487

Appendix A Overview of nextGEMS Simulations488

The key settings and the simulation acronyms of the nextGEMS simulations we489

analyze are presented in Table A1.490
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Table A1. Settings of the nextGEMS simulations used in our analysis.

Simulation
acronym

Atmosphere
model

Cycle
Horizontal
resolution

Simulation
years

Deep convection
parameterization

ICON-5km ICON-Sapphire 3 5 km 2020-2024 off
IFS-4km-on IFS 3 4.4 km 2020-2024 on (reduced)
IFS-4km-off IFS 2 4.4 km 2020 off
IFS-9km-on IFS 2 9 km 2020 on
IFS-9km-off IFS 2 9 km 2020 off

Figure C1. Lag 1 autocorrelation of daily precipitation on a 1° x 1° grid, datapoints with less

than 1 mm/day mean precipitation are masked. IMERG for JAS in panel (a) and for DJF in

panel (b). MSWEP for JAS in panel (c) and for DJF in panel (d). GPCP for JAS in panel (e)

and for DJF in panel (f). Circles indicate gauge station data. Stations with less than 1 mm/day

mean precipitation are not shown.

Appendix B List of CMIP6 Simulations491

We use amip r1i1p1f1 CMIP6 simulations (Eyring et al., 2016) for our analysis, in-492

cluded are the following models:493

ACCESS-CM2, ACCESS-ESM1-5, BCC-ESM1, CAMS-CSM1-0C, ESM2-FV2, CESM2-494

WACCM, CESM2, CMCC-CM2-HR4, CMCC-CM2-SR5, CanESM5, E3SM-1-0, E3SM-495

2-0, EC-Earth3-AerChem, EC-Earth3-CC, EC-Earth3-Veg-LR, EC-Earth3-Veg, EC-Earth3,496

FGOALS-f3-L, FGOALS-g3, GFDL-CM4, GFDL-ESM4, ICON-ESM-LR, IITM-ESM,497

INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MPI-ESM-1-2-HAM,498

MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, NorCPM1, NorESM2-LM499

and TaiESM1.500

Appendix C Autocorrelation Maps for Observations501

Figure C1 depicts the lag 1 autocorrelation maps for the analyzed observations.502
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Key Points:7

• A robust lag 1 autocorrelation pattern of daily precipitation exists in the tropics8

across different observations.9

• Global kilometer-scale climate models capture the observed autocorrelation pat-10

tern, CMIP models do not.11

• Convectively coupled equatorial waves are likely not driving the autocorrelation12

pattern.13
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Abstract14

We propose the lag 1 autocorrelation of daily precipitation as a simple diagnostic15

of tropical precipitation in climate models. This metric generally has a relatively uni-16

form distribution of positive values over the tropics. However, selected land regions are17

characterized by exceptionally low autocorrelation values. Low values correspond to the18

dominance of high-frequency variance in precipitation. Consistent with previous work,19

we show that CMIP6 climate models overestimate the autocorrelation. Global kilometer-20

scale models capture the observed autocorrelation pattern when deep convection is ex-21

plicitly simulated. When a deep convection parameterization is used, the autocorrela-22

tion increases across the tropics, suggesting that land surface-atmosphere interactions23

are not responsible for the changes in precipitation variability. Furthermore, an accu-24

rate simulation of convectively coupled equatorial waves does not necessarily lead to a25

correct representation of the autocorrelation, and vice versa. This suggests other driv-26

ing processes for the autocorrelation pattern.27

Plain Language Summary28

Rainfall in the tropics is influenced by many atmospheric processes that depend29

on geographic location. We use the lag 1 autocorrelation a metric for the day-to-day per-30

sistence of rainfall. We find that rainfall is very persistent in most parts of the tropics31

with a few exceptions over land, e.g. the Sahel, where high-frequency rainfall events dom-32

inate. Our results show that models with a horizontal resolution of a few kilometers re-33

produce the autocorrelation pattern, in contrast to coarser climate models. We also an-34

alyze atmospheric waves and find that the degree to which a model captures these waves35

has no clear impact on its ability to capture rainfall persistence. Processes on smaller36

scales, like mesoscale convective systems and convective organization, could be key to37

understand the origin of the pattern.38

1 Introduction39

Precipitation in the tropics is, for the most part, the result of deep convection and40

is modulated by an intricate interplay of various different processes. The convective sys-41

tems associated with most tropical rainfall are not of purely random nature, but are of-42

ten organized by larger scale dynamics, ranging from mesoscale convective systems (MCSs)43

to synoptic scale convectively coupled equatorial waves (CCEWs) and the planetary scale44

Madden-Julian Oscillation (MJO) (Feng et al., 2021; Cheng et al., 2023; Wheeler & Ki-45

ladis, 1999; Cho et al., 2004; Kiladis et al., 2009). Thus, the day to day variability or rather46

persistence of tropical precipitation varies by location. Some of these geographic distinc-47

tions are captured by the lag 1 autocorrelation of daily precipitation, as presented by48

Roehrig et al. (2013) using precipitation observations from GPCP, and as shown below.49

Simply put, lag 1 autocorrelation is a measure of persistence. For example, high persis-50

tence of precipitation over several days will result in a high lag 1 autocorrelation. High51

variance of precipitation over the same period, on the other hand, will result in a low52

lag 1 autocorrelation.53

Roehrig et al. (2013) further showed that the global climate models (GCMs) that54

are part of CMIP5 (Coupled Model Intercomparison Project Phase 5) all overestimate55

the lag 1 autocorrelation in the western Sahel region compared to GPCP. Consistently,56

Moon et al. (2019) found an overestimation of precipitation persistence in CMIP5 mod-57

els compared to observations. This suggests that low resolution GCMs may be misrep-58

resenting deep convection, its organization, or its coupling to the larger scale (e.g. CCEWs),59

which is consistent with previous work showing that CMIP models generally misinter-60

pret tropical precipitation (Palmer & Stevens, 2019; Fiedler et al., 2020).61
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Unlike low resolution GCMs, kilometer-scale models are run with horizontal grid62

spacings of a few kilometers and with deep convection simulated explicitly. As a result,63

many precipitation characteristics, such as diurnal cycle, location and spatial propaga-64

tion have been shown to be more accurately represented in kilometer-scale models (Stevens65

et al., 2020). Kilometer-scale models can also simulate many aspects of MCSs and re-66

lated processes, which is not possible for most low resolution GCMs (see Feng et al. (2023)67

and sources within). The ability to correctly simulate MSCs is crucial, since MCSs pro-68

duce more than 50 % of tropical precipitation (Feng et al., 2021). Considering larger scale69

dynamics, Judt and Rios-Berrios (2021) illustrated that the Model for Prediction Across70

Scales-Atmosphere (MPAS-A) produces much more realistic precipitation variances as-71

sociated with what we will call fast CCEWs (lower frequency limit of 0.2 day−1) when72

the resolution is refined to a few kilometers and deep convection is explicitly simulated.73

Moreover, Tomassini (2018) demonstrated that convection and African easterly waves74

(a type of fast CCEWs) are dynamically linked through mesoscale circulations, which75

poses a challenge to deep convection parameterizations. Kilometer-scale models, on the76

other hand, explicitly represent this mesoscale coupling mechanism and therefore could77

remedy shortcomings of traditional GCMs with respect to the lag 1 autocorrelation pat-78

tern in the tropics.79

This study aims to introduce the lag 1 autocorrelation of daily precipitation as a80

simple diagnostic to assess tropical precipitation variability in kilometer-scale climate81

models. To this end, we first address the question of whether the lag 1 autocorrelation82

pattern is robust across different satellite-based observations and gauge station time se-83

ries. We then investigate whether global kilometer-scale models are capable of produc-84

ing a lag 1 autocorrelation pattern comparable to the observations. Finally, we analyze85

convectively coupled equatorial waves as a possible cause of the lag 1 autocorrelation pat-86

tern and discuss other possible drivers.87

The paper is structured as follows. In Section 2 data and methods are detailed. We88

present the lag 1 autocorrelation of daily precipitation in Section 3.1 for multiple obser-89

vations, global kilometer-scale simulations, and CMIP6 models. In Section 3.2 we ex-90

amine the contribution of CCEWs to tropical precipitation variance and its connection91

to the lag 1 autocorrelation. Conclusions and further discussion are given in Section 4.92

2 Data and Methods93

2.1 Data94

We use simulation data from two global kilometer-scale climate models, ICON-Sapphire95

(Hohenegger et al., 2023) and IFS coupled to the FESOM ocean model (Rackow et al.,96

n.d.), produced as part of the nextGEMS project. We analyze the latest cycle 3 simu-97

lations (covering 2020-2024) but also include cycle 2 simulations (covering 2020) of the98

IFS model and coarser simulations with IFS coupled to the NEMO ocean model. The99

simulations span different periods, but results are robust already for one simulated sea-100

son. In Table A1 we summarize key aspects of the nextGEMS simulations we use. While101

ICON simulations were always run without deep convection parameterization, IFS was102

run both with and without deep convection parameterization at both resolutions. In the103

IFS-4km-on simulation, a reduced cloud base mass flux was used in the deep convection104

parameterization (Rackow et al., n.d.).105

Complementary, we also include global kilometer-scale simulations with MPAS-A106

(Skamarock et al., 2012) presented by Judt and Rios-Berrios (2021) (for the period Au-107

gust 1st to September 10th 2016). We analyze simulations at 3.75 km and at 7.5 km res-108

olution, with and without deep convection parameterization. Furthermore, we utilize a109

number of amip style simulations of the CMIP6 ensemble (Eyring et al., 2016) (for the110

–3–



manuscript submitted to Geophysical Research Letters

period 1979-2014, see Appendix B for the list of models) as low resolution model refer-111

ence.112

As observation reference we use three global precipitation datasets that are satellite-113

based and gauge-corrected: IMERG version 06 final run (Huffman, G.J. et al., 2019), MSWEP114

V2.2 (Beck et al., 2019) and GPCP version 1.3 (Adler et al., 2017). For the analysis we115

select an overlapping period from 2001 to 2020. In addition, we also include gauge mea-116

surement series from 1994 to 1999 (NOAA National Centers of Environmental Informa-117

tion., 1999).118

To allow for an accurate comparison, all 2D fields are interpolated to a common119

1° x 1° grid, before performing further analysis (except for the MPAS-A data, which are120

on a 2.5° x 2.5° grid).121

2.2 Autocorrelation Diagnostic122

Inspired by Roehrig et al. (2013), we calculate the lag τ autocorrelation rs for daily123

precipitation time series X(t) for every grid cell. Although our results are robust to the124

choice of the correlation coefficient, we differ from Roehrig et al. (2013), in that we do125

not use the Pearson coefficient, but the Spearman coefficient. The latter measures how126

well a given relationship between two variables (in our case between a time series and127

a copy of that same time series shifted by lag=τ) can be described by a monotone func-128

tion, rather than a linear function. We believe that this approach is more suitable for129

daily precipitation. rs is defined as follows:130

rs = ρR(X),R(X)(τ) =
cov(R(Xt+τ ), R(Xt))

var(R(X), R(X))
. (1)

Here cov(R(Xt+τ ), R(Xt)) is the autocovariance of the rank R of X, which is nor-131

malized by the variance var(R(X), R(X)), which means rs ∈ [−1, 1]. Overbars denote132

time means. Like Roehrig et al. (2013), we use a lag of τ = 1 because at this timescale133

the autocorrelation potentially captures the influence of large-scale processes such as CCEWs134

on precipitation, but no processes related to the diurnal cycle. We investigate individ-135

ual seasons, so the ranks R range from 1 to 92 for the JAS season, for example. From136

here on, we will refer to the lag 1 autocorrelation simply as autocorrelation.137

2.3 Wave Filtering138

We apply the wave filtering method developed by Wheeler and Kiladis (1999) to139

analyze six types of CCEWs and the MJO, here ordered from slow (low frequency) to140

fast (high frequency): MJO, equatorial Rossby (ER), mixed Rossby gravity (MRG), Kelvin,141

tropical depression (TD), eastward inertio-gravity waves (EIG, with n = 0) and west-142

ward inertio-gravity waves (WIG, with n = 1). For the filtering we use the full time-143

series, between 20°S and 20°N. We furthermore remove the first three harmonics of the144

seasonal cycle, detrend the signal and taper the ends to zero, as described by Wheeler145

and Kiladis (1999). To retain the full wave signal in regions where convection only oc-146

curs in one hemisphere, we do not apply a symmetric/anitsymmetric decomposition (Kiladis147

et al., 2009). The filter parameters for the different wave types are the same as in Schlueter148

et al. (2019) for all waves except WIG waves, for which we choose the parameters in Wheeler149

and Kiladis (1999). We moreover distinguish between slow and fast Kelvin waves, with150

a cutoff frequency of 0.2 day−1, to make the lower frequency limit of the fast Kelvin waves151

match the one of the TD and the EIG waves. The two Kelvin wave types share the cut-152

off frequency, which results in a small overlap of the filters. The Kelvin wave splitting153

is still relevant, however, since the autocorrelation corresponds to the ratio of high to154

low frequency variance on the order of a few days, and the Kelvin filter band ranges from155
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0.05 to 0.4 day−1. We will refer to MJO, ER, MRG and slow Kelvin as slow waves and156

to fast Kelvin, TD, EIG and WIG as fast waves. The filtering is done using a Python157

script, which we partly based on Miyachi (2023) and Medeiros (2023). We validated the158

script by comparing our results for the IMERG data against the Tropical Rainfall Mea-159

suring Mission based results in Schlueter et al. (2019). We estimate the variance of pre-160

cipitation explained by CCEWs by calculating the squared Pearson correlation coeffi-161

cient between the precipitation anomalies (without the first three harmonics of the sea-162

sonal cycle, detrended and tapered) and the wave filtered precipitation anomalies respec-163

tively (Schlueter et al., 2019).164

3 Results165

3.1 Lag 1 Autocorrelation of Daily Precipitation in the Tropics166

The autocorrelation pattern for daily precipitation in the tropics described by Roehrig167

et al. (2013) for GPCP also holds for IMERG and MSWEP, with some differences in the168

absolute values (see Figure C1). For the subsequent analysis we focus on IMERG, since169

it compares best to the gauge data in regions of low autocorrelation (not shown) and un-170

like MSWEP is not influenced by reanalysis. The IMERG autocorrelation is therefore171

also depicted in (a) and (b) of Figure 1, together with gauge station data (indicated by172

the circles). There are some outliers when comparing the gauge stations with IMERG,173

e.g. in the Pacific, where individual stations show very low autocorrelation values. We174

do not believe that the differences are due to the different periods covered by the satel-175

lite and ground-based observations, since there is very little interannual variability in the176

autocorrelation. Instead, we believe that the differences are due to the local perspective177

of the stations, while the satellite-based grid cells cover an area of 1°x1°.178

Overall, the autocorrelation is positive throughout the tropics and especially over179

the ocean, which is highlighted by the mean autocorrelation values over tropical land and180

ocean, depicted in Figure 2 for July-September (JAS). During JAS, there are two dis-181

tinctive exceptional regions over land, the Sahel together with equatorial Africa, as well182

as the most northern part of South America at the border to Central America, with con-183

siderably lower (slightly negative) values of autocorrelation. During DJF, regions with184

similarly low autocorrelation are located in Africa, south of the equator and in South185

America. To some extend also parts of the maritime continent show considerably lower186

autocorrelation values than the surrounding ocean during DJF. Interestingly, these pat-187

terns can not simply be described as a land-sea contrast, as clarified by the pattern of188

autocorrelation over the Asian monsoon and the Gulf of Mexico regions. From here on,189

we will focus on JAS, since during this season the most pronounced low autocorrelation190

region over Africa exists, where we will more specifically focus on the Sahel domain.191

The multi-model mean autocorrelation of a broad selection of CMIP6 simulations192

(see Figure 1) captures the observed pattern in broad strokes, but clearly overestimates193

the persistence of rainfall everywhere and especially over Africa. This is summarized by194

the region means for the Sahel domain, tropical land and tropical ocean in Figure 2. The195

drastic overestimation of the autocorrelation in the Sahel domain, is similar to the find-196

ings of Roehrig et al. (2013) for CMIP5 models. The CMIP6 models also overestimate197

the autocorrelation over tropical land and ocean, whereas the difference to the observa-198

tions is smallest over the ocean. These low resolution GCM models all use deep convec-199

tion parameterization schemes; we next contrast their behavior with kilometer-scale mod-200

els without convective parameterizations.201

Panels (c) and (d) of Figure 1 depict the autocorrelation maps for ICON-5km. The202

model captures key features that we also find in the observations. Especially the regions203

of low autocorrelation are captured by the ICON-5km simulation, with the African re-204

gion during JAS being the most pronounced. The mean autocorrelation values are in the205
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Figure 1. Lag 1 autocorrelation of daily precipitation on a 1° x 1° grid, datapoints with less

than 1 mm/day mean precipitation are masked. IMERG for JAS in panel (a) and for DJF in

panel (b). ICON-5km for JAS in panel (c) and for DJF in panel (d). IFS-4km-off for JAS in

panel (e) and for DJF in panel (f). The circles in (a) and (b) indicate gauge station data. Sta-

tions with less than 1 mm/day mean precipitation are not shown. Black dashed lines indicate the

domains for the further analysis: the Sahel domain (10°E-30°W, 5°N-15°N) the tropical domain

(20°S-20°N) and the CCEW domain (5°N-15°N).

observational range in the Sahel region and generally also over tropical land (see Fig-206

ure 2). However, the autocorrelation over the tropical ocean is lower than in the three207

observations.208

The autocorrelation maps for IFS-4km-off are displayed in panels (e) and (f) of Fig-209

ure 1. Again, the pattern matches the observations, but it is a little noisier than the IMERG210

and the ICON-5km data, since for this model setup we only have one simulated year.211

However, this shows that data from one single season is already enough for the autocor-212

relation pattern to appear. The mean autocorrelation values for IFS-4km-off in Figure213

2 are close to the upper end of the observational range, or slightly above for the Sahel.214

A number of additional simulations with the IFS model, produced within the nextGEMS215

project are available. IFS-4km-on, from the latest cycle 3 simulations is run with the deep216

convection scheme turned on, but a reduced vertical mass flux. Additionally, there are217

the 9 km simulations IFS-9km-off and IFS-9km-on. These simulations allow us to ex-218

plore the influence of the deep convection paraterization scheme on the autocorrelation219

in the IFS model. Autocorrelation increases over the Sahel, tropical land and tropical220

ocean for both the 4.4 and the 9 km resolution IFS simulations (see Figure 2) when the221

deep convection parameterization is turned on. In fact, the increase in autocorrelation222

is relatively uniform across the tropics in both cases, with virtually no differences be-223

tween land and ocean. This suggests that surface-atmosphere interactions are not driv-224

ing factors for changes in the autocorrelation, when the deep convection parameteriza-225

tion is turned on.226

MPAS-A also captures the autocorrelation pattern at both 3.75 and 7.5 km res-227

olution when the deep convection is simulated explicitly (not shown). The mean auto-228
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Figure 2. Mean lag 1 autocorrelation of daily precipitation calculated for July-September

(JAS). In the first row calculated for the Sahel domain (10°E-30°W, 5°N-15°N), the second row

for tropical land and in the third row for tropical ocean (20°S-20°N). Depicted in the first col-

umn from the left are the values for the observations, in the second column for the nextGEMS

cycle 3 simulations, in the third column for different nextGEMS IFS simulations (cycle 2 and 3),

in the fourth column for two MPAS-A simulations (simulation period only from August 1st to

September 10th 2016) and in the fifth column the CMIP6 mean is depicted. Dotted bars indicate

simulations with active deep convection parameterization. Gridpoints with less than 1 mm/day

mean precipitation are not included.
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Figure 3. Relative power spectra calculated from daily precipitation, with the observations in

(a), the nextGEMS cycle 3 simulations in (b) and the different nextGEMS IFS simulations (cycle

2 and 3) in (c). Gridpoints with less than 1 mm/day mean precipitation are not included.

correlation values for the MPAS-A-7.5km simulations in Figure 2 are consistent with the229

influence of the deep convection parameterization on the autocorrelation in IFS. As for230

the IFS model, the autocorrelation increases when the deep convection parameterization231

is turned on. The increase is much stronger over the Sahel than over the rest of the trop-232

ics in MPAS-A-7.5km (similarly in MPAS-A-3.75km, not shown). However, it should be233

kept in mind that these simulations only cover a range of 40 days.234

The increase in autocorrelation when the deep convection parameterization is turned235

on is caused by an increase in high frequency variance (meaning on the time-scale of a236

few days) relative to low frequency variance in the IFS model. This is demonstrated in237

Figure 3, which depicts the tropical mean relative power spectra of daily precipitation238

for the nextGEMS simulations and the observations for JAS. When the IFS model is run239

with deep convection treated explicitly, the relative power spectra agree very well with240

ICON-5km and the observations. Whereas, when the parameterization is turned on, power241

shifts to lower frequencies and the spectra drop out of the observational range.242

3.2 Relative CCEW Contribution to Precipitation Variance243

A considerable fraction of the precipitation variance that underlies the power spec-244

tra presented in Figure 3 are related to CCEWs. To investigate the role of CCEWs in245

the origin of the autocorrelation pattern we therefore calculate the precipitation vari-246

ance fraction on a daily time-scale for the different wave types in the CCEW band de-247

fined in Schlueter et al. (2019) for JAS (see Figure 1). Following Schlueter et al. (2019)248

this is achieved by calculating the squared Pearson correlation coefficients between pre-249

cipitation anomalies and wave filtered precipitation anomalies of the latitudinal mean250

of the CCEW band. We subsequently take the longitudinal mean, to generate the mean251

values presented in Figure 4. Since this correlation method does not take interactions252

between waves into account, the sum of the precipitation variance fractions attributed253

to CCEWs can be interpreted as the maximum variance fraction explainable by CCEWs254

(Schlueter et al., 2019). It should be noted that only a small part of the WIG frequency255

spectrum can be filtered from daily data, which is why they only contribute relatively256

small variance fractions at this time-scale.257

Differences in the summed CCEW variance fraction in the observations in Figure258

4 are as large as 10 percentage points between IMERG and GPCP, which delivers the259

highest summed fraction of more than 45 %. These differences arise mainly due to dif-260

ferences in the slow CCEW fractions (MJO, ER and MRG).261
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Figure 4. Precipitation variance fractions attributed to convectively coupled equatorial waves

(CCEWs) calculated as the squared Pearson correlation between precipitation anomalies and

wave filtered precipitation anomalies for July-September (JAS) in the CCEW band (5°N-15°N).

From left to right, the first three bars depict the mean values for the observations, the next two

bars the values for the nextGEMS cycle 3 simulations and the last four bars the values for differ-

ent nextGEMS IFS simulations (cycle 2 and 3). The fractions over the bars denote the summed

variance fractions of the fast waves over the summed variance fractions of the slow waves.

The ICON-5km simulations produce a summed CCEW variance fraction smaller262

than the observational range. The variance fractions for the slow CCEWs are compa-263

rable to IMERG, but the model produces lower values for both fast and slow Kelvin and264

EIG waves.265

For the IFS simulations with the deep convection parameterization turned on, the266

summed CCEW variance fractions are close to the upper end of the observational range.267

The simulations with deep convection simulated explicitly, on the other hand, deliver summed268

CCEW variance fractions that are considerably smaller and closer to the one of ICON-269

5km. The changes between deep convection parameterization on and off simulations are270

not uniform across wave types. For example, there are differences in the variance frac-271

tions of the TD waves. The comparably small fractions for this wave type in IFS-4km-272

off and IFS-9km-off are also a difference to the ICON-5km simulation, which in turn de-273

livers smaller fractions for Kelvin and EIG waves. The largest changes, however, are in274

the variance fractions of the slow waves, which are particularly pronounced for the IFS-275

9km simulations. These changes are related to the autocorrelation in the sense that the276

larger variance fraction in the slow waves, when the deep convection parameterization277

is turned on, increases the power in the lower frequencies of the power spectrum (see Fig-278

ure 3).279

The overall importance of CCEWs in the origin of the tropical autocorrelation pat-280

tern is difficult to accurately quantify. However, we find that the ICON-5km and the IFS-281

4km-off models, while accurately reproducing the autocorrelation pattern, produce summed282

CCEW variance fractions lower than the observational range. The IFS-4km-on model283

on the other hand, produces CCEW variance fractions close to the observations, while284

overestimating autocorrelation across the tropics.285

–9–



manuscript submitted to Geophysical Research Letters

4 Conclusions286

We study the lag 1 autocorrelation of daily precipitation as an easy-to-compute di-287

agnostic of tropical precipitation variability in kilometer-scale climate models. The di-288

agnostic is helpful to investigate the persistence of precipitation across the tropics.289

Our results shows that the autocorrelation pattern first presented by Roehrig et290

al. (2013) is robust across satellite-based observations and gauge stations. The pattern291

can be summarized as one of largest autocorrelation over ocean; smaller, but still pos-292

itive autocorrelation over tropical land; and much smaller or even negative autocorre-293

lation in the core of the rainy regions of Africa and South America. The kilometer-scale294

climate models of the nextGEMS project and MPAS-A produce a similar pattern, in con-295

trast to a wide range of CMIP6 models. In the IFS model the autocorrelation is very com-296

parable to observations when the deep convection is simulated explicitly, but overesti-297

mated across the tropics when the deep convection parameterization is turned on. This298

effect occurs over several horizontal resolutions and even if the parameterized vertical299

mass flux is strongly reduced. Hence, we find a distinct dependence on the representa-300

tion of deep convection, rather than simply horizontal resolution, independent of the sur-301

face being land or ocean. This result is confirmed by our analysis of global kilometer-302

scale MPAS-A simulations, which show the same dependence on the representation of303

deep convection.304

We attribute precipitation variance to different kinds of convectively coupled equa-305

torial waves (CCEW). When deep convection is treated explicitly, the power spectrum306

of precipitation becomes whiter, reducing fractional variance from CCEW as a set, and307

specifically by depressing the role of slow waves. We show that a climate model with deep308

convection parameterization turned on, namely IFS-4km-on, produces CCEW related309

precipitation fractions that compare relatively well to the observations and at the same310

time overestimate the autocorrelation. On the other hand different kilometer-scale mod-311

els, ICON-5km and IFS-4km-off, reproduce the autocorrelation pattern, but underesti-312

mate the CCEW related precipitation fraction. In the IFS model, turning off the deep313

convection parameterization leads to a decrease of variance fractions related to slow CCEWs314

and an increase in the variance fraction related to tropical depression type waves. The315

latter is in contrast to what Judt and Rios-Berrios (2021) reported for MPAS-A. Tak-316

ing these findings into account, we assume that CCEWs, while probably playing a role,317

are not the main driving factor for the observed autocorrelation pattern.318

The origin of the autocorrelation pattern could lie on scales finer than those of CCEWs.319

A comparison of the maps of the autocorrelation and observation-based statistics of meso-320

cale convective systems (MCSs) from Feng et al. (2021) indicates that the regions of low321

autocorrelation are also regions with high MCS precipitation fractions and MCS num-322

bers. However, there are also regions over the ocean (e.g. the Indian ocean) where this323

association does not hold. Moreover, Mathon et al. (2002) showed that over the central324

Sahel, where autocorrelation is low, organized MCSs (OMCSs), account for 90 % of the325

seasonal precipitation, while only representing 12 % of the total MCS count. The low326

frequency of OMCSs may therefore indicate that MCSs are not the main drivers of the327

autocorrelation pattern either. A deeper analysis of MCSs and convective organization328

on even smaller scales in the nextGEMS simulations is necessary to further constrain the329

mechanisms behind the autocorrelation pattern.330

Regardless the exact composition of phenomena that lead to the observed pattern331

of autocorrelation of daily precipitation, the autocorrelation is an easily computed met-332

ric that encapsulates these underlying atmospheric processes and provides a simple di-333

agnostic for tropical precipitation in GCMs. Our finding that kilometer-scale models are334

able to reproduce the autocorrelation pattern furthermore demonstrates that these mod-335

els offer a unique possibility to study tropical precipitation and the related atmospheric336

dynamics.337
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Appendix A Overview of nextGEMS Simulations488

The key settings and the simulation acronyms of the nextGEMS simulations we489

analyze are presented in Table A1.490
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Table A1. Settings of the nextGEMS simulations used in our analysis.

Simulation
acronym

Atmosphere
model

Cycle
Horizontal
resolution

Simulation
years

Deep convection
parameterization

ICON-5km ICON-Sapphire 3 5 km 2020-2024 off
IFS-4km-on IFS 3 4.4 km 2020-2024 on (reduced)
IFS-4km-off IFS 2 4.4 km 2020 off
IFS-9km-on IFS 2 9 km 2020 on
IFS-9km-off IFS 2 9 km 2020 off

Figure C1. Lag 1 autocorrelation of daily precipitation on a 1° x 1° grid, datapoints with less

than 1 mm/day mean precipitation are masked. IMERG for JAS in panel (a) and for DJF in

panel (b). MSWEP for JAS in panel (c) and for DJF in panel (d). GPCP for JAS in panel (e)

and for DJF in panel (f). Circles indicate gauge station data. Stations with less than 1 mm/day

mean precipitation are not shown.

Appendix B List of CMIP6 Simulations491

We use amip r1i1p1f1 CMIP6 simulations (Eyring et al., 2016) for our analysis, in-492

cluded are the following models:493

ACCESS-CM2, ACCESS-ESM1-5, BCC-ESM1, CAMS-CSM1-0C, ESM2-FV2, CESM2-494

WACCM, CESM2, CMCC-CM2-HR4, CMCC-CM2-SR5, CanESM5, E3SM-1-0, E3SM-495

2-0, EC-Earth3-AerChem, EC-Earth3-CC, EC-Earth3-Veg-LR, EC-Earth3-Veg, EC-Earth3,496

FGOALS-f3-L, FGOALS-g3, GFDL-CM4, GFDL-ESM4, ICON-ESM-LR, IITM-ESM,497

INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MPI-ESM-1-2-HAM,498

MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, NorCPM1, NorESM2-LM499

and TaiESM1.500

Appendix C Autocorrelation Maps for Observations501

Figure C1 depicts the lag 1 autocorrelation maps for the analyzed observations.502
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