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Abstract

This paper investigates the distributed mean square output tracking problem of heterogeneous multi-agent systems with Marko-

vian switching topologies and infinite transmission delays. The main challenge of the concerned problem arises from how to deal

with Markovian switching topologies and infinite transmission delays simultaneously. A novel distributed observer is developed

based on a newly proposed Lyapunov functional method. Then, a distributed controller based on the distributed observer is

developed. It is shown that the stochastic distributed tracking problem is solved in the sense of mean square if the union graph

of the underlying Markovian switching topology contains a spanning tree. A distinctive feature of the proposed controller is

that the infinite delays are not required to be known. Finally, the effectiveness of the proposed controller is illustrated by two

numerical examples.

1



Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Stochastic Distributed Tracking of Heterogeneous Multi-Agent
Systems with Markovian Switching Topologies and Infinite Delays

Haihua Guo1 | Gang Feng2 | Cong Bi*3

1Hong Kong Institute for Data Science, City
University of Hong Kong, Kowloon, Hong
Kong

2Department of Biomedical Engineering,
City University of Hong Kong, Kowloon,
Hong Kong

3College of Artificial Intelligence, Nankai
University, Tianjin, 300350, China

Correspondence
*Cong Bi, College of Artificial Intelligence,
Nankai University, Tianjin, 300350, China
Email: congbi2-c@my.cityu.edu.hk

Abstract

This paper investigates the distributed mean square output tracking problem of het-
erogeneous multi-agent systems with Markovian switching topologies and infinite
transmission delays. The main challenge of the concerned problem arises from how
to deal with Markovian switching topologies and infinite transmission delays simul-
taneously. A novel distributed observer is developed based on a newly proposed
Lyapunov functional method. Then, a distributed controller based on the distributed
observer is developed. It is shown that the stochastic distributed tracking problem is
solved in the sense of mean square if the union graph of the underlying Markovian
switching topology contains a spanning tree. A distinctive feature of the proposed
controller is that the infinite delays are not required to be known. Finally, the
effectiveness of the proposed controller is illustrated by two numerical examples.
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1 INTRODUCTION

As a fundamental problem of cooperative control of multi-agent systems (MASs), consensus has drawn much interest because
of their wide applications in many fields, such as micro-grids, sensor networks, and mobile robots [1–4]. Generally speaking,
consensus problems ofMASs are categorized into leaderless consensus problems and leader-following consensus problems, also
known as distributed tracking problems. The objective of distributed tracking is tomake all follower agents to track the designated
leader’s trajectory. Distributed tracking problems have been widely studied for various MASs, such as first-order/second-order
MASs [5–7], general linear MASs [8–10], and heterogeneous linear MASs [11–13].
In practical applications, communication topologies among agents usually suffer from abrupt variations in their structures

because of random link failures and sudden environmental disturbances [14]. For example, the quality of wireless transmission
channels often changes over time due to the signal power attenuation and thermal noise, which causes time-varying communica-
tion topologies [15]. The Markovian switching topologies are commonly used to model these changing graphs. During the past
years, many researchers have studied MASs over Markovian switching topologies and some fundamental results have been pre-
sented on first-order/second-order MASs [16, 17], general linear MASs [18, 19], and heterogeneous linear MASs [20–24]. For
example, by using the eigenvalue analysis method and graph theory, the consentability problem of second-order MASs under
Markovian switching topologies has been considered in [16], where the authors show that the MAS can achieve mean square
consensus if and only if the union graph has a spanning tree. In [18], both continuous-time and discrete-time consensus problems
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of general linear MASs with Markovian switching topologies have been investigated, where each digraph is required to be bal-
anced. In [22–24], different cooperative control problems of heterogeneous MASs under both Markovian switching topologies
and time delays has been investigated.
Time delays are often inevitable in practice and have attracted great attention by the control community, see, for example, [25–

29]. A common feature of most existing works is that only bounded delays are investigated. However, infinite delays, also known
as unbounded delays do exist in some practical systems, such as coupled oscillators [30], traffic flowmodels [31], and population
dynamics [32]. It is noted that the so-called transmission delays among agents are often considered in MASs. Recently, various
stability and control problems of infinite-delayed systems have been investigated [33–37]. For example, the consensus problem
of general linear MASs under infinite transmission delays has been studied in [35] via the low-gain method, where the proposed
controller requires the knowledge of relative states between an agent and its neighbors while such information is not always
available in practical systems. This problem has been overcome in [36], where the robust cooperative output regulation problem
of heterogeneous MASs under infinite transmission delays has been addressed via the frequency-domain method. More recently,
the time-domain Lyapunov-based approach is developed in [37] to investigate the same problem of heterogeneous MASs under
infinite transmission delays and deterministic switching topologies. However, the aforementioned works [35–37] consider only
the case of fixed topologies or deterministic switching topologies and their methods are difficult to be used to address MASs
under randomly switching topologies and infinite transmission delays. To the best of our knowledge, the stochastic distributed
tracking problem of heterogeneous MASs under Markovian switching topologies and infinite transmission delays is yet to be
investigated, which motivates this study.
In comparison with those aforementioned literatures, the main challenges in addressing the stochastic distributed tracking

problem of heterogeneous MASs under Markovian switching topologies and infinite transmission delays are listed as follows.
(i) How to address MASs under both randomly switching topologies and infinite transmission delays in a stochastic frame-

work? The existing results on heterogeneous MASs under Markovian switching topologies and time delays [22–24] considered
only the case of bounded delays, the general difficulty of dealing with the case of infinite transmission delays also exists in this
paper. Moreover, the aforementioned literatures on MASs under infinite transmission delays [35–37] all focus on determinis-
tic systems, and thus cannot be directly utilized or extended to address Markovian randomly switching topologies in this work.
Actually, the distributed tracking problem of MASs under both Markovian switching topologies and infinite transmission delays
has not been studied even for first-order/second-order MASs.
(ii) It is known that the dynamics of infinite-delayed systems always include the part of initial conditions, which leads solutions

of the systems sensitive to initial conditions. In [35, 36], the initial transmission information, i.e., the transmission information
in t < 0 needs to be the same as those in t ≥ 0. Whether it is possible to remove this restrictive assumption in a stochastic
framework?
By overcoming the above-mentioned challenges, a novel Lyapunov-based approach is developed to address the stochastic

distributed tracking problem of heterogeneous MASs under both Markovian switching topologies and infinite transmission
delays. The main contributions of this paper are listed as follows.
Firstly, a novel distributed observer considering both Markovian switching topologies and infinite transmission delays is

developed. Based on this novel distributed observer, a distributed output feedback controller is then developed. It should be
pointed out that our results include distributed tracking problems of MASs with constant delays/bounded distributed delays and
fixed topologies as special cases. Moreover, the proposed controller does not require the knowledge of infinite transmission
delays, which is usually unavailable in practice.
Secondly, different from those works on cooperative control problems of MASs under infinite transmission delays in [35–37],

the merits of this work can be listed as follows. (i) Unlike [35, 36] under fixed topologies, where the frequency-domain method is
used, this work adopts the Lyapunov method to handle heterogeneous MASs under Markovian switching topologies and infinite
transmission delays simultaneously. Moreover, [35, 36] contains a strict constraint on the initial transmission information while
this work does not require this constraint. (ii) Different from [37] under deterministic switching topologies, where each digraph
is required to have a spanning tree, this work takes Markovian switching topologies into consideration and only requires the
union graph containing a spanning tree. Moreover, the Lyapunov technique adopted in [37] cannot be applied to the case of
Markovian switching topologies, and a novel Lyapunov functional is developed in this work.
Thirdly, compared with the relevant existing work on stochastic distributed tracking of MASs under Markovian switching

topologies and bounded transmission delays [22], which needs to verify a sufficient condition related to Markovian switching
topologies, transmission delays, and control gains, this work does not require such a sufficient condition. Instead, it is shown
that the control objective can be achieved if the control gain is sufficiently large.
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The remainder of the paper is arranged as follows. Some preliminaries and problem formulation are introduced in Section 2.
The main results of this work are presented in Section 3. Two numerical simulations and some conclusions are shown in Section
4 and Section 5, respectively.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Notations
Letℝ,ℂ,ℝn denote the sets of real numbers, complex numbers, and the n-dimensional real space equipped with the Euclidean

norm ‖ ⋅ ‖, respectively. 1 and 0 are vectors with all of their elements being 1 and 0, respectively. E[⋅] denotes the mathematical
expectation operator. Let ℂ0 ≜ {a ∈ ℂ ∣ Re{a} = 0}. For matrix P ∈ ℝn×n, P ≻ 0 stands for all elements of P are positive and
the eigenvalues of P are denoted by �(P ).

2.2 Problem Statement
Denote (Ω, ,F,ℙ) as a complete probability space whereF = {t; t ≥ 0} is a filtration. Denote �(t) as the switching signal,

which is driven by a Markov process on the probability space taking values in S = {1, 2,… , s}. Let the generator of the Markov
process {�(t), t ≥ 0} be Γ = (km) ∈ ℝs×s, which satisfies ℙ{�(t + &) = m ∣ �(t) = k} = km& + o(&), if k ≠ m, otherwise,
ℙ{�(t + &) = m ∣ �(t) = k} = 1 + kk& + o(&), where lim&→0 o(&)∕& = 0. Here, km ≥ 0 is the transition rate from k to m
if k ≠ m while kk = −

∑

m≠k km ≤ 0. The row summation of the transition rate matrix Γ equals to zero, i.e., Γ1 = 0. Let
the digraph �(t) =

{

 , �(t),�(t)
}

be described the time-varying transmission topology among M followers and the leader
labeled as 0, where  = {0, 1,⋯ ,M} is the vertex set, �(t) = {(j, i) ∣ i, j ∈ } is the edge set, and �(t) = (a

�(t)
ij )(M+1)×(M+1)

is the time-varying adjacency matrix with a�(t)ij = 1 if (j, i) ∈ �(t), otherwise, a
�(t)
ij = 0. Assume that a�(t)ii = 0 if i ∈  .

The neighboring set of agent i is denoted as �(t)
i =

{

j ∣ (j, i) ∈ �(t)
}

. Let �(t) = (d�(t)ij )M×M , where d�(t)ij = −a�(t)ij , i ≠ j,
i, j ∈ f ≜ {1, 2,⋯ ,M}, and d�(t)ii = d�(t)i =

∑M
j=0 a

�(t)
ij , i ∈ f . Let the union graph of k =

(

 , k,k
)

, k ∈ S be denote by
un =

⋃s
k=1 k =

(

 ,
⋃s
k=1 k

)

.

2.3 Problem Statement
A heterogeneous leader-following MAS consisting of M followers and a leader is investigated. The dynamics of the ith

follower is described by:
{

ẋi = Aixi + Biui,
yi = Cixi, i ∈ f ,

(1)

where xi ∈ ℝni , ui ∈ ℝbi , and yi ∈ ℝl stand for the state, input, and output of follower i, respectively;Ai, Bi, and Ci are constant
matrices with compatible dimensions. The leader indexed by 0 is described as follows:

{

ẋ0 = A0x0,
y0 = C0x0,

(2)

where x0 ∈ ℝn and y0 ∈ ℝl denote the state and output of the leader, respectively; A0 ∈ ℝn×n and C0 ∈ ℝl×n.

Definition 1. The stochastic distributed tracking problem of heterogeneous MAS (1)-(2) subject to Markovian switching
topologies �(t) is solved if limt→∞ E

[

‖yi − y0‖2
]

= 0, i ∈ f holds.

Infinite distributed transmission delays during information transmission among agents are considered. Assume that the signals
to be transmitted from agent j ∈  in t ≥ 0 is #j(t) ∈ ℝn and the initial control information in t < 0 is #0j (t) ∈ ℝn. Note that
#j(t) and #0j (t) are required to be the same as in [35, 36] while this strict assumption is not required in this work. Because of the
occurrence of infinite transmission delays, the information that the ith follower obtains from its neighboring agent j ∈ �(t)

i
is ∫ t

0 !ij(�)#j(t − �)d� + ∫ +∞
t !ij(�)#0j (t − �)d�, where !ij(�) ∶ [0,+∞) → [0,+∞) is the delay kernel function satisfying

∫ +∞
0 !ij(�)d� = 1.
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The goal of this work is to develop a distributed controller to address the stochastic distributed tracking problem of heteroge-
neous MAS (2)-(3) with infinite distributed delays and Markovian switching topologies. The following assumptions are needed
to deal with the stochastic distributed tracking problem.

Assumption 1. For i ∈ f , (Ai, Bi) is stabilizable and (Ci, Ai) is detectable.

Assumption 2. The solution solution pair (Ui, Vi) of the following linear matrix equations:

AiUi + BiVi = UiA0, (3a)
CiUi = C0, (3b)

exists for each i ∈ f .

Assumption 3. �(A0) ⊂ ℂ0.

Assumption 4. The union graph un has a spanning tree with the node 0 as root.

Assumption 5. The Markov process {�(t), t ≥ 0} is ergodic.

Assumption 6. The delay kernel functions !ij(t), t ≥ 0, i ∈ f , j ∈  satisfy

!ij(t) ≤ !(t), (4)

∫

+∞

0
!(�)‖#0j (−�)‖d� < +∞, (5)

where!(t) > 0, t ∈ [0,+∞) is a non-increasing function satisfying !̃ ≜ ∫ +∞
0 !(�)d� < +∞ and!(�+s) ≤!(�)!(s),∀�, s ≥ 0.

As discussed in [37], limt→∞ !(t) = 0 exponentially. In other words, there exist two positive constants �1 and c such that

!(t) ≤ �1e
− c
2
t. (6)

Remark 1. It is noted that Assumptions 1-3 are standard for distributed output tracking problems of heterogeneous MASs [12].
In particular, [38] shows that regulator equations (3) have a solution (Ui, Vi) if and only if

rank
(

Ai − �I Bi
Ci 0

)

= ni + l, � ∈ �
(

A0
)

, i ∈ f . (7)

Assumption 4 is the mildest condition on the connectivity. Assumption 5 is standard for consensus problems of heterogeneous
MASs over Markovian switching topologies [14, 39]. Assumption 6 gives limitations on infinite distributed delays and initial
conditions. Condition (4) is a restriction on delay kernel functions and is similar to the constraint as in [35, 36]. It should be
pointed out that condition (4) includesmany types of time delays, for example, all bounded delays, exponential infinite distributed
delays and so on. Condition (5) is a limitation on initial conditions and has been used in [37].

As is well known, the ergodic Markov processes have a unique stationary distribution, described by � = (�1,… , �s)T, satis-
fying �TΓ = 0 and �T1 = 1. Generally, the Markov process is assumed to initiate from its stationary distribution as described in
[18, 21, 40]. Under this condition,

∑s
k=1 �kk can denote the adjacent matrix of the union graph un [41]. It should be pointed

out that the structure of the expectation graph E[�(t)] is the same as that of the union graph un. As a result, we can then consider
the union graph un instead of each digraph k, k ∈ S.
Furthermore, the following technical lemmas are recalled.

Lemma 1. [42] If un admits a spanning tree, then all eigenvalues of E[�(t)] have positive real parts.

Lemma 2. [43] Let W ∈ ℝn×n with nonpositive off-diagonal elements. Then W is anM-matrix if and only if there exists a
� ∈ ℝn ≻ 0 such thatW T� ≻ 0.

Lemma 3. [28] Let �(A0) ⊂ ℂ0, ∀� > 0, there exists � > 0 and has the following inequality:

‖eA0t‖ ≤ �e
�
2
t. (8)
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3 MAIN RESULTS

The distributed observer design, distributed controller design, and analysis of the resulting closed-loop system are presented
in this section.

3.1 Distributed Observer under Markovian Switching Topologies and Infinite Transmission
Delays
In this paper, we propose the distributed observer as follows,

#̇i = A0#i −$
M
∑

j=0
a�(t)ij

(

#i(t) − Tij(A0, #j , #0j )
)

, i ∈ f , (9)

where $ > 0 is a real number, #i is the state of the distributed observer to estimate the state x0, a
�(t)
ij governed by the Markov

process {�(t), t ≥ 0} is the element of the adjacency matrix�(t) , and

Tij(A0, #j , #0j ) = e
A0t

(

∫

t

0
!ij(�)e−A0(t−�)#j(t − �)d� + ∫

+∞

t
!ij(�)#0j (t − �)d�

)

= ∫

t

0
!ij(�)eA0�#j(t − �)d� + eA0t ∫

+∞

t
!ij(�)#0j (t − �)d� (10)

is the delayed signal received by agent i from its neighbor agent j. The first term of Tij represents the transmission signal in
t ≥ 0. The second term of Tij represents the initial condition in t < 0 and can be directly calculated for the given initial condition.
Compare with [35, 36], where the initial transmission information in t < 0 is required to be the same as those in t ≥ 0, the novel
distributed observer (9) not only does not require this restrictive assumption but also considers the randomness in transmission.
The framework of information exchange between each adjacent agents pair (j, i) ∈ �(t) can be shown as following. (i)

The state of the ith agent’s neighbor #j is pre-processed by e−A0t resulting e−A0t#j , which is the information to be transmitted.
(ii) Under infinite transmission delays, the delayed information obtained by ith agent is denoted as ∫ t

0 !ij(�)e
−A0(t−�)#j(t −

�)d� + ∫ +∞
t !ij(�)#0j (t − �)d�. (iii) Then we can get Tij(A0, #j , #0j ) by multiplying the received information with eA0t. In such

a transmission framework, the delay kernel functions !ij(�), i ∈ f , j ∈�(t)
i does not need to be known a priori.

It follows from Assumption 4 and Lemma 1 that all eigenvalues of E[�(t)] have positive real parts so that E[�(t)] is an
M-matrix. It then follows from Lemma 2 that there exists a � = (�1,… , �M )T ≻ 0 such that

E[T
�(t)]� ≻ 0. (11)

Denote �i =
∑s
k=1 �kd

(k)
i , %i =

∑s
k=1

∑M
j=1 �ka

(k)
ij , and %̂i =

∑s
k=1

∑M
j=1 �j�ka

(k)
ji . We are ready to present a key technical result

as follows.

Theorem 1. Under Assumptions 3-6, the state of the distributed observer (9) approaches the state x0(t) exponentially in the
sense of mean square as time goes to infinity, i.e., limt→+∞ E[‖#i − x0‖]2 = 0 exponentially, i ∈ f if$ is sufficiently large.

Proof. Define �i = e−A0t#i, i ∈  . It can be obtained from #0 = x0 that �̇0 = 0. When i ∈ f , we can derive that

�̇i = − A0e−A0t#i + e−A0tA0#i

−$e−A0t
M
∑

j=0
a�(t)ij

(

#i − ∫

t

0
!ij(�)eA0�#j(t − �)d� − eA0t ∫

∞

t
!ij(�)#0j (t − �)d�

)

= −$d�(t)i �i +$
M
∑

j=0
a�(t)ij ∫

t

0
!ij(�)�j(t − �)d� +$

M
∑

j=0
a�(t)ij ∫

∞

t
!ij(�)#0j (t − �)d�, (12)

where d�(t)i =
∑M
j=0 a

�(t)
ij , i ∈ f . The above variable transformation gives the following system:

{

�̇0 = 0,
�̇i = −$d

�(t)
i �i +$

∑M
j=0 a

�(t)
ij ∫ t

0 !ij(�)�j(t − �)d� +$
∑M
j=0 a

�(t)
ij ∫ ∞

t !ij(�)#0j (t − �)d�, i ∈ f .
(13)
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Let �i = �i − �0, i ∈ f . It then follows from (13) that

�̇i = −$d
�(t)
i �i +$

M
∑

j=0
a�(t)ij ∫

t

0
!ij(�)�j(t − �)d� +$

M
∑

j=0
a�(t)ij ∫

∞

t
!ij(�)#0j (t − �)d�

= −$d�(t)i �i +$
M
∑

j=1
a�(t)ij ∫

t

0
!ij(�)�j(t − �)d� +$

�(t)
i , i ∈ f , (14)

where

�(t)i = −
M
∑

j=0
a�(t)ij

(

�0 − ∫

t

0
!ij(�)�0(t − �)d� − ∫

∞

t
!ij(�)#0j (t − �)d�

)

(15)

contains initial conditions.
Define the following novel Lyapunov functional,

V =
s
∑

k=1
V (t, k), (16)

where

V (t, k) = V1(t, k) + V2(t, k) + V3(t, k), (17)

V1(t, k) = E

[ M
∑

i=1
�i‖�i‖

21{�(t)=k}

]

, (18)

V2(t, k) = $E

[ M
∑

i,j=1
�ia

(k)
ij ∫

t

0
‖�j(�)‖2 ∫

+∞

t−�
!ij(s)dsd�1{�(t)=k}

]

, (19)

V3(t, k) =  E

[ M
∑

i=1
∫

t

−∞

‖

‖

�i(�)‖‖
2

∫

+∞

t−�
!(s)dsd�1{�(t)=k}

]

, (20)

with  being a positive constant to be designed and 1{�(t)=k} is the indicator function over {�(t) = k}.
In what follows, we will show that limt→∞ E[‖�i‖2] = 0 exponentially for all i ∈ f via two parts.
Part 1:We first calculate the upper bound of V̇ (t).
From [44, Lemma 3.6], taking derivative of V1(t, k) along (14), we have

V̇1(t, k) = − 2$E

[ M
∑

i=1
�id

�(t)
i ‖�i‖

21{�(t)=k}

]

+ 2$E

[ M
∑

i,j=1
�ia

�(t)
ij �

T
i ∫

t

0
!ij(�)�j(t − �)d�1{�(t)=k}

]

+ 2$E

[ M
∑

i=1
�i�

T
i 

�(t)
i 1{�(t)=k}

]

+
s
∑

m=1
mkV1(t, m). (21)

It is noted that {�(t), t ≥ 0} starts from its stationary distribution �. Consequently, one has

V̇1 =
s
∑

k=1
V̇1(t, k)

≤ − 2$E

[ M
∑

i=1
�i�i‖�i(t)‖2

]

+ 2$E

[ M
∑

i,j=1
�i�ij�

T
i ∫

t

0
!ij(�)�j(t − �)d�

]

+ 1
$

E

[ M
∑

i=1
�i‖�i‖

2

]

+$3
M
∑

i=1
�i

[ s
∑

k=1
�k

(k)
i

]2

, (22)

where �ij =
∑s
k=1 �ka

(k)
ij .
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By utilizing the Cauchy–Schwarz inequality, we have

2$�i%ij�Ti ∫

t

0
!ij(�)�j(t − �)d� ≤$�i%ij‖�i‖2 +$�i%ij

‖

‖

‖

‖

∫

t

0
!ij(�)�j(t − �)d�

‖

‖

‖

‖

2

≤$�i%ij‖�i‖2 +$�i%ij ∫

t

0
!ij(�)‖�j(t − �)‖2d�. (23)

Moreover, it follows that

 (k)i = −
M
∑

j=0
a(k)ij

(

�0 − ∫

t

0
!ij(�)�0(t − �)d� − ∫

∞

t
!ij(�)#0j (t − �)d�

)

= −
M
∑

j=0
a(k)ij

(

�0 − ∫

t

0
!ij(�)d��0 − ∫

+∞

t
!ij(�)#0j (t − �)d�

)

= −
M
∑

j=0
a(k)ij

(

∫

+∞

t
!ij(�)d��0 − ∫

+∞

t
!ij(�)#0j (t − �)d�

)

. (24)

Under Assumption 6, we have
‖

‖

‖

‖

‖

∫

+∞

t
!ij(�)d��0

‖

‖

‖

‖

‖

=
‖

‖

‖

‖

‖

∫

+∞

0
!ij(t + �)d��0

‖

‖

‖

‖

‖

≤ ∫

+∞

0
!(t + �)d� ‖

‖

�0‖‖

≤ ∫

+∞

0
!(�)d� ‖

‖

�0‖‖!(t)

= !̄!(t), (25)

and
‖

‖

‖

‖

‖

∫

+∞

t
!ij(�)#0j (t − �)d�

‖

‖

‖

‖

‖

≤ ∫

+∞

0
!ij(t + �)‖#0j (−�)‖d�

≤ ∫

+∞

0
!(t + �)‖#0j (−�)‖d�

≤ ∫

+∞

0
!(�)‖#0j (−�)‖d�!(t)

= !̂!(t), (26)

where !̄ = ∫ +∞
0 !(�)d� ‖

‖

�0‖‖ and !̂ = ∫ +∞
0 !(�)‖#0j (−�)‖d�.

It thus follows from (25) and (26) that
M
∑

i=1
�i

[ s
∑

k=1
�k

(k)
i

]2

≤ s
M
∑

i=1
�i

s
∑

k=1
�2k(

(k)
i )

2

≤ 2s(M + 1)
M
∑

i=1
�i

s
∑

k=1

M
∑

j=0
�ka

(k)
ij (!̄

2 + !̂2)!2(t)

≤ 2s(M + 1)
M
∑

i=1
�i�i(!̄2 + !̂2)!2(t)

≤ �2e
−ct, (27)
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where �2 = 2�21s(M + 1)
∑M
i=1 �i�i(!̄

2 + !̂2). Combining (22), (23), and (27) leads to

V̇1 ≤ − 2$E

[ M
∑

i=1
�i�i‖�i‖

2

]

+$E

[ M
∑

i=1
�i%i‖�i‖

2

]

+$E

[ M
∑

i,j=1
�i�ij ∫

t

0
!ij(�)‖�j(t − �)‖2d�

]

+ 1
$

E

[ M
∑

i=1
�i‖�i‖

2

]

+$3�2e
−ct. (28)

Moreover, it follows from (19) and (20) respectively that

V̇2 =
s
∑

k=1
V̇2(t, k)

=$E

[ M
∑

i=1
%̂i‖�i‖

2

]

−$E

[ M
∑

i,j=1
�i�ij ∫

t

0
!ij(�)‖�j(t − �)‖2d�

]

, (29)

and

V̇3 =
s
∑

k=1
V̇3(t, k)

= E

[ M
∑

i=1

(

!̃ ‖

‖

�i‖‖
2 − ∫

t

−∞
!(t − �) ‖

‖

�i(�)‖‖
2 d�

)

]

= E

[ M
∑

i=1

(

!̃ ‖

‖

�i‖‖
2 − ∫

+∞

0
!(�) ‖

‖

�i(t − �)‖‖
2 d�

)

]

. (30)

Then, from (28)-(30), we have

V̇ =
s
∑

k=1
V̇ (t, k)

≤E

[ M
∑

i=1
(−2$�i�i +$�i%i +$%̂i + 1∕$�i)‖�i‖2

]

+  E

[ M
∑

i=1

(

!̃ ‖

‖

�i‖‖
2 − ∫

+∞

0
!(�) ‖

‖

�i(t − �)‖‖
2 d�

)

]

+$3�2e
−ct. (31)

According to (11), we have −$�i�i +$%̂i < 0. Then, a sufficiently small " > 0 can be found such that −$�i�i +$%̂i < −".
Noting −$�i�i +$�i%i = −$�i

∑s
k=1 �ka

(k)
i0 , we then have that for a sufficiently large$, there exists a � > 0 such that

−$�i
s
∑

k=1
�ka

(k)
i0 − " +

1
$
�i < −�. (32)

It then follows from (31) and (32) that

V̇ ≤ − �E

[ M
∑

i=1
‖�i‖

2

]

+  E
M
∑

i=1

(

!̃ ‖

‖

�i‖‖
2 − ∫

+∞

0
!(�) ‖

‖

�i(t − �)‖‖
2 d�

)

+$3�2e
−ct

= −  

(

E

[ M
∑

i=1
‖�i‖

2 +
M
∑

i=1
∫

+∞

0
!(�) ‖

‖

�i(t − �)‖‖
2 d�

])

+$3�2e
−ct, (33)

where  = �
1+!̃

.
Part 2:We calculate the upper bound of V .
It follows from (18)-(20) directly that

V1 ≤ �̃E

[ M
∑

i=1
‖�i‖

2

]

, (34)
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V2 = $E

[ M
∑

i,j=1
�i�ij ∫

t

0
‖�j(t − �)‖2 ∫

+∞

t−�
!ij(s)dsd�

]

≤ $E

[ M
∑

i,j=1
�i�ij ∫

t

0
‖�j(t − �)‖2 ∫

+∞

0
!ij(� + s)dsd�

]

≤ $E

[ M
∑

i,j=1
�i�ij ∫

+∞

0
‖�j(t − �)‖2 ∫

+∞

0
!(� + s)dsd�

]

≤ $E

[ M
∑

i,j=1
�i�ij ∫

+∞

0
!(s)ds∫

+∞

0
!(�)‖�j(t − �)‖2d�

]

≤ $!̃%̂E

[ M
∑

i=1
∫

+∞

0
!(�)‖�i(t − �)‖2d�

]

, (35)

and

V3 =  E

[ M
∑

i=1
∫

t

−∞

‖

‖

�i(�)‖‖
2

∫

+∞

t
!(s + �)dsd�

]

≤  E

[ M
∑

i=1
∫

+∞

0
!(s)ds∫

+∞

0
!(�)‖�i(t − �)‖2dsd�

]

=  !̃E

[ M
∑

i=1
∫

+∞

0
!(�)‖�i(t − �)‖2dsd�

]

, (36)

where �̃ = maxi{�i} and %̂ = maxi{%̂i}. Then, combining (34)-(36), we have

V ≤ ΘE

[ M
∑

i=1

(

‖�i‖
2 + ∫

+∞

0
!(�)‖�i(t − �)‖2dsd�

)

]

, (37)

where Θ = max{�̃, $!̃%̂ +  !̃}.
Furthermore, from (33) in Part 1, one has

V̇ (t) ≤ − ΥV +$3�2e
−ct,

where Υ =  
Θ
. According to the comparison lemma [45], it follows that

V ≤ V (0)e−Υt +$3�2�(t, c), (38)

where �(t, c) is a function described by

�(t, c) =

{

te−Υt, if Υ = c,
1
Υ−c

(

e−ct − e−Υt
)

, if Υ ≠ c.

It can be seen that limt→+∞ � (t, c) = 0. Moreover, V (t) ≥ �̂E[‖�‖2], where �̂ = mini{�i}. Thus, one can get limt→∞ E[‖�‖2] = 0
exponentially.
From Lemma 3, for any 0 < � < min{Υ, c}, there exists � > 0 such that

‖eA0t‖ ≤ �e
�
2
t. (39)

Then, one has

lim
t→+∞

E[‖#i − x0‖]2 = lim
t→+∞

‖eA0t‖2E[‖�i − �0‖]2

= lim
t→+∞

‖eA0t‖2E[‖�i‖]2 = 0 (40)

exponentially. This completes the proof of Theorem 1.

Remark 2. Theorem 1 shows that the novel Lyapunov functional method with newly-developed Lyapunov functionals inspired
by [37, 44] is effective in dealing with Markovian switching topologies and infinite transmission delays simultaneously. The
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challenge (i) in the Introduction Section is solved based on the proposed Lyapunov functional method. It should be noted that
compared with [22, 24], Theorem 1 does not need the sufficient condition with the help of Lemmas 1 and 2.

Remark 3. In [35, 36], the distributed observer is designed as follows:

#̇i = A0#i −$
M
∑

j=0
aij

(

#i − Tij(A0, #j)
)

, i ∈ f , (41)

where Tij(A0, #j) = ∫ +∞
0 !ij(�)eA0�#j(t − �)d�. The observer (41) requires the initial transmission information in t < 0 to be

the same as those in t ≥ 0. In this work, the received information Tij(A0, #j , #0j ) is designed to be in two parts and the initial
communication information in t < 0 can be regarded as perturbations as shown in (15). Theorem 1 shows that the challenge (ii)
in the Introduction Section can be solved by the novel distributed observer (9).

3.2 Controller Design and Consensus Analysis
A novel distributed controller subject to both Markovian switching topologies and infinite transmission delays is proposed in

terms of the newly proposed distributed observer (9) as follows:

ui = K1ix̂i +K2i#i, i ∈ f (42a)
̇̂xi = Aix̂i + Biui +Hi

(

Cixi − Cix̂i
)

, (42b)

#̇i = A0#i −$
M
∑

j=0
a�(t)ij

(

#i(t) − Tij(A0, #j , #0j )
)

, (42c)

where x̂i ∈ ℝni is the Luenberger observer’s state, #i ∈ ℝn is state of the distributed observer in (9), and K1i, K2i,Hi are
matrices to be determined.
The main result of this work is presented in the following theorem.

Theorem 2. Consider heterogeneous MASs (1)-(2) under Markovian switching topologies and infinite transmission delays. Let
Assumptions 1-6 be satisfied. ChooseK1i andHi such thatAi+BiK1i andAi−HiCi are Hurwitz, andK2i = Vi−K1iUi, i ∈ f ,
where (Ui, Vi), i ∈ f are solutions to (3). Then the stochastic distributed tracking problem can be solved by the proposed
controller (42) with sufficiently large$.

Proof. Define x̃i = xi − x̂i. Then, we have
̇̃xi = ẋi − ̇̂xi = (Ai −HiCi)(xi − x̂i) = (Ai −HiCi)x̃i. (43)

Note that Ai − HiCi, i ∈ f are Hurwitz, one has limt→+∞ E[‖x̃(t)‖2] = 0 from [46, Lemma 2]. Let x̄i = xi − Uix0 and
�̃i = #i − x0, i ∈ f , we have

̇̄xi = Aixi + BiK1ix̂i + BiK2i#i − UiA0x0. (44)

Note that K2i = Vi −K1iUi, i ∈ f . Under Assumption 3, one gets
̇̄xi =Aixi + BiK1i(xi − x̃i) + BiK2i#i − UiA0x0
=(Ai + BiK1i)xi − BiK1ix̃i + BiK2i#i − UiA0x0
=(Ai + BiK1i)x̄i − BiK1ix̃i + BiK2i�̃i. (45)

Since limt→∞ E[‖�̃i(t)‖2] = 0 via Theorem 1 with a sufficiently large$, and the fact that Ai + BiK1i, i ∈ f , are Hurwitz, one
has limt→∞ E[‖x̄i(t)‖2] = 0 by [41, Lemma 1]. Then, we have

lim
t→∞

E[‖yi(t) − y0(t)‖2] = lim
t→∞

E[‖Cixi(t) − C0x0(t)‖2]

= lim
t→∞

‖Ci‖
2E[‖xi(t) − Uix0(t)‖2]

= lim
t→∞

‖Ci‖
2E[‖x̄i(t)‖2]

= 0. (46)

Consequently, the stochastic distributed tracking problem is solved. The proof is thus completed.
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Remark 4. The cooperative control problems of heterogeneous MASs with Markovian switching topologies have been investi-
gated in the case of delay-free models [20], constant delays [23], time-varying delays [24], and bounded distributed delays [22].
In this work, the stochastic distributed tracking problem of heterogeneous MASs under both Markovian switching topologies
and infinite transmission delays is solved by a new distributed controller (42). Unlike the existing works [23, 24] on cooper-
ative control problems of MASs under Markovian switching topologies and bounded delays, where the knowledge of delays
are required, the proposed distributed output feedback controller (42) does not require prior knowledge of infinite transmis-
sion delays. Moreover, the obtained results in Theorem 2 on infinite distributed delays include the cases of constant delays and
bounded distributed delays.

Remark 5. The existing results on cooperative control problems of MASs under infinite delays focus on fixed topologies [35, 36]
and deterministic switching topologies [37]. However, the environment in which MASs operate is often infected by random
disturbance, which often lead to randomly switching of the communication topologies. Under randomly switching topologies, the
Laplace matrix and the states of MASs are not deterministic. Therefore, the existing results of deterministic switching may not
apply. The results onMarkovian randomly switching topologies have been strictly proved in this work by using stochastic theory.
The stochastic distributed tracking result of the concerned MASs under Markovian switching topologies has been rigorously
established. Moreover, unlike [37], where each digraph is required to admit a spanning tree, this work relaxes this assumption
on their connectivity by requiring only that the union graph un has a spanning tree.

3.3 Extensions
When the transmission topology �(t) is fixed and has a spanning tree, i.e., �(t) becomes a constant, then the results reduce

to the distributed output tracking problem of MASs with infinite transmission delays in the deterministic framework. Based on
Theorem 2, we have the following corollary.

Corollary 1. Consider heterogeneousMAS (1)-(2) with infinite transmission delays and fixed topologies . Under Assumptions
1-4, and 6, the distributed output tracking problem is solved by the following controller,

ui = K1ix̂i +K2i#i, i ∈ f
̇̂xi = Aix̂i + Biui +Hi

(

Cixi − Cix̂i
)

, (47)

#̇i = A0#i −$
M
∑

j=0
aij

(

#i(t) − Tij(A0, #j , #0j )
)

,

where$,K1i, K2i, andHi are chosen in the same way as in Theorem 2.

On th other hand, it is noted that Assumption 6 always holds for the case of bounded distributed delays. Then the results of
Theorems 1 and 2 are still valid in such cases and are summarized in the following corollary.

Corollary 2. Consider heterogeneous MAS (1)-(2) under bounded distributed transmission delays and Markovian switching
topologies �(t). Under Assumptions 1-5, the stochastic distributed tracking problem is solved by controller (42).

Moreover, our results can include both infinite and multiple constant delays in the same framework. Denote !ij(�) =
∑r
l=1 !

l
ij�(� − !

l
ij) + !ij(�), where 0 ≤ !lij ≤ �, !lij is a constant, r is the amount of constant delays, and !ij(�) satisfies

Assumption 6 and the inequality (5) should be replaced by

sup
d∈[−�,0]

‖#0j (d)‖ + ∫

+∞

0
!(s)‖#0j (−s)‖ds < +∞. (48)

Then we have the following corollary.

Corollary 3. Consider heterogeneous MAS (1)-(2) under both infinite and multiple constant delays and Markovian switching
topologies �(t). If Assumptions 1-6 with (5) replaced by (48) are satisfied, the stochastic distributed tracking problem can be
solved by the distributed controller (42).

4 SIMULATIONS

In this section, the effectiveness of the proposed controller (42) is shown by two numerical examples.
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4.1 Example 1
Consider the tracking problem of a group of four agents adopted by [12] and [37]. The dynamics of heterogeneous MAS is

described in the form of (1) and (2) as follows:

Ai =
⎛

⎜

⎜

⎝

0 1 0
0 0 ti
0 −gi −si

⎞

⎟

⎟

⎠

, Bi =
⎛

⎜

⎜

⎝

0
0
mi

⎞

⎟

⎟

⎠

, Ci =
(

1 0 0
)

and
ẋ0 =

(

0 1
−1 0

)

x0,

y0 =
(

1 0
)

x0,
where parameters

{

si, mi, ti, gi
}

are selected as {2, 2, 2, 0}, {5, 2, 1, 0}, {2, 2, 1, 2}, {2, 4, 1, 2}, i = 1, 2, 3, 4, respectively. It can
be verified that condition (7) is satisfied. Therefore, from regulator equations (3), we can obtain

Ui =

⎛

⎜

⎜

⎜

⎝

1 0
0 1
− 1
ti
0

⎞

⎟

⎟

⎟

⎠

, Vi =
(

− si
miti

− 1
miti

+ gi
mi

)

.

The communication topologies are randomly switched between 1 and 2 as shown in Fig. 1. It can be observed that neither 1

(a) 1. (b) 2.

FIGURE 1 The two possible directed topologies in Example 1.

nor 2 has a spanning tree, but the union graph un admits a spanning tree. Let the switching signal be driven by a Markov chain

{�(t), t ≥ 0}. Let S = {1, 2} and Γ =
(

−1 1
2 −2

)

. The initial distribution of {�(t), t ≥ 0} is taken as its stationary distribution

� = (2∕3, 1∕3)T as shown in Fig. 2. Moreover, there exist a vector � = (0.2, 0.2, 0.1, 0.1)T such that E[T
�(t)]� ≻ 0. Let the delay

kernel functions be chosen as !10(�) = e−� , !20(�) = 4�e−2� , !31(�) = !42(�) =
6
5
e−

6
5
� , and choose !(�) = 6

5
e−� , � ∈ [0,+∞),

which implies that condition (4) holds. Let $ = 5 and the initial transmission information be chosen the same as those in
[37]∶ #00(t0) = (−1, 1)

T, #01(t0) = (−2, 0)
T, #02(t0) = (1, 2)

T, #03(t0) = (−3, 1)
T, #04(t0) = (2, 0)

T, t0 ∈ (−∞, 0). Then condition
(5) holds. Design matrices K1i, K2i,Hi for each individual follower agent as follows:

K11 = (−42,−36.5,−9.5), K12 = (−21,−18.25,−0.25),
K13 = (−42,−26.5,−8.5), K14 = (−42,−35.5,−8.5),
K21 = (−31.5, 35.5), K22 = (15.75, 17.75),
K23 = (31.5, 35.5), K24 = (31.5, 35.5),
H1 = (8.5, 20.5, 7.5)T,H2 = (−0.5, 34,−312)T,
H3 = (7.5, 4,−55)T,H4 = (7.5, 13,−5.5)T.

For i = 1, 2, 3, 4, let ei = yi − y0 denote the output tracking errors. Let the observer errors between the state of the observer
(9) and x0 be denoted as �̃i = #i − x0 = (�̃i1, �̃i2)T. Generate 1500 sample paths to approximate E

[

‖ei‖2
]

and E[‖�̃i‖2] as
depicted in Figs. 3 and 4, respectively. Specifically, Fig. 3 shows that #i converges to x0 in mean square sense. Fig. 4 shows
that the stochastic distributed tracking is achieved under the proposed controller (42). Moreover, [37] considers MASs with
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0 5 10 15 20 25 30

0.5
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1.5

2

2.5

FIGURE 2Markov chain with generator Γ in Example 1.

deterministic switching topologies and infinite transmission delays. Example 1 shows that our method can address the case of
Markovian switching topologies, although the individual topology does not contains a spanning tree.

0 2 4 6 8 10

0

5

10

0 2 4 6 8 10

0

1

2

3

FIGURE 3 The mean square errors for observer (9) in Example 1.

4.2 Example 2
Consider four robots with the following dynamics adopted from [47]:

MiD̈i + �iḊi = ui, i = 1, 2, 3, 4, (49)

whereMi, Di, and �i represent the mass, position, and damping of the ith robot, respectively.
The communication topologies are randomly switched among 1 − 4 as shown in Fig. 5.
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FIGURE 4 The mean square tracking errors in Example 1.

(a) 1. (b) 2.

(c) 3. (d) 4.

FIGURE 5 The four possible directed topologies in Example 2.
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FIGURE 6Markov chain with generator Γ in Example 2.
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Fig. 6 shows the Markovian switching signal �(t) with the generator Γ being selected as

Γ =

⎛

⎜

⎜

⎜

⎜

⎝

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

⎞

⎟

⎟

⎟

⎟

⎠

.

Then, it follows that its stationary distribution is � = (1∕4, 1∕4, 1∕4, 1∕4)T. Define xi = (Di, Ḋi)T and yi = Di, then system

(49) can be written as in (1), with Ai =
(

0 1
0 −pi

)

, Bi =
(

0
qi

)

, Ci =
(

1 0
)

, where pi = �i∕Mi, qi = 1∕Mi, for i = 1, 2, 3, 4.

Choose A0 =
(

0 1
−1 0

)

and C0 =
(

1 0
)

. By solving (3), we have Ui =
(

1 0
0 1

)

and Vi =
(

− 1
qi

pi
qi

)

. Then it can be obtained

that Assumption 2 holds. Moreover, one can verify that there exists a vector � = (0.3, 0.2, 0.35, 0.36)T such that E[T
�(t)]� ≻ 0.

Let the delay kernel functions be chosen as !13(�) = !21(�) = !34(�) = e−� , !20(�) = 4�e−2� , !42(�) =
6
5
e−

6
5
� , and select

!(�) = 6
5
e−� , � ∈ [0,+∞). We can obtain that condition (4) holds. Let $ = 20 and the initial transmission information be

chosen the same as those in Example 1. Let parameters pi and qi, i = 1, 2, 3, 4 be selected the same as those in [47]: pi = 0.1i
and qi = 1. Design the matrices K1i andHi as follows:

K11 = (−10.5 − 6.4), K12 = (−10.5 − 6.3),
K13 = (−10.5 − 6.2), K14 = (−10.5 − 6.1),
H1 = (5.4 6.46)T,H2 = (5.3 5.94)T,
H3 = (5.2 5.44)T,H4 = (5.1 4.96)T.

Then, we have K2i = Vi −K1iUi = (9.5 6.5) for i = 1, 2, 3, 4. Let the initial states of x̂i be randomly generated in [0, 1]. Figs. 7
and 8 shows that the stochastic distributed tracking of MAS (49) with Markovian switching topologies and infinite transmission
delays is achieved.

0 5 10 15 20 25 30 35 40

0

5

10

0 5 10 15 20 25 30 35 40

0

2

4

FIGURE 7 The mean square errors for observer (9) in Example 2.

It is noted that [47] considers the distributed output tracking of MASs over bounded time-varying transmission delays and
deterministic switching topologies. These two numerical examples demonstrate that ourmethod can handleMarkovian switching
topologies and infinite transmission delays simultaneously, although the individual topologies do not contain a spanning tree.



16 Haihua Guo ET AL

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE 8 The mean square tracking errors in Example 2.

5 CONCLUSIONS

In this work, we have studied the stochastic distributed tracking problem of heterogeneous MASs with Markovian switch-
ing topologies and infinite transmission delays. By considering both Markovian switching topologies and infinite transmission
delays, a novel distributed observer has been proposed and a novel distributed output feedback controller has been then devel-
oped. Two simulation examples have been given to show the effectiveness of the proposed controller. Future work can be directed
to consider the formation control for the same type of MASs.
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