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Abstract

Predicting protein function from protein sequence, structure, interaction, and other relevant information is important for

generating hypotheses for biological experiments and studying biological systems, and therefore has been a major challenge in

protein bioinformatics. Numerous computational methods had been developed to advance protein function prediction gradually

in the last two decades. Particularly, in the recent years, leveraging the revolutionary advances in artificial intelligence (AI),

more and more deep learning methods have been developed to improve protein function prediction at a faster pace. Here, we

provide an in-depth review of the recent developments of deep learning methods for protein function prediction. We summarize

the significant advances in the field, identify several remaining major challenges to be tackled, and suggest some potential

directions to explore. The data sources and evaluation metrics widely used in protein function prediction are also discussed

to assist the machine learning, AI, and bioinformatics communities to develop more cutting-edge methods to advance protein

function prediction.
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Abstract

Predicting protein function from protein sequence, structure, interaction, and other relevant information is important for
generating hypotheses for biological experiments and studying biological systems, and therefore has been a major challenge
in protein bioinformatics. Numerous computational methods had been developed to advance protein function prediction
gradually in the last two decades. Particularly, in the recent years, leveraging the revolutionary advances in artificial
intelligence (AI), more and more deep learning methods have been developed to improve protein function prediction
at a faster pace. Here, we provide an in-depth review of the recent developments of deep learning methods for protein
function prediction. We summarize the significant advances in the field, identify several remaining major challenges to be
tackled, and suggest some potential directions to explore. The data sources and evaluation metrics widely used in protein
function prediction are also discussed to assist the machine learning, AI, and bioinformatics communities to develop more
cutting-edge methods to advance protein function prediction.
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1. Introduction

Proteins are essential molecules in all living organisms.

Their role encompasses structural support, biochemical

catalysis, gene regulation, enzymatic activities, and signal

transduction[1, 2]. Determining the functions of proteins

is a key step to understand biological systems and

modulate biological processes, which plays an important

role in biomedical research and biotechnology development.

Furthermore, proteins are common targets in drug discovery[3,

4, 5] because many proteins are implicated in diseases, and

protein function information can facilitates the development

of drugs targeting them. As the structure of protein can

be determined by experimental techniques such as x-ray

crystallography, the function of proteins can also be determined

by experimental techniques such as biochemical assays and

enzymatic analysis. However, the experimental techniques for

protein function determination is expensive, time-consuming,

and labor-intensive and can only be applied to a small

number of proteins. Therefore, making precise protein function

prediction computationally holds the key to address the need

of function information for most proteins and has become a

critical challenge in bioinformatics.

Currently, hundreds of millions of protein sequences have

been generated through numerous genome and transcriptome

sequencing projects. However, less than 1% of them have

experimentally determined protein function information. This

presents a huge gap between known protein sequences and

their functions. Therefore, it is critical to devise advanced

computational methods to accurately predict protein function

to fill the gap as the recent development of deep learning

methods has done for protein structure prediction [6, 7, 8, 9].

A plethora of various computational methods have been

developed to predict protein function, many of which had

been reviewed and assessed previously[10, 11, 12]. Recently,

as AI is transforming many scientific fields, cutting-edge

prediction methods based on deep learning approaches have

been thriving in the protein function prediction field, leading

to a significant improvement of prediction accuracy over

the previous generation of computational protein function

prediction methods. Therefore, there is a need of reviewing

these latest advances to facilitate the development of more deep

learning methods to address the remaining challenges in the

field.

Here, we present a comprehensive overview of recent

deep learning methods developed to advance protein function

prediction. Fig. 1 illustrates a general workflow of deep

learning-based prediction of protein function defined by the

gene ontology (GO) terms[13]. We classify these methods

roughly into four main categories based on the input

information used by them: (1) sequence-based methods of using

only protein sequence as input, (2) structure-based methods of

using protein structure as input, 3) Interaction-based methods

of using protein-protein interaction information as input, and 4)

integrative methods that using multiple sources of information

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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Fig. 1. The general workflow of deep learning-based protein function prediction. One or multiple sources of data such as protein sequences, protein

structures (e.g., structures retrieved from the AlphaFoldDB[16] and the Protein Data Bank (PDB)[17]), protein-protein interaction from the STRING

database[18], protein family and domain information from the Interpro database[19], and the textual description of proteins in the literature such as

UniProt Knowledgebase(UniProtKB) [20] and GeneCards [21] are presented as input. The features are then extracted from the input data, which are

fed into deep learning models to predict protein function as output. Protein function are usually described as gene ontology (GO)[13] function terms.

Therefore, protein function prediction is essentially a classification problem. Because one protein may have multiple functions described by multiple GO

terms, it is a multi-label classification problem.

as input. It is worth noting that structure-based or interaction-

based methods often also use sequence information implicitly

in addition to using structure or interaction information, but

they are not classified as integrative methods. Moreover, we

also discuss the latest few-shot learning [14, 15] paradigm

that improves the prediction of rarely annotated protein

function terms associated with few proteins. Table 1 lists

the types, input features, neural network architectures, and

availability of 30 deep learning protein function prediction

methods reviewed in this article. Furthermore, in addition

to surveying the deep learning methods, we discuss the data

sources, standard benchmarks (i.e., the Critical Assessment

of Protein Function Annotation (CAFA)[10]), and evaluation

metrics widely used for protein function prediction to assist the

AI, machine machine learning, and bioinformatics communities

to find necessary resources to develop more protein function

prediction methods. Moreover, we identify several major

remaining challenges in protein function prediction and envision

that developing Large Language Models for Proteins (LLMP),

akin to the Large Language Models (LLM) used in natural

language processing (NLP), such as ChatGPT[14], can be a

promising approach to addressing the challenges. These topics

are discussed in detail in the sections below.

2. Sequence-based protein function prediction

Sequence-based prediction methods uses different kinds of deep

learning architectures to take protein sequence information

as input to predict protein function. Several deep learning

models that have demonstrated effectiveness for dealing with

sequential data are: 1) convolutional neural networks(CNNs)

[22], 2) recurrent neural networks(RNNs) [23, 24], 3) deep

neural networks(DNNs) [25, 26], and 4) attention-based

transformers [2, 27]. CNNs are effective at identifying motifs

(short conserved sequence patterns associated with distinct

protein functions), local patterns, and spatial relationships

in the protein sequences. RNNs, particularly, Long Short-

Term Memory networks(LSTMs) [28], can capture sequential

dependence between amino acids in protein sequences. DNNs

also hold significance in capturing the non-linear relationships

between protein function and sequences through multiple

neural network layers. Finally, the attention mechanism and

transformer architecture are well-suited for sequence-based

function prediction due to their ability to capture long-

range dependencies between amino acids in protein sequences.

Besides directly applying transformer based architectures to

protein function prediction, several methods [29, 30, 31]

leverage transformer-based pre-trained protein language models

to extract representative embeddings from protein sequences

for downstream protein function prediction tasks. In the

subsequent sections below, we discuss the specific methods that

harness these deep learning models to address the intricacies of

predicting protein function from sequences.

2.1. RNN-based protein function prediction
ProLanGO[32] treats the protein function prediction problem

as a language translation problem and applies a RNN-based

Neural Machine Translation (NMT) model to tackle it. Protein

sequences (input) and Gene Ontology terms (output) are

regarded as two separate languages, ProLan and GoLan,

respectively. Protein sequences are represented as a series of

k-mers (i.e., a substring or word of k amino acids). Protein

words are extracted based on the frequency of k-mers. GO

function terms are generally represented as a directed acyclic

tree structure based on their relationships, with each term

uniquely identified by a seven-digit number. ProLanGo allows

capturing the hierarchical relationship between GO terms and

enables the sequence to function translation through the depth-

first search(DFS). Each GO term is assigned to a 26-base

Alphabet ID according to its order of being visited during
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Table 1. The classification of 30 deep learning protein function prediction methods and their input features, architectures, and availability.

Sequence, structure, interaction, and domain refers to four types of typical input features: sequence-based features, structure-based features,

protein interaction-based features, and other features based on protein family and domain information. RNN stands for both standard

recurrent neural networks and advanced ones like Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), CNN for convolutional

neural networks, and GNN for graph neural networks. Attention denotes the methods utilizing self-attention mechanisms, transformers, and

techniques extracting features from pre-trained attention- or transformer-based architectures. DNN refers to deep neural networks that use

multilayer perceptrons (MLP) as a main part of the model architecture beyond using them in the final classification layer. Few-shot refers

to methods specifically designed to utilize deep learning models for predicting GO terms with few annotations. We also include a link to the

GitHub repository or webpage of the tool. For tools whose link we cannot find, we use NA.

Methods
Features Deep Learning Architecture

Few-shot URL
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ProLanGO ✓ ✓ NA

FUTUSA ✓ ✓ GitHub

DeepGOPlus ✓ ✓ Web

PFmulDL ✓ ✓ ✓ GitHub

DEEPred ✓ ✓ GitHub

TALE ✓ ✓ ✓ GitHub

TEMPROT ✓ ✓ ✓ GitHub

SPROF-GO ✓ ✓ ✓ GitHub Web

ATGO ✓ ✓ ✓ Web

PANDA2 ✓ ✓ ✓ Web

DeepFRI ✓ ✓ ✓ ✓ GitHub Web

GAT-GO ✓ ✓ ✓ ✓ ✓ GitHub

TransFun ✓ ✓ ✓ ✓ GitHub

Struct2GO ✓ ✓ ✓ ✓ GitHub

Mashup ✓ Web

deepNF ✓ ✓ GitHub

MELISSA ✓ GitHub

NetQuilt ✓ ✓ ✓ GitHub

DeepGO ✓ ✓ ✓ ✓ GitHub Web

STRING2GO ✓ ✓ GitHub

DeepGraphGO ✓ ✓ ✓ GitHub

GRAPH2GO ✓ ✓ ✓ ✓ GitHub

NetGO2 ✓ ✓ ✓ ✓ Web

NetGO3 ✓ ✓ ✓ ✓ Web

SDN2GO ✓ ✓ ✓ ✓ ✓ GitHub

PFP-GO ✓ ✓ ✓ Web

MultiPredGO ✓ ✓ ✓ ✓ ✓ GitHub

DeepGATGO ✓ ✓ ✓ ✓ ✓ NA

ProTranslator ✓ ✓ ✓ ✓ ✓ GitHub

DeepGOZero ✓ ✓ ✓ GitHub

Sequence-based Structure-based Interaction-based Integrative Few-Shot

the DFS traversal. Given the Prolan and GOlan languages,

an encoder-decoder based on RNNs is trained to predict

GOlan from Prolan. The encoder is used to encodes a ProLan

sentence into fixed-length vectors, and the decoder decodes

the representation into a GOLan sentence. The network is

trained by maximizing the conditional probability of predicting

a GOLan sentence given a ProLan sentence.

https://github.com/snuhl-crain/FUTUSA
https://deepgo.cbrc.kaust.edu.sa/deepgo/
https://github.com/idrblab/PFmulDL
https://github.com/cansyl/DEEPred
https://github.com/Shen-Lab/TALE
https://github.com/gabrielbianchin/TEMPROT
https://github.com/biomed-AI/SPROF-GO
https://bio-web1.nscc-gz.cn/app/sprof-go
https://zhanggroup.org/ATGO/
http://dna.cs.miami.edu/PANDA2/
https://github.com/flatironinstitute/DeepFRI
https://beta.deepfri.flatironinstitute.org/workspace/B4X8CT
https://github.com/bl-2633/GAT-GO
https://github.com/jianlin-cheng/TransFun
https://github.com/lyjps/Struct2GO
https://cb.csail.mit.edu/cb/mashup/
https://github.com/VGligorijevic/deepNF
https://github.com/XiaozheHu/melissa
https://github.com/nowittynamesleft/NetQuilt
https://github.com/bio-ontology-research-group/deepgo
https://deepgo.cbrc.kaust.edu.sa/deepgo/
https://github.com/psipred/STRING2GO
https://github.com/yourh/DeepGraphGO
https://github.com/yanzhanglab/Graph2GO
https://dmiip.sjtu.edu.cn/ng3.0
https://dmiip.sjtu.edu.cn/ng3.0
https://github.com/Charrick/SDN2GO
https://sites.google.com/view/pfp-go/
https://github.com/SwagarikaGiri/Multi-PredGO
https://github.com/HanwenXuTHU/ProTranslator
https://github.com/bio-ontology-research-group/deepgozero
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2.2. CNN-based protein function prediction
FUTUSA[33] has four components: CNN-based embedding

layers, CNN-based feature extraction, dense layers, and a

classification layer. The embedding layers are used to convert

protein sequences to numerical vectors. To alleviate the

limitations of one hot encoding such as the inability to capture

physiochemical properties of amino acids, a one-dimensional

CNN is employed to generate the amino acid embedding vector,

followed by another CNN to extract spatial features, whose

output is fed into dense layers to generate hidden features.

The hidden features are used by the final classification layer

to predict GO terms.

DeepGOPlus[34] combines the function prediction from

a CNN network and the sequence similarity to improve

prediction accuracy. It uses one-dimensional CNN filters to

learn similar patterns (motifs) in sequences. An input sequence

is transformed into a matrix representation of dimension 21 ×
2000 using a one-hot encoding strategy, where a one-hot vector

of 21 binary numbers is used to represent an amino acid and

the maximum number of amino acids to be represented is

2000. The input is fed into a set of CNN layers with varying

filter sizes to generate features capturing sequence motifs of

different size. The features are pooled together and selected

by a MaxPooling layer. The output of the MaxPooling layer

is forwarded to a fully connected classification layer to predict

GO terms. DeepGOPlus is a general sequence-based protein

functon prediction that can be applied to proteins in any taxa

or kingdom of species.

PFmulDL[35] integrates both a multi-kernel convolutional

neural network and a gated recurrent unit(GRU) to predict

protein function. Like DeepGoPlus, it employs a one-hot

strategy to encode an input protein sequence. The encoding

serves as input for a multi-kernel CNN model, which is fine-

tuned by a pre-training process. The output layer of the CNN

is used as input for the GRU to generate features, which

are used as input for a fully connected layer to predict GO

terms. In order to prevent issues such as gradient vanishing and

overfitting, it uses transfer learning (TL) to improve training,

leading to the improved performance of protein function

prediction. Particularly, it enhances the prediction accuracy

for ’rare GO terms (minority class)’ without compromising the

performance for the ’common GO terms (major classes)’.

2.3. DNN-based protein function prediction
DEEPred[36] employs a deep learning model organized as a

stack of multi-task feed-forward deep neural networks (DNNs).

Each DNN is independently designed to predict groups of 4

or 5 Gene Ontology (GO) terms. The grouping is based on

the levels of GO terms in the GO graph, determined through

the topological sorting. Groups are carefully created to ensure

that GO terms within the same group have similar numbers of

annotations, addressing the variability in protein associations.

This approach aims to enhance the model’s accuracy and

effectiveness in predicting GO terms for diverse biological

functions.

2.4. Attention- and transformer-based protein
function prediction

TALE[29] uses a self-attention-based transformer to extract

representative features from protein sequence to improve

protein function prediction. It also leverage a zero-shot

learning paradigm to jointly embed sequence and hierarchical

function labels into the latent space, allowing a more cohesive

representation of the relationships between features and labels.

This joint embedding facilitates TALE to generalize well to

novel sequences and unseen function by matching similarities

among function labels and sequences. Furthermore, TALE

introduces a new loss function to address the issue of

hierarchical violation. This loss function includes a hierarchical

regularization term, which specifically aims to prevent the

predicted scores (probabilities) of child GO terms from

surpassing those of its ancestors. Additionally, TALE+, a

method that ensembles the top three TALE models and a

sequence similarity-based protein function prediction method

based on DIAMOND [37], was developed to improve the

predictions made by TALE.

TEMPROT [38] is another sequence-based protein

function prediction method leveraging ProtBERT-BFD[39],

a transformer language model pre-trained on the BFD

dataset[8, 40, 41]. The pretrained ProtBERT-BFD was

first fine tuned. The fine-tuning process employs a sliding

window technique, dividing sequences into 500 chunks to

accommodate ProtBERT-BFD’s length limitation of 512. After

fine-tuning, the backgone of ProtBERT-BFD is used to extract

representative features from protein sequences. These features

serve as an input for a meta-classifier based on a multi-

layer perceptron to predicting protein function. Furthermore,

TEMPROT+ combining TEMPROT and a sequence-similarity

search tool, BLASTp[42], was developed to improve the

prediction performance.

SPROF-GO [43] is a sequence-based alignment-free protein

function prediction method, which harnesses a pre-trained

protein language model for efficient extraction of informative

sequence embeddings, while applying self-attention pooling to

focus on crucial residues. Its prediction has three main stages.

First, the pre-trained protein language model ProtTrans [39] is

used to efficiently extract the initial sequence embedding matrix

from sequences. The sequence embedding matrix undergoes

parallel processing by two multi-layer perceptrons (MLPs)

to acquire an attention vector and a more detailed hidden

embedding matrix. The hidden embeddings are then normalized

to generate an embedding vector, which is used as an input for

an MLP to predict the probabilities of GO terms. SPROF-GO

also employs a hierarchical learning strategy to guarantee the

consistency among predictions. Furthermore, a label diffusion

algorithm is integrated in the test phase to exploit the homology

information of proteins with related functions.

ATGO[44] harnesses protein language models trained

on extensive sequences in an unsupervised fashion to

predict protein function. The strategy aims to address the

limitations associated with imbalanced annotated functional

data. Specifically, ATGO uses the ESM-1b transformer[45] to

extract multi-layer feature embeddings from protein sequences.

A supervised triplet neural network was trained on these

extracted feature embeddings in order to maximize the

difference between positive and negative samples. To further

enhance ATGO’s performance, a composite method, ATGO+

was also introduced. It combines predictions from ATGO and

the Sequence Alignment-Based GO Prediction(SAGP).

PANDA2[46] uses a Graph Neural Network (GNN) to

model the GO direct acyclic graph (DAG) representing the

hierarchical structure of GO terms. It also incorporates features

produced by the transformer-based protein language model

ESM[45]. PANDA2 has three blocks serving as fundamental

building blocks for refining edge, node, and global features.

In the first two blocks, it sequentially updates edge features,
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node features, and global features by integrating information

of all available features in the GNN. Furthermore, it employs

a fully connected layer to change the size of ESM features

to the number of classes being considered. Then, it merges

node features, the output generated by fully connected layer,

DIAMOND scores, and priority scores. This comprehensive

combination of information is used as input for the third GNN

block. The node features of the third GNN block are used

by a sigmoid function to predict the probability of each class

(GO term). PANDA2 demonstrates the effectiveness of using

a GNN architecture for modeling the GO DAG topology and

annotating protein functions.

3. Structure-based protein function prediction

The sequence-based function prediction approach has been

more common in protein function prediction than the

approaches of using other inputs due to the universal

availability of protein sequence, even though other data such

as protein structure can provide additional complementary

information to improve protein function prediction. With

the recent development of high-accuracy protein structure

prediction tools such as AlphaFold2[8, 16], protein structures

have become generally available and started to be used more

and more in protein function prediction. Most structure-based

prediction methods use various Graph Neural Networks(GNN)

such as graph convolutional network (GCN) and Graph

Attention Network(GAT) to represent and process protein

structures.

DeepFRI[47] relies on a Graph Convolutional Network

(GCN)[48] to integrate protein structures and sequence features

extracted from a language model to predict protein function.

DeepFRI utilizes known protein structures available in the

PDB or homology-based structural models built by SWISS-

MODEL[49] as structural input. It uses a language model

comprised of a long short-term memory(LSTM) network

trained in a self-supervised learning manner to extract residue-

level features from protein sequences, followed by the GCN

layers merging the reside-level features with the graph built

from the contact maps calculated from the input protein

structure to generates protein-level feature representations.

The protein-level features are used to predict GO terms

in each of three function categories: Cellular Component,

Biological Process, and Molecular Function as well as the

Enzyme Commission (EC) numbers, respectively. DeepFRI also

employs gradient-weighted Class Activation maps (grad-CAMs)

to elevate the representation resolution from protein-level to

the region-level, which allows the detection of function-specific

structural sites, facilitating the identification of crucial residues

correlated with specific functions.

Different from the GCN used by DeepFRI, GAT-GO[50]

uses a Graph Attention Network (GAT) to integrate both

predicted protein structural information and protein sequence

embeddings for accurate protein function prediction. The

method uses RaptorX[51, 52] to predict protein structural

information (i.e., protein contact map) and ESM-1b to generate

sequence embeddings. It first uses a one-dimensional CNN

to take both sequential features and residue-level sequence

embeddings to create per-residue feature embeddings. Then,

the CNN-generated embeddings combined with a RaptorX-

predicted contact map are fed into GAT which produces an

intermediate embedding that captures both sequential and

structural information. The representation constructed by GAT

passes through a dense classifier to predict the probability of

protein function terms.

Different from DeepFRI and GAT-GO using earlier protein

structure prediction methods to generate structural input,

TransFun[30] uses AlphaFold-predicted protein structures

as input. It employs a transformer-based protein language

model and rotation- and translation-equivariant graph neural

networks (EGNNs) [53] to distill information from both

protein sequences and structures to predict protein functions.

Its prediction process has three main stages: 1) building

a protein graph from a predicted structure, 2) generating

the embeddings from a protein sequence, and 3) using an

EGNN model to predict protein functions. In the first stage,

protein graphs are generated from protein structures collected

from AlphaFoldDB[8, 16] using a K-nearest neighbor(KNN)

approach based on the distance between carbon-alpha atoms in

a protein structure. In the second stage, per-residue and per-

sequence embeddings for proteins are generated from protein

sequences by the ESM-1b[45] pre-trained language transformer

model. In the final stage, both the per-residue and per-

sequence features are combined by the EGNNs to predict

protein function.

Struct2GO[54] is also a structure-based method that

combines sequence features with structural features obtained

from Alphafold2-predicted structures. It extracts a two-

dimensional (2D) protein contact map for an input protein

from the three-dimensional (3D) protein structure according

to a distance threshold of 10Å between carbon-alpha atoms.

Additionally, Node2vec[55] algorithm is employed to generate

residue-level features for the protein. The contact map serves

as the adjacency matrix of the input graph, which are

combined with the node features, i.e., the residue-level features,

to generate a graph representation of the protein. The

representation is used by a Graph Convolution Neural (GCN)

network to generate hidden structural features. The feature

generation is enhanced with a self-attention mechanism and

the integration of sum-pooling and max-pooling techniques.

Additional sequence features are also extracted using the

SeqVec[56]. Finally, the sequence features are fused with the

structural features as input for a final classifier to make function

prediction.

4. Interaction-based protein function prediction

Due to the fact that proteins rarely function in isolation,

protein-protein interaction information can be used to enhance

protein function prediction. It is particularly useful for

predicting GO terms describing biological processes that

involve multiple proteins cooperating together. Protein

function prediction methods relying on protein-protein

interactions primarily focus on genome-scale interaction

networks, aggregating data from various sources to gain

insights into the functional organization of proteins. Some

of these methods emphasize the integration of heterogeneous

information from diverse interaction networks. A straightforward

approach for data integration is to process each network

separately and then combine the features generated from

each of them. However, this approach often encounters some

challenges like increased dimensionality, information loss, and

noise accumulation from high-throughput experiments. In this

section, we discuss the diverse approaches of integrating

multiple heterogeneous networks to predict protein function.
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Mashup[57] is an integrative framework designed to extract

high-quality and compact topological feature representations

from one or more interaction networks constructed from

heterogeneous data types. Although Mashup does not

inherently use a deep learning technique, it provides a

method for extracting features from multiple heterogeneous

networks, which are readily used by several interaction-

based deep learning methods [58, 59]. The method consists

of three main stages: a diffusion stage, an embedding

stage, and a learning stage. The diffusion stage involves

applying a localized network diffusion technique, specifically

Random Walks with Restart (RWR), to each individual

network to obtain a matrix representation capturing the

interactions between nodes denoting proteins. This captures

information about topological structure and connectivity of

nodes in each network. Next, the embedding phase focuses on

obtaining low-dimensional feature vectors that represent the

topology of each node, which is achieved by minimizing the

difference between observed diffusion states and parameterized

multinomial logistic distributions across all networks. Finally,

the learned representations are used as input features for

various downstream tasks including protein function prediction.

Following a similar approach as Mashup, deepNF[58]

integrates diverse heterogeneous protein interaction networks

using deep learning techniques. The process begins with the

Random Walk with Restart (RWR) algorithm to obtain high-

quality vector representations of proteins in each network,

capturing their structural information. A Positive Pointwise

Mutual Information (PPMI) function is then applied for

normalization, and this process is iterated for each network.

The subsequent stage focuses on creating a comprehensive

representation by integrating the multiple PPMI instances. To

achieve this, deepNF employs a Multimodal Data Autoencoder

(MDA) network to encode diverse PPMI instances into a

representative matrix and reconstruct it through a decoder.

The encoder produces low-dimensional non-linear embeddings

for each network, and these representations are concatenated. A

common feature representation is computed using multiple non-

linear functions. In the decoding phase, the process is reversed

to compute larger common representations from individual

ones, followed by the reconstruction of PPMI matrices for each

network. The final step predicts protein functions based on the

comprehensive representations obtained in the bottleneck layer

of the autoencoder network.

Similar to Mashup and deepNF, MELISSA[59] predicts

functions from multiple protein-protein interaction networks.

However, the integration of known functional labels during

the embedding process sets MELISSA apart from the

aforementioned methods. Its prediction unfolds in five

key steps: Biclustering, Graph Augmentation, Diffusion,

Embedding, and Learning. In the initial stage, MELISSA

employs a biclustering algorithm to simultaneously cluster

proteins and functional labels. This results in biclusters where

proteins within clusters share similar functional labels, and

functional labels are rarely shared across clusters. In the

following step, the protein-protein interaction graphs undergo

augmentation by introducing auxiliary nodes, each representing

a distinct cluster. Nodes in the graph are then connected to

their corresponding auxiliary nodes using must-link constraints

(positive weighted edges). Additionally, pairwise cannot-

link constraints (edges with negative weights) are introduced

between the auxiliary nodes. This augmentation transforms

the graphs into signed graphs, where auxiliary nodes encode

functional information. Nodes within the same cluster are

drawn closer, while nodes in different clusters are pushed apart.

Following the augmentation stage, diffusion state matrices are

generated for each augmented graph using a generalization

of the method applied in Mashup, by considering the signed

nature of the edges. In the final step, MELISSA follows

Mashup’s approach to generate embeddings for each node.

These embeddings can be effectively utilized by existing

function prediction methods to predict function terms.

NetQuilt[60] is a method that integrates protein sequence

and protein-protein interaction (PPI) information from

multiple species. The approach computes similarity scores

between proteins across species using a recurrence equation

derived from the IsoRank method of multi-species network

alignment [61]. A large symmetric similarity matrix is

constructed, where IsoRank similarity matrices of all species

with themselves are placed along the diagonal, resulting in a

block-diagonal matrix. Interspecies protein similarity matrices

are placed on the off-diagonal. The matrix then contains the

information from all the individual protein interaction networks

as well as the links between them.

The matrix constructed, along with sequence-similarity

information, is used as input for a maxout neural network to

predict protein function.

DeepGO[62] introduces an approach to predict protein

function based on protein sequences and known interactions. It

integrates features derived from sequences and protein–protein

interaction (PPI) networks across various species in the

STRING database. The combined sequence and PPI network

features undergo processing in a fully connected layer, and

the resultant output feeds into hierarchically structured neural

networks to make function prediction.

STRING2GO[63] employs a deep maxout neural network

to acquire functional representations by simultaneously

encoding both protein-protein interactions and functional

annotation information. It uses two methods to generate

network embedding representations, (1) a network embedding

generation process similar to the one in mashup and (2)

node2vec of generating embeddings from the STRING network.

After the generation of embeddings, Deep Maxout Neural

Networks (DMNNs) is used to simultaneously learn and

encode representation information from both the protein-

protein interaction network and protein functional annotations.

The functional representations are extracted from the outputs

of the third hidden layer of DMNNs, which is used by a Support

Vector Machine (SVM) to predict the probability of GO terms.

5. Integrative protein function prediction

In this section, we will delve into the methods of integrating

multiple sources of information to predict protein function.

DeepGraphGO[64] aims to tackle the limitation of

protein interaction-based methods that did not include

sequence information. It introduced a multi-species strategy

to incorporate the data of all species to train a single

model. This approach significantly augments the number

of training samples, surpassing the capabilities of existing

network-based methods using less data at the time. Binary

input protein features are generated through InterProScan,

wherein each element indicates the presence or absence of a

protein domain, family, or motif. These binary features are

combined with protein network graphs, where proteins serve

as the nodes and protein-protein interactions form the edges

for functional protein annotation. DeepGraphGO prediction
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comprises three primary steps. First, a fully connected layer

is employed to convert the binary features into a non-binary

vector with reduced dimensions, serving as the initial feature

representation. Next, updating the representation vector of

each node and incorporating new information from network

interactions is achieved through a graph convolutional neural

network. Finally, a fully connected layer is utilized to predict

probabilities of GO terms.

Graph2GO[65] is a multi-modal graph-based representation

learning model that integrates heterogeneous information.

This model incorporates multiple types of protein interaction

networks derived from sequence similarity and protein-protein

interaction, along with protein features such as amino acid

sequence, subcellular location, and protein domains. The

Graph2GO pipeline is composed of two Variational Graph

Auto-Encoder (VGAE)[66] models for the protein-protein

interaction network and sequence similarity network (SSN).

These VGAE models extract representative embeddings, which

are subsequently used as input to a final fully-connected deep

neural network (DNN) classifier for the prediction of protein

functions.

Three version of NetGO methods, NetGO, NetGO2,

and NetGO3 are related to an early integrative method -

GOlabeler[67], which encompasses five distinct components:

Naive prediction (GO term frequency), BLAST-KNN (k-

nearest neighbor using BLAST results), LR-3mer (Logistic

regression of the frequency of amino acid trigrams), LR-

InterPro (Logistic regression of InterPro features utilizing rich

domain, family, and motif information), and LR-ProFET

(Logistic regression of ProFET features). The outputs of these

components are combined through learning to rank (LTR)

to predict protein function. NetGO[68] introduces a novel

component, Net-KNN, incorporating network information into

the system. NetGO2[69] further enhances the system by

incorporating two additional components, LR-Text and Seq-

RNN, while excluding the LR-ProFET component. For LR-

Text, corresponding text data about proteins is extracted

from PubMed, forming a document that is represented

using sparse TF-IDF (term frequency-inverse document

frequency) and dense semantic representations generated

by Doc2Vec[70]. Logistic regression is trained with these

text-based features. Meanwhile, Seq-RNN is employed to

extract deep representations of protein sequences, using a

Bi-directional Long Short-Term Memory (BiLSTM), followed

by a fully connected layer to predict functions. NetGO3[71]

modifies the architecture by replacing the Seq-RNN component

with LR-ESM. LR-ESM generates embeddings for each protein

using ESM-1b[45].

SDN2GO[72] employs an integrated deep learning model

combining protein sequence, protein domains, and protein-

protein interaction networks for protein function prediction.

The model has four parts, a sequence sub-model, a domain

sub-model, a PPI-net sub-model, and a weighted classifier.

The sequence sub-model extracts features from sequence input,

which is represented as two-dimensional 3-grams-vector-matrix.

The model uses one-dimensional CNNs to extract in-depth

high-dimensional features. The PPI-net sub-model utilizes

three-layer trapezoidal neural networks to generate the features

of PPI Network input. The domain sub-model uses the sorted

protein domain information as an input for a sparse layer to

generate intermediate features. The output of the Sparse layer

represented as two-dimensional matrix enters one-dimensional

CNNs to extract features. The output features represented as

vectors with same dimensions generated by all the three sub-

models are combined as input for the weighted classifier to

predict functions of protein.

PFP-GO[73] also integrates protein sequence, protein

domain, and PPI network information for protein function

prediction. It first uses the information separately to rank each

individual GO term, and the ranking determines which GO

terms are associated with the target proteins. In this method,

mapping data from one source to another becomes crucial as

three complementary information sources are utilized. It makes

predictions in four steps. Firstly, a PPI network for target

proteins is obtained. Secondly, only the level-2 neighborhood

graph for each target protein is taken into account, eliminating

other non-essential proteins. Thirdly, after acquiring refined

PPI for each target protein, GO terms are assigned to the target

protein and its neighbors using the sequence-based, domain-

based, and interaction neighbor-based approaches. Lastly, GO

terms are ranked based on a function enrichment score, and a

consensus score is applied to select GO terms for each target

protein.

Like PFP-GO, MultiPredGO[74] predicts protein functions

by combining protein sequence, protein structure, and PPI

network information. Two individual deep learning models are

used for feature extraction from sequence and structure, and a

pre-trained knowledge graph embedding method is used for PPI

network. The sequence is first transformed into a trigram and

then processed by an embedding layer. Then, the embedding

output passes through one-dimentsional convolutional layer for

feature extraction. For the structure, a 3D structure is retrieved

from Protein Data Bank (PDB) if available, and converted into

four distinct 3D voxel representation. Then, an off-shelf residual

network, ResNet-50[75], is employed to extract features from

the structure. Lastly, extracted features from sequence and

structure are combined with PPI network information to obtain

the final features, which are processed by a neuro-symbolic

hierarchical classifier to make function prediction.

Finally, DeepGATGO[76] is an integrative function

prediction method leveraging a graph attention learning

network(GATs) and a contrastive learning[77, 78] approach

to combine protein sequence information and structural and

semantic information of Gene Ontology (GO) terms to

predict protein functions. It utilizes ESM-1b[45] pre-trained

language model to extract feature embeddings from protein

sequences. The structural information of GO terms is extracted

using GAT network. The semantic information of GO terms

is generated through contrastive learning from embeddings

created using their names and textual descriptions by the

BioBert[79] pre-trained natural language processing model. The

extracted semantic features and structural features of GO

terms are concatenated. The resulting concatenation output

is then multiplied with the protein sequence features. The

concatenated features are used by a classification layer with

the triplet loss and binary cross-entropy loss to predict the

functions of proteins.

6. Few-shot learning-based protein function
prediction

One significant challenge in protein function prediction is

to predict GO terms that are associated with few proteins

because they are severely underrepresented or not present in the

training data. For instance, more than 20, 000 GO terms have

less than 100 annotated proteins possessing them as function.
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One way to tackle this problem is to use semantic

information of GO terms. Given the scarcity of labeled

examples for rare GO terms, semantic information is harnessed

to establish meaningful relationships between rare GO terms

and common GO terms. Examples of semantic information

include leveraging the hierarchical relationships within the GO

graph and utilizing GO textual descriptions. Another way is

to apply embedding functions to associate features with labels,

projecting both feature and label embeddings into a common

space and aligning similar GO terms nearby. TALE[29] jointly

embeds sequence and hierarchical function labels into a latent

space, allowing it to generalize to novel/rare terms. Tale

focuses on terms that have at least one protein annotation

and simultaneously embeds protein sequences and hierarchical

function labels using the attention mechanism.

ProTranslator[31] transfers function annotations with

similar textual descriptions to annotate a novel function.

Leveraging textual descriptions, ProTranslator embeds Gene

Ontology (GO) functions using their textual descriptions. The

embedding is performed using PubMedBert[80], a language

model pre-trained on PubMed abstracts and full-text articles.

Proteins are embedded to generate three widely-used features:

sequence features, textual description features, and PPI-

network featrures. Similar to deepGOPlus, the sequence

features are extracted using convolutional neural networks

(CNN) with multiple one-dimensional convolution kernels.

Textual descriptions are obtained from GeneCards [21]. The

PPI-network features are obtained from pre-trained Mashup

representations calculated from protein-protein interaction

networks. Ultimately, GO terms and proteins are projected into

the same low-dimensional space using a bilinear layer.

DeepGOZero[81] improves predictions for rare GO classes

with limited or zero annotations using a model-theoretic

approach (ELEmbeddings [82]) to learn ontology embeddings.

The ELEmbeddings represent classes as n-balls and relations

as vectors to embed ontology semantics into a geometric

model. It also uses Interpro domain annotations to generate

an embedding of size 1024 for each protein. The protein

embeddings and ontology embeddings are combined to predict

GO terms.

7. Data Sources, Critical Assessment of Protein
Function Annotation (CAFA), and
Evaluation Metrics

7.1. Data Sources
Curating high-quality training and test datasets is a key

to develop accurate deep learning methods for protein

function prediction. Protein sequences and function labels are

often sourced from the UniProt Knowledgebase(UniProtKB)

[20]. UniProtKB consists of two sections: UniProtKB/Swiss-

Prot(reviewed, manually annotated proteins) and UniProtKB

/TrEMBL (unreviewed, automatically annotated proteins).

The former contains protein sequences and function labels

that have been carefully, manually-annotated, while the latter

includes computationally analyzed records awaiting full manual

annotation. To obtain high-quality labels, the proteins in

UniProtKB/Swiss-Prot are usually used to create training and

test datasets.

The structure for a protein can be directly predicted

by protein structure prediction tools such as AlphaFold or

collected from PDB[17] and AlphafoldDB[16] if available. PPI

networks are usually retrieved from the STRING database

integrating huge amounts of experimentally determined and

predicted protein-protein interactions. InterPro is a valuable

source to obtain the family and function motif/site annotations

for proteins and domains, which can be used as input features

for protein function prediction. InterPro integrates the data

from 13 member databases, forming the InterPro consortium,

including CATH[83, 84], CDD[85], HAMAP[86], MobiDB

Lite[87], Panther[88], Pfam[89], PIRSF[90], PRINTS[91],

Prosite[92], SFLD[93], SMART[94], SUPERFAMILY[95, 96]

and NCBIfam. All the features for a protien in Interpro can

be obtained using the interproscan (a tool to scan sequences

against all InterPro’s member databases) or downloaded from

the InterPro website. Finally, protein textual descriptions can

be gathered from UniProtKB and GeneCards.

7.2. Critical Assessment of Function Annotation
(CAFA)

Objectively and rigorously assessing the performance of

different protein function prediction methods is important

to advance the field. The Critical Assessment of Function

Annotation(CAFA)[11, 12], a global, community-wide experiment

held every few years to blindly assess protein function

prediction methods. It uses proteins whose function annotations

are not available as targets for participating methods to predict

their function. The prediction results are then evaluated when

the true function annotations of the targets become available.

Several CAFA experiments have been held, including the

inaugural challenge (CAFA1) taking place in 2010-2011 and

the most recent challenge, CAFA5, held in 2023. According

to the first four rounds of CAFA experiments (CAFA1-4),

the performance of protein function prediction has gradually

progressed over years. The results of CAFA5 remain to be seen.

7.3. Evaluation metrics
Evaluating protein function prediction using multiple complementary

metrics is important to assess the strength and weakness of

function prediction methods. A list of commonly used metrics

for evaluating GO term predictions including Fmax, AUPR,

AUC, MCC, and Smin are briefly discussed below.

Fmax is one of the main metrics used in the field as well by

CAFA[12, 11]. It is the maximum F-measure score(F1 score: the

geometric mean of precision and recall) among all the F1 scores

calculated for all the prediction decision thresholds(t), where

the precision (Pr) and recall (Rc) for a decision threshold (or

cut-off value) t is calculated as follows:

Pr(t) =
TP(t)

TP(t) + FP(t)

where TP is the number of True Positives and FP is the number

of False Positives.

Rc(t) =
TP(t)

TP(t) + FN(t)

where TP is the number of True Positives and FN is the number

of False Negatives.

The F1 score for a decision threshold t is then computed as

follows:

F1(t) = 2 ×
Pr(t) × Rc(t)

Pr(t) + Rc(t)

Finally, Fmax is calculated as the maximum F1 score over

all decision thresholds:

Fmax = max
t

(F1(t))
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AUPR stands for Area Under the Precision-Recall curve,

which is also a commonly used evaluation metric. Similarly,

AUC measuring the area under the Receiver Operating

Characteristic (ROC) curve is often used. A ROC curve is a

plot of the True Positive Rate (TPR) against the False Positive

Rate (FPR) across different cut-off values t. TPR and FPR for

a cut-off value t is defined as follows:

TPR(t) =
TP(t)

TP(t) + FN(t)

FPR(t) =
FP(t)

FP(t) + TN(t)

The Matthews Correlation Coefficient (MCC) is a metric

that is particularly useful when test datasets are significantly

imbalanced. It is calculated with the following formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Smin is another popular evaluation metric used in

CAFA[12, 11]. It measures the minimum semantic distance

between GO terms based on remaining uncertainty(ru) and

misinformation(mi). The remaining uncertainty of the true

annotation of protein represents the information that has not

been provided or accounted for by the predicted annotation.

The misinformation represents a metric that measures the level

of misleading information linked to a predicted annotation. The

Smin is expressed as follows:

Smin = min
t

(√
ru(t)2 + mi(t)2

)

8. Challenges and Future Direction

As discussed in the previous sections, substantial advances

in developing deep learning methods for protein function

prediction have been made by the community in the last several

years. However, the accuracy of protein function still has not

reached the high-accuracy level of protein structure prediction

that has made it an indispensable tool for biomedical research.

There are at least three major challenges in protein function

prediction that need to be addressed in order to substantially

improve its accuracy.

The first major challenge is to develop highly sophisticated

deep learning and AI methods to synergistically integrate

multiple modalities of input data (e.g., protein sequence,

protein structure, protein interaction, protein/domain family

information, and biological texual description) to improve

protein function. Most existing integrative methods simply

extract features from each data modality and them concatenate

them without letting modalities systematically interact with

each other in the feature extraction process. The techniques

used by the large language models (LLMs) such as ChatGPT-

4 and Gemini[97] to integrate multiple modality data such as

text, image, video, and voice through seamless cross-modality

communication may be transferred to the protein function

prediction field to integrate multiple modalities of protein data.

And it is time to develop multi-modal large language models for

proteins as multi-modality protein data such as sequences and

structures are ubiquitously available nowadays.

The second major challenge is how to more effectively

leverage the evolutionary information hidden in the hundreds

of millions of protein sequences better to improve protein

function prediction. A promising direction is to develop more

sophisticated large language models for protein sequences

(LLMP) that can be directly fine tuned or promoted to predict

protein function. The current application of LLMP such as

ESM-1b is still in the early stage and at a shallow level because

the pretrained LLMP are mostly used to generate features

from sequences as input for protein function prediction. One

way to deepen the application of LLMP in protein function

prediction is to directly fine tune the weights of the pretrained

LLMP component in the protein function prediction system

during the training of the system. Another way is to add

function prediction into the designing and training of LLMPs

in the first place so that they are intrinsically built for protein

function prediction. For instance, a LLMP can be designed

to predict masked or next amino acids through self-supervised

learning as well as function terms through supervised learning.

The LLMP can be mainly trained on millions of unlabeled

protein sequences to predict masked or next amino acids and

auxilinarily trained to predict function terms of thousands of

proteins with function labels at the same time as how a large

language model for natural language processing (NLP) was

trained to predict next (masked) tokens and classify sentences

simultaneously [98].

The third major challenge is to improve the prediction

accuracy for rare GO terms with low frequency in protein

function annotations or novel GO terms that never occur

before. Some rare GO terms are highly specific GO terms that

occur at the bottom level of the gene ontology graph, which

are important for protein function annotation but very hard to

predict. As demonstrated by some zero- or few-shot prediction

methods such as TALE[29] and ProTranslator[31], zero-shot

or few-shot learning methods [99] used in NLP, computer

vision and image processing may be transferred to the field

of protein function prediction. Particularly, we envision that

the prompt engineering and in-context learning [100] used with

large language models (LLMs) for NLP can also be used with

LLMPs to predict rare or novel GO terms, provided that

LLMPs fine-tuned for protein function prediction, akin to LLMs

for NLP, are developed in the field. Therefore, a user can use

one or a few rare GO terms as examples as prompts to guide

the pretrained LLMPs to predict rare or novel GO terms in any

context as one uses prompts to instruct ChatGPT to learn new

concepts or skills.

In summary, we envision that developing next-generation

sophisticated LLMPs that can handle multiple modalities of

protein data, be fined tuned directly by function labels, or

be customized by prompt-based in-context learning for protein

function prediction may be a promising avenue for tackling

some major challenges in protein function prediction, such

as multi-modality data integration, extracting evolutionary

information from millions of sequences, and predicting

rare/novel GO terms, to push the performance of protein

function prediction to the next level.
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Augustin Ž́ıdek, Alexander WR Nelson, Alex Bridgland,

et al. Protein structure prediction using multiple deep

neural networks in the 13th critical assessment of protein

structure prediction (casp13). Proteins: structure,

function, and bioinformatics, 87(12):1141–1148, 2019.

7. Jie Hou, Tianqi Wu, Renzhi Cao, and Jianlin Cheng.

Protein tertiary structure modeling driven by deep

learning and contact distance prediction in casp13.

Proteins: Structure, Function, and Bioinformatics,

87(12):1165–1178, 2019.

8. John Jumper, Richard Evans, Alexander Pritzel, Tim

Green, Michael Figurnov, Olaf Ronneberger, Kathryn

Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
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Protein-level assembly increases protein sequence recovery

from metagenomic samples manyfold. Nature methods,

16(7):603–606, 2019.

41. Martin Steinegger and Johannes Söding. Clustering
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