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Abstract

In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear multi-agent systems

with both cooperative and antagonistic interactions under denial-of-service (DoS) attacks. We first prove that the URABC

problem is solved by stabilizing the neighborhood asymmetric bipartite consensus error. Then, we develop a distributed compact

form dynamic linearization method to linearize the neighborhood asymmetric bipartite consensus error. By using an attack

compensation mechanism to eliminate the adverse effects of DoS attacks and an extended discrete state observer to enhance

the robustness against unknown dynamics, we finally propose a distributed resilient model-free adaptive control algorithm to

solve the URABC problem. A numerical example validates the proposed results.
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Abstract
In this article, we study an unified resilient asymmetric bipartite consensus (URABC) problem for nonlinear
multi-agent systems with both cooperative and antagonistic interactions under denial-of-service (DoS) attacks.
We first prove that the URABC problem is solved by stabilizing the neighborhood asymmetric bipartite
consensus error. Then, we develop a distributed compact form dynamic linearization method to linearize
the neighborhood asymmetric bipartite consensus error. By using an attack compensation mechanism to
eliminate the adverse effects of DoS attacks and an extended discrete state observer to enhance the robustness
against unknown dynamics, we finally propose a distributed resilient model-free adaptive control algorithm
to solve the URABC problem. A numerical example validates the proposed results.
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1 INTRODUCTION

Multi-agent systems (MAS), composed of self-governing agents, play a crucial role in achieving complex tasks through
distributed communication and autonomous decision-making. A key aspect of these systems is collaboration control, which
focuses on the coordination of agents to collectively achieve a unified goal. This coordination is primarily facilitated by
developing information flow algorithms or protocols that enable effective communication between an agent and its neighbors,
ensuring the group reaches consensus on specific objectives. This challenge, known as the consensus or synchronization problem,
is a fundamental issue in MAS1,2,3.

However, network-induced problems pose significant challenges in MAS, particularly in maintaining stable interactions and
postures under varying conditions4. It’s noteworthy that the majority of existing studies assume that agents inherently interact
cooperatively, a presumption that may not always hold true in real-world scenarios. In real-world applications of MAS, the
dynamics between agents are not always cooperative but often involve a mix of both cooperative and antagonistic relationships.
These complex interactions, akin to trust and distrust in social networks or competition in economic markets, significantly
influence the collaboration among agents. To address these dynamics, Altafini introduced the concept of bipartite consensus for
integrator MAS, which utilizes graph theory to represent these intricate relationships through positively and negatively weighted
edges in a signed graph5. In such a graph, agents may either trend in opposite directions with equal magnitude or converge
towards zero if the structural balance constraint is disrupted.

The study of bipartite consensus in MAS, especially under the framework of signed graphs, has been an area of focus in
recent research. The signed graph, being matrix-weight-based, provides a structured approach to analyze the consensus problem,
allowing for the exploration of scenarios where the connectivity assumptions on the graph are relaxed6,7. However, most existing
studies have primarily concentrated on symmetric bipartite consensus convergence8,9,10,11.

In contrast, practical applications often demand asymmetrical consensus. For instance, in multilateral teleoperation systems,
the force feedback control requires adjustment based on the varying masses of the equipment12,13. Similarly, lower limb

Abbreviations: MAS, Multi-agent systems; DoS, Denial-of-Service; MFAC, model-free adaptive control; URABC, unified resilient asymmetric bipartite consensus
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rehabilitation robots need to provide differing levels of assistance or resistance, considering the varying muscle strengths of
a patient’s legs14,15. These scenarios highlight the need for strategies that cater to asymmetric consensus requirements, a key
motivation driving the exploration in this paper.

Creating precise mathematical models for systems is often a challenging task, requiring significant time and effort. Moreover,
this process frequently encounters issues related to unmodeled dynamics and a lack of robustness. These difficulties can make
the resulting control designs overly complex and impractical, especially in scenarios where network-induced problems coexist,
complicating the situation further4,16. To circumvent these issues, the field has shifted towards data-driven control methods,
which do not rely on detailed system models.

Data-driven control approaches, such as adaptive fuzzy control17, adaptive neural network control18, reinforcement learning
control19, and iterative learning control20, have been developed to offer more flexible and adaptable control designs. These
methods are particularly beneficial as they do not depend on a precise understanding of the system’s underlying mechanics.
However, they often require specific elements like fuzzy rules, neural network models, and consistent initial conditions for their
implementation. Despite their advantages, the complexity and particular requirements of these methods can sometimes limit
their applicability, especially in situations that demand control designs with simple structures and strong practical applicability.

In response to these limitations, model-free adaptive control (MFAC) has emerged as a viable alternative. MFAC is a type
of data-driven approach that is well-suited for dealing with nonlinear systems or multi-agent systems whose dynamics are
completely unknown21,22. This approach stands out for its ability to handle complex control problems without the need for an
in-depth understanding of the system’s internal dynamics, offering a more straightforward and adaptable solution for real-world
engineering challenges.

In addition to the inherent complexities of managing and coordinating actions, MAS are particularly vulnerable to cybersecurity
threats due to their heavy reliance on communication networks23,24,25. These systems, which often operate in interconnected
and decentralized environments, are prime targets for cyber attacks such as Denial-of-Service (DoS) attacks. Such attacks can
disrupt the communication channels between agents, leading to the loss of critical information, miscoordination, or even total
system failure.

The decentralized nature of MAS makes it challenging to implement traditional cybersecurity measures, as each agent must
be individually secured against potential threats. Furthermore, the dynamic topology of these systems, where agents frequently
join or leave the network, adds another layer of complexity to ensuring consistent security protocols across all nodes.

DoS threats underscore the critical vulnerabilities present in digital infrastructures, thereby emphasizing the pressing need for
robust cybersecurity measures. DoS attacks are particularly insidious as they aim to disrupt the normal transmission of data
packets. Such attacks can significantly degrade the performance of a system, often leading to the loss or dropout of critical
data packets. This scenario presents a severe challenge in maintaining the integrity and functionality of networked systems,
especially those reliant on seamless data communication. The detrimental impact of DoS attacks on system performance cannot
be overstated, as they can compromise the reliability of the communication channels that are vital for the coordinated functioning
of MAS.

In the realm of cooperative control strategies, the threat posed by DoS attacks takes on an added dimension of complexity.
These attacks not only disrupt individual agents but can also impede the collective efforts of the entire system to achieve consensus
or synchronization26,27. Therefore, it becomes imperative to explore and develop resilient cooperative control mechanisms that
can effectively counteract the effects of DoS attacks. These solutions should be designed to ensure the continuity and reliability
of communication among agents, thereby safeguarding the collective goal of achieving consensus even in the face of malicious
disruptions.

To date, there has been a noticeable gap in research specifically addressing the challenges posed by DoS attacks in the context
of MFAC for asymmetric bipartite consensus. This gap is even more pronounced when considering the unique complexities
associated with multi-input multi-output (MIMO) MAS. MIMO systems, characterized by their multiple inputs and outputs,
present a higher level of complexity in control design and coordination, which is further compounded when subjected to DoS
attacks. The asymmetric nature of bipartite consensus in such systems adds another layer of difficulty, as it demands a nuanced
approach to ensure that the varying requirements and constraints of different agents are adequately met.

Motivated by these challenges and the limited research in this specific area, this article delves into the study of the unified
resilient asymmetric bipartite consensus (URABC) problem for nonlinear MIMO MAS under the influence of DoS attacks.
Our focus is on developing a comprehensive understanding and effective strategies to tackle this problem. We aim to bridge
the existing research gap by providing insights and solutions that are tailored to the unique demands of asymmetric bipartite
consensus in MIMO MAS, especially in the context of the prevalent and disruptive DoS attacks.
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1.1 Main Contribution

The main contributions of this article are:
• We prove that the URABC problem is solved by stabilizing the neighborhood asymmetric bipartite consensus error (NABCE).
• A distributed compact form dynamic linearization (DCFDL) method is designed to linearize the NABCE. Unlike previous

methods that require global information28,29, the proposed DCFDL achieves a balance between cooperative and antagonistic
objectives without using any global information. By using an attack compensation mechanism to eliminate the adverse effects of
DoS attacks and an extended discrete state observer to enhance the robustness against unknown dynamics, we finally propose a
distributed resilient model-free adaptive control (DRMFAC) algorithm to solve the URABC problem.
• Compared with existing results28,29, our DRMFAC algorithm only utilizes input/output data of the nonlinear MIMO MAS

without using any mathematical model of the system dynamics. Moreover, in contrast to the approaches in30 and31 that necessitate
a strongly connected communication digraph, our approach relaxes such constraint by considering a weakly connected digraph.

2 PRELIMINARIES AND PROBLEM FORMULATION

This section begins with an introduction to preliminaries and essential lemmas in A. Preliminaries, followed by a presentation of
the NABCE and DoS model, which are used to define our URABC problem.

2.1 Preliminaries

In this paper, ∥Xn∥ and ∥Xm×n∥ represent the Euclidean norm and 2-norm, respectively. 1N ∈ RN is a vector with all entries are
one. 0 is a vector with all entries are zero. I denotes identity matrix with the appropriate dimensions. P{E} gives the probability
of event E . For a matrix A ∈ Rn×n, [A]ij denotes its i-th row and j-th column element. Tr(A) denotes its trace. A ≻ 0 denotes the
matrix A is positive-definite. ∥ · ∥d denotes an induced matrix norm satisfies ∥Ax∥ ⩽ ∥A∥d∥x∥. ρ(A) = max{|z1, · · · , |zn|} denotes
its spectral radius, with eigenvalue zr, r = 1, · · · , n. We consider a MAS consisting of one leader and N followers, where the
interactions among them are represented by a signed digraph G = (V , E ,A), where V = {0, 1, 2, . . . , N} is the set of vertices,
0 denotes the leader, and 1 · · ·N denote the followers. E ⊂ V × V denotes the set of edges, and A = [aij] ∈ RN×N is the
associated adjacency matrix where aij ̸= 0 if (j, i) ∈ E . The neighborhood of the agent i is Ni = {j ∈ V : (j, i) ∈ E } and the
self-edge (i, i) satisfies (i, i) /∈ E . The in-degree matrix is defined as D = diag (di) with di =

∑
j∈Ni

aij. The Laplacian matrix L is
defined as L = D – A.

Besides, we introduce the following definition for a structurally balanced signed graph, characterized by enhanced precision
and clarity.

Definition 1. The signed graph is structurally balanced if the vertex set V can be partitioned into V1 and V2, with V1 ∪ V2 = V

and V1 ∩ V2 = ∅, such that aij ⩾ 0, ∀i, j ∈ Vι and aij ⩽ 0, ∀i ∈ Vι, j ∈ V3–ι, where ι = {1, 2}.

Consider the following discrete-time nonlinear MIMO MAS for the N followers

yi(k + 1) = fi (yi(k), ui(k)) , i ∈ V (1)

where yi(k) ∈ Rp and ui(k) ∈ Rq are the output and input of follower i at the time instant k ∈ {1, 2, . . .}, respectively. fi(·) is an
unknown smooth nonlinear function.

Assumption 1. The signed digraph G = (V , E ,A) is structurally balanced and contains a spanning tree with the leader as the
root.

Definition 2 (Unified Asymmetric Bipartite Consensus). Given a reference value yd issued by the leader, the unified asymmetric
bipartite consensus objective is to achieve

lim
k→∞

yi(k) =

{
myd, i ∈ V1

– nyd, i ∈ V2
(2)

where V1 ∪ V2 = V . m and n are influence coefficients, which are positive.
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Remark 1. To achieve leader-following consensus control like (2), Assumption 1 is a necessary and sufficient condition. For
the asymmetric bipartite consensus objective (2), the training procedure using lower limb rehabilitation robots for patients is
a real-world application15. The fact that robots give unequal auxiliary torques to both legs establishes a unique scaling and
assistance or resistance relation concerning the predicted force or trajectory14. Thus, delving into ways to achieve the bipartite
consensus objective related to an asymmetric state holds significance. Notably, the well-explored bipartite consensus control is a
special case of the proposed asymmetric bipartite consensus objective (2) when setting m = 1 and n = 1.

Assumption 2. Partial derivative ∂fi(·,·)
∂ui(k) is continuous.

Assumption 3. The system (1) satisfies the generalized Lipschitz condition, i.e., for time instants k+1, k ⩾ 0 and ui(k+1) ̸= ui(k),
there exists a positive constant ϕy

i such that ∥∆yi(k + 1)∥ ⩽ ϕy
i ∥∆ui(k)∥, where ∆yi(k + 1) = yi(k + 1) – yi(k) and ∆ui(k) =

ui(k) – ui(k – 1).

Remark 2. In the context of our nonlinear control system design, Assumptions 2 and 3 are both practical and justifiable.
Assumption 2 serves as a broad constraint, establishing a foundational framework for the system’s behavior. It’s a typical
condition in control system design for general nonlinear systems, ensuring the system’s operability within expected parameters.
On the other hand, Assumption 3 posits that the system’s output increment is proportionally constrained by the input increment,
a condition commonly observed in real-world systems. This is particularly relevant from an ’energy’ perspective, where it’s
understood that the output energy change rates within the system are bounded and cannot reach infinity if the changes in control
input energy remain within a finite range. Collectively, these assumptions provide a robust and realistic basis for the controlled
system’s operation, aligning with both theoretical and practical considerations in system design.

The subsequent lemmas are essential and will be employed in the later sections of this paper.
Lemma 1. 32 Let a matrix Z =

[
zij
]
∈ RN×N be a diagonally dominant matrix which satisfies

J =

i ∈ {1, 2, . . . , N} :
∣∣zii
∣∣ >

∑
j=1,j ̸=i

∣∣zij
∣∣ ̸= ∅ (3)

If for each i /∈ J, there exists a sequence of nonzero elements of Z, i.e., zii1 , zi1i2 , . . . , zir j with j ∈ J, then Z is nonsingular.
Lemma 2. 33 For any time instant k, if system (1) satisfies Assumptions 2 and 3 and ∥∆ui(k)∥ ̸= 0, a pseudo-partitioned
Jacobian matrix (PPJM) Φy

i (k) exists such that system (1) can be written as

∆yi(k + 1) = Φy
i (k)∆ui(k) (4)

where Φy
i (k) ∈ Rp×q and ∥Φy

i (k)∥ ⩽ ϕy
i .

Lemma 3. 34 Let f̄i(x) : Rp → Rq be a function continuous on [a, b] ∈ Rp and differentiable on convex hull of the set (a, b). For
ui(k – 1) and ui(k) ∈ [a, b], there exist αmax

rs (k) and αmin
rs (k) for r = 1, . . . , p and s = 1, . . . , q such that

f̄i(ui(k)) – f̄i(ui(k – 1)) =

[( p,q∑
r,s=1

Fmax
rs (k)αmax

rs (k)

)
+

( p,q∑
r,s=1

Fmin
rs (k)αmin

rs (k)

)]
(ui(k) – ui(k – 1))

=F f̄i
ui

(k)∆ui(k)

(5)

where αmax
rs (k) +αmin

rs (k) = 1, αmax
rs (k) and αmin

rs (k) ⩽ 0. Fmax
rs (k) = bp(r)bT

q (s)𭟋max
rs (k) and Fmin

rs (k) = bp(r)bT
q (s)𭟋min

rs (k). 𭟋max
rs (k) ⩾

max
(
∂ f̄ r

i /∂us
i (k)
)

and 𭟋min
rs (k) ⩽ min

(
∂ f̄ r

i /∂us
i (k)
)
, ∀ui(k) ∈ (a, b). bp(r)(bq(s)) denotes p-dimensional(q-dimensional) standard

basis vector, which r-th(s-th) entry is 1, other entries are 0.
Lemma 4. 35 For A ∈ Rn×n, there exists an induced consistent matrix norm ∥A∥d ⩽ ρ(A) + c, where ρ(A) is the spectral radius
of A and c is a positive constant.
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2.2 URABC Problem Formulation

To achieve the unified asymmetric bipartite consensus objective (2), we introduce the following NABCE

ξi(k) =


∑
j∈V1

(
aijyj(k) –

∣∣aij
∣∣ yi(k)

)
+
∑
o∈V2

(
aioyo(k) – m–1n

∣∣aio
∣∣ yi(k)

)
+
(
giyd – m–1

∣∣gi
∣∣ yi(k)

)
, i ∈ V1,∑

j∈V1

(
aijyj(k) – n–1m

∣∣aij
∣∣ yi(k)

)
+
∑
o∈V2

(
aioyo(k) –

∣∣aio
∣∣ yi(k)

)
+
(
giyd – n–1

∣∣gi
∣∣ yi(k)

)
, i ∈ V2,

(6)

where gi is the pinning gain from the leader to the follower i. If the yd is available to agent i, it satisfies

gi =

{
1, i ∈ V1

– 1, i ∈ V2
(7)

otherwise, gi = 0. The pinning gain matrix G = diag(gi).
For a structurally balanced signed digraph G , we define W = diag (δi) and S = diag (si), where

δi =

{
1, i ∈ V1

– 1, i ∈ V2
and si =

{
m, i ∈ V1

n, i ∈ V2
(8)

We define the associate matrix L = diag
(
S–1WAWS1N

)
– A. Based on (8), we then present the following lemma to obtain a

necessary and sufficient condition to achieve the unified asymmetric bipartite consensus objective (2).

Lemma 5. Under Assumption 1, consider MAS (1), the unified asymmetric bipartite consensus objective (2) is achieved if
and only if limk→∞ ξi(k) +

∑
j∈Ni

([
LWS + G

]
ij ⊗ Ip

)
yd = 0, where

[
LWS + G

]
ij denotes the element in the i–th row and j–th

column of the matrix LWS + G which satisfies

[
LWS + G

]
ij =


∑
r∈Ni

δis–1
i airsrδrδisi + gi =

∑
r∈Ni

airsrδr + gi, i = j

– aijsjδj, i ̸= j
(9)

Proof. (2) can be further formulated as

lim
k→∞

eyi (k) ≡ lim
k→∞

yd – s–1
i δiyi(k) = 0, i ∈ V (10)

where eyi (k) is referred as the local asymmetric bipartite consensus error. The global form of eyi (k) is ey(k) = ȳd – S–1Wy(k),
where y(k) =

[
yT

1 (k), · · · , yT
N(k)

]T
.

Then we can reformulate ξi(k) in (6) as

ξi(k) =
∑
j∈Ni

(
aijyj(k) – δis–1

i aijsjδjyi(k)
)

+ gi
(
yd – s–1

i δiyi(k)
)

, i ∈ V (11)

Then based on (8), the global form of (11) is

ξ(k) = –
(
L ⊗ Ip

)
y(k) +

(
G ⊗ Ip

)
ey(k)

= –
(
L ⊗ Ip

) ((
WS ⊗ Ip

)
ȳd –

(
WS ⊗ Ip

)
e(k)
)

+
(
G ⊗ Ip

)
ey(k)

=
((
LWS + G

)
⊗ Ip

)
ey(k) –

(
LWS ⊗ Ip

)
ȳd

(12)

In (12), ξ(k) =
[
ξT

1 (k), · · · , ξT
N(k)

]T
.

Based on the definition of aij in preliminaries, and (8), for i ∈ V1,

{
airsrδr ⩾ 0, r ∈ V1

airsrδr ⩾ 0, r ∈ V2
and gi ⩾ 0, we have

∣∣∑
r∈Ni

airsrδr + gi
∣∣ ⩾ ∑r=1,r ̸=i

∣∣–airsrδr
∣∣, and for i ∈ V2,

{
airsrδr ⩽ 0, r ∈ V1

airsrδr ⩽ 0, r ∈ V2
and gi ⩽ 0, we have

∣∣∑
r∈Ni

airsrδr + gi
∣∣ ⩾∑

r=1,r ̸=i

∣∣–airsrδr
∣∣, that is

∣∣[LWS + G
]

ii

∣∣ ⩾∑i ̸=j

∣∣∣[LWS + G
]

ij

∣∣∣ based on (9).
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Based on Assumption 1 there at least one agent i satisfies gi ≠ 0, that is
∣∣∑

r∈Ni
airsrδr + gi

∣∣ >
∑

r=1,r ̸=i

∣∣–airsrδr
∣∣, which

means
∣∣[LWS + G

]
ii

∣∣ >
∑

i ̸=j

∣∣∣[LWS + G
]

ij

∣∣∣. Hence, based on Lemma 1, LWS + G is nonsingular and (2) is achieved if and only

if limk→∞ ξi(k) +
∑

j∈Ni

([
LWS + G

]
ij ⊗ Ip

)
yd = 0.

Besides, DoS attacks aim to block the transmission of data packets, consequently reducing system performance and causing
data packet dropouts. The data packets the controller receives during DoS attacks are represented as

ξ̄i(k) = Hi(k)ξi(k) (13)

since ξi(k) contains all the exchange information yi and yd, where Hi(k) = diag(hi,r(k)), r = 1, · · · , p. If DoS attacks succeed
in the r-th measurement channel, hi,r(k) = 0; otherwise, hi,r(k) = 1. Furthermore, the attack probability follows a Bernoulli
distribution which satisfies P

{
hi,r(k) = 1

}
= h̄i,r, P

{
hi,r(k) = 0

}
= 1 – h̄i,r, where h̄i,r is a random probability value. Now we

introduce the following URABC problem.

Definition 3. Given Assumptions 1, 2, and 3, consider MAS (1) under DoS attacks modelled in (13), the URABC problem is to
develop a DRMFAC algorithm such that the asymmetric bipartite consensus error eyi (k) in (10) within a boundary in the mean
square sense, i.e., there exists a positive constant bi such that E

(
∥eyi (k)∥

)
⩽ bi.

3 DRMFAC ALGORITHM DESIGN AND ANALYSIS

This section first outlines the design of our DRMFAC algorithm, followed by a comprehensive stability analysis of the algorithm
we have developed.

3.1 DRMFAC Algorithm Design

Based on (1) and (11), we obtain ξi(k+1) =
∑

j∈Ni

(
aijfj(yj(k), uj(k)) – δis–1

i aijsjδjfi(yi(k), ui(k))
)
+gi
(
yd – δis–1

i fi(yi(k), ui(k))
)

, i ∈ V .

It can be observed that ξi(k + 1) is a linear combination of multiple nonlinear functions of ui(k), yi(k), uj(k), and yj(k). Hence, we
rewrite ξi(k + 1) as

ξi(k + 1) = f̄i
(
yi(k), ui(k), {yj(k)}j∈Ni , {uj(k)}j∈Ni

)
(14)

where f̄i(·) is a linear combination of unknown smooth nonlinear functions fi(·) and fj(·), j ∈ Ni representing the nonlinear
relationship between ξi(k + 1) and yi(k), ui(k), yj(k) and uj(k).

Assumption 4. For any k, ∥∆uj(k)∥
∥∆ui(k)∥ < σij, i, j ∈ V , where σij is a positive constant.

We present the following DCFDL for the unified asymmetric bipartite consensus of nonlinear MAS.

Theorem 1. Given Assumptions 1, 2, 3, and 4, and assume condition ∥ui(k)∥ > ϵi holds, where ϵi is a positive constant. There
exists a PPJM Φi(k) such that (14) is rewritten as

∆ξi(k + 1) = Φi(k)∆ui(k) (15)

where ∆ξi(k + 1) = ξi(k + 1) – ξi(k) and Φi(k) ∈ Rp×q is bounded, i.e., ∥Φi(k)∥ ⩽ ϕi, where ϕi is a positive constant.

Proof. Based on system (14), ∆ξi(k + 1) is written as

∆ξi(k + 1) =f̄i
(
yi(k), ui(k), {yj(k)}j∈Ni , {uj(k)}j∈Ni

)
– f̄i
(
yi(k – 1), ui(k – 1), {yj(k – 1)}j∈Ni , {uj(k – 1)}j∈Ni

)
+ f̄i
(
yi(k – 1), ui(k – 1), {yj(k – 1)}j∈Ni , {uj(k)}j∈Ni

)
– f̄i
(
yi(k – 1), ui(k – 1), {yj(k – 1)}j∈Ni , {uj(k)}j∈Ni

)
+ f̄i
(
yi(k), ui(k – 1), {yj(k)}j∈Ni , {uj(k)}j∈Ni

)
– f̄i
(
yi(k), ui(k – 1), {yj(k)}j∈Ni , {uj(k)}j∈Ni

)
+ f̄i
(
yi(k), ui(k – 1), {yj(k – 1)}j∈Ni , {uj(k)}j∈Ni

)
– f̄i
(
yi(k), ui(k – 1), {yj(k – 1)}j∈Ni , {uj(k)}j∈Ni

) (16)
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Based on Lemma 2 and Lemma 3, (16) yields

∆ξi(k + 1) =F f̄i
ui

(k)∆ui(k) + F f̄i
yi

(k)∆yi(k) +
∑
j∈Ni

F f̄i
uj

(k)∆uj(k) +
∑
j∈Ni

F f̄i
yj

(k)∆yj(k)

=F f̄i
ui

(k)∆ui(k) + F f̄i
yi

(k)Φy
i (k)∆ui(k) +

∑
j∈Ni

F f̄i
uj

(k)∆uj(k) +
∑
j∈Ni

F f̄i
yj

(k)Φy
j (k)∆uj(k)

(17)

Based on Assumption 4, by going through the similar step of proof of Lemma 2, we have ∆uj(k) = Θij(k)∆ui(k), where
Θij(k) ∈ Rp×p and ∥Θij(k)∥ < σij. Hence, we derive (15) from (17), where Φi(k) = F f̄i

ui
(k) + F f̄i

yi
(k)Φy

i (k) +
∑

j∈Ni
F f̄i

uj
(k)Θij(k) +∑

j∈Ni
F f̄i

yj
(k)Φy

j (k)Θij(k).
Based on (17) ξi(k + 1) is a linear combination of unknown smooth nonlinear functions fi(·) and fj(·), j ∈ Ni, which these

functions satisfies Assumption 3, that is they are all generalized Lipschitz. Hence ξi(k + 1) is also generalized Lipschitz, and
∆ξi(k + 1) is also generalized Lipschitz which means ∥∆ξi(k + 1)∥ ⩽ ϕi(k) ∥∆ui(k + 1)∥, we then get the specific form of ϕi(k)
by using (11) and 4.

∥∆ξi(k + 1)∥ ⩽
∑
j∈Ni

(∣∣aij
∣∣ ∥∆yj(k + 1)∥ +

∣∣δis–1
i aijsjδj

∣∣ ∥∆yi(k + 1)∥
)

+
∣∣giδis–1

i

∣∣ ∥∆yi(k + 1)∥

⩽
∑
j∈Ni

(
∣∣aij
∣∣ϕy

jσij∥∆ui(k)∥ +
∣∣δis–1

i aijsjδj
∣∣ϕy

i ∥∆ui(k)∥) +
∣∣giδis–1

i

∣∣ϕy
i ∥∆ui(k)∥

⩽ϕi∥∆ui(k)∥

(18)

where ϕi =
∑

j∈Ni

∣∣aij
∣∣ϕy

jσij +
∑

j∈Ni

∣∣δis–1
i aijsjδj

∣∣ϕy
i +
∣∣giδis–1

i

∣∣ϕy
i is a positive constant. Hence, as indicated by (15), the PPJM

Φi(k) is exist and satisfies ∥Φi(k)∥ ⩽ ϕi.

To mitigate the adverse effects of DoS attacks, we now present the following attack compensation mechanism

ξc
i (k) = ξ̄i(k) + (I – Hi(k)) ξ̄i(k – 1) (19)

Based on (19), our Assumption 1 can be slightly violate. When there is a DoS attack, we just use previous NABCE. In general,
the actual value of the time-varying PPJM Φi(k) is difficult to obtain. Hence, we define the following performance function to
estimate the PPJM Φi(k),

J∆Φ̂i
(∆Φ̂i(k)) =

(
∆Φ̂i(k)∆ui(k – 1)

)T
QΦ̂

i

(
Φ̂i(k)∆ui(k – 1) –

(
ξc

i (k) – ξi(k – 1)
))

+
µi

2
Tr
(
∆Φ̂T

i (k)∆Φ̂i(k)
)

(20)

where QΦ̂
i ⪰ I is a weight matrix, and µi > 0 is a weight factor. Φ̂i(k) ∈ Rp×q is the estimation of PPJM Φi(k). Applying the

stationarity condition ∂J∆Φ̂i
(∆Φ̂i(k))/∂∆Φ̂i(k) = 0 to (20) yields

∆uT
i (k – 1)QΦ̂

i

(
Φ̂i(k)∆ui(k – 1) –

(
ξc

i (k) – ξi(k – 1)
))

+ µi∆Φ̂i(k) = 0 (21)

Then we substitute Φ̂i(k) = ∆Φ̂i(k) + Φ̂i(k – 1) into (21) and design the following update formula for Φ̂i(k)

Φ̂i(k) = Φ̂i(k – 1) +
ηi1
(
ξc

i (k) – ξi(k – 1)
)
∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

–
ηi1Φ̂i(k – 1)∆ui(k – 1)∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

(22)

where ηi1 ∈ (0, 2] is the step size used to update Φ̂i(k). Furthermore, we design the following observer to estimate the NABCE

ξ̂i(k + 1) = ξ̂i(k) + Φ̂i(k)∆ui(k) + Ki

(
ξc

i (k) – ξ̂i(k)
)

(23)

where Ki = diag(ki,r), ki,r ∈ (0, 2), r = 1, · · · , p is the observer gain matrix. To construct the DRMFAC algorithm, a performance
function for ui(k) is defined as

J∆ui

(
∆ui(k)

)
= ξ̂T

i (k + 1)Qu
i ξ̂i(k + 1) + ∆uT

i (k)Ru
i ∆ui(k) (24)
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where Qu
i = diag(ϱi,r), ϱi,r > 0, r = 1, · · · , p, and Ru

i ≻ 0. By substituting (23) and applying the stationarity condition
∂J∆ui

(
∆ui(k)

)
/∂∆ui(k) = 0 to (24), we obtain

∆ui(k) = –
(
Φ̂i(k)TQu

i Φ̂i(k) + Ru
i

)–1
Φ̂i(k)TQu

i

(
ξ̂i(k) + Ki

(
ξc

i (k) – ξ̂i(k)
))

(25)

Based on (25), we design the following iterative formula to update control policy ui(k)

ui(k) = ui(k – 1) –
ηi2Φ̂i(k)TQu

i

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥

(
ξ̂i(k) + Ki

(
ξc

i (k) – ξ̂i(k)
))

(26)

where ηi2 ∈ (–1, 0) is the step size used to update ui(k).
We then introduce the following pseudocode to conclude our proposed algorithm.

Algorithm 1 Distributed resilient model free adaptive control

1: Initialize agent numbers N and operation time T, parameters in function (1)
2: Initialize parameters η, µ, m, n, Qu, QΦ, K
3: Initialize ξc

i (0), Φ̂i(0), ξ̂i(0), ui(0)
4: Calculate yi(1) = f (yi(0), ui(0))
5: Calculate ξi(1) based on (11)
6: for k in 1 : T do
7: Calculate ξi(k) based on (11)
8: Calculate ξ̄i(k) based on (13)
9: Calculate ξc

i (k) based on (19)
10: for i in agent N do
11: Calculate Φ̂i(k) based on (22)
12: Calculate ui(k) based on (26)
13: Calculate ∆ui(k) based on (26), notice that ∆ui(1) = ui(1)
14: Calculate ξ̂i(k) based on (24)
15: Calculate yi(k + 1) based on (1)
16: end for
17: end for

Remark 3. As demonstrated in (16) and referenced in36, our DRMFAC takes into account the rate constraints on control inputs,
allowing us to manipulate Qu

i and Ru
i to prevent rapid shifts in control inputs.

3.2 Stability Analysis

We present the following boundedness and resilience analysis of our DRMFAC algorithm in (22), (23), and (26).
Theorem 2. Given Assumptions 1, 2, 3 and 4. Choose µi > 0, ηi1 ∈ (0, 2], ηi2 ∈ (–1, 0), Ru

i ≻ 0, QΦ̂
i ⪰ I, Qu

i = diag(ϱi,r), where
ϱi,r > 0, and Ki = diag(ki,r), where ki,r ∈ (0, 2), r = 1, · · · , p. For MAS (1) under DoS attacks shown in (13), the URABC problem
in Definition 3 is solved using the DRMFAC protocols (22), (23), and (26), with the error bound bi depends on ϕy

i in Assumption
3, σij in Assumption 4, and graph information in Assumption 1.

Remark 4. For Theorem 2, the URABC in Definition 3 is solved with E
(
∥eyi (k)∥

)
⩽ bi. The specific expression of bi is derived

in (42) at the end of the proof of Theorem 2. Except for the parameters chosen in Theorem 2, error bound bi also depends on ϕi

which depends on parameter ϕy
i shown in Assumption 3, σij shown in Assumption 4, and graph information in Assumption 1.

Proof. In what follows, we first proof that the boundedness of Φ̃i(k), and thus Φ̂i(k) are bounded. We then establish that ξ̃i(k)
and ξ̂i(k) are also bounded. Eventually, we are able to conclude that ξi(k) and finally eyi are bounded in the mean square sense.
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Define Φ̃i(k) = Φ̂i(k) – Φi(k) as the estimation error for Φi(k). By using (15), (19), and (22), we derive

Φ̃i(k) =Φ̂i(k – 1) – Φi(k) +
ηi1
((
ξc

i (k) – ξi(k – 1)
))

∆uT
i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

–
ηi1Φ̂i(k – 1)∆ui(k – 1)∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

=Φ̃i(k – 1) – ∆Φi(k) +
ηi1 (Hi(k) – I)Φi(k – 1)∆ui(k – 1)∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

–
ηi1∆Φ̃i(k – 1)∆ui(k – 1)∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

(27)

Denote Φ̃i(k) =
[
Φ̃1

i (k)T, · · · , Φ̃p
i (k)T

]T
, Φi(k) =

[
Φ1

i (k)T, · · · ,Φp
i (k)T

]T
, where Φ̃s

i (k) =
[
Φ̃s

i,1, · · · Φ̃s
i,q

]
∈ R1×q, Φs

i (k) =[
Φs

i,1, · · · ,Φs
i,q

]
∈ R1×q, s = 1, . . . , p. By taking the norm and the expectation for (27), we derive

E
(∥∥∥Φ̃s

i (k)
∥∥∥) ⩽E

(∥∥∥Φ̃s
i (k – 1)

∥∥∥)E(∥∥∥∥∥I –
ηi1∆ui(k – 1)∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

∥∥∥∥∥
)

+

E

(∥∥∥∥∥ηi1
(
hi,r(k) – 1

)
Φs

i (k – 1)∆ui(k – 1)∆uT
i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

∥∥∥∥∥
)

+ E
(
∥∆Φs

i (k)∥
) (28)

Since ηi1 ∈ (0, 2], QΦ̂
i ⪰ I, and µi > 0, ∥ηi1∆ui(k–1)∆uT

i (k–1)∥
∆uT

i (k–1)QΦ̂
i ∆ui(k–1)+µi

< 2. Hence, there exists a constant σi ∈ (0, 1) such that

E

(∥∥∥∥∥I –
ηi1∆ui(k – 1)∆uT

i (k – 1)

∆uT
i (k – 1)QΦ̂

i ∆ui(k – 1) + µi

∥∥∥∥∥
)

⩽ σi (29)

Given ∥Φi(k)∥ ⩽ ϕi in Theorem 1 is bounded, we assume ∥Φs
i (k)∥ ⩽ ϕs

i . Then we have E
(
∥∆Φs

i (k)∥
)

=
E
(
∥Φs

i (k) – Φs
i (k – 1)∥

)
⩽ 2ϕs

i is bounded. Hence, for (28), there exists θ̄1, θ̄2 satisfies E
(
∥∆Φs

i (k)∥
)
⩽ θ̄1 and

E
(∥∥∥ηi1(hi,r(k)–1)Φs

i (k–1)∆ui(k–1)∆uT
i (k–1)

∆uT
i (k–1)QΦ̂

i ∆ui(k–1)+µi

∥∥∥) ⩽ θ̄2. Hence, by using (29), for (28), we have

E
(∥∥∥Φ̃s

i (k)
∥∥∥) ⩽σiE

(∥∥∥Φ̃s
i (k – 1)

∥∥∥) +
(
θ̄1 + θ̄2

)
⩽σ2

i E
(∥∥∥Φ̃s

i (k – 2)
∥∥∥) + σi

(
θ̄1 + θ̄2

)
+
(
θ̄1 + θ̄2

)
⩽ . . .

⩽σk–1
i E

(∥∥∥Φ̃s
i (1)
∥∥∥) +

1 – σk–1
i

1 – σi

(
θ̄1 + θ̄2

)
(30)

Hence, we conclude that Φ̃s
i (k) and then Φ̃i(k) is uniformly bounded in the mean square sense. Given that Φi(k) is bounded in

Theorem 1 and Φ̂i(k) = Φi(k) + Φ̃i(k), the boundness of Φ̂i(k) is guaranteed, i.e., there exists a positive constant ϕ̂i such that
E
(∥∥∥Φ̂i(k)

∥∥∥) ⩽ ϕ̂i.

Define ξ̃i(k) = ξi(k) – ξ̂i(k) as the estimation error of the observer. Based on (15) and (23), we have

ξ̃i(k + 1) =ξi(k) + Φi(k)∆ui(k) –
(
ξ̂i(k) + Φ̂i(k)∆ui(k) + Ki

(
ξc

i (k) – ξ̂i(k)
))

=ξ̃i(k) – Φ̃i∆ui(k) – Ki

(
(Hi(k) – I)∆ξi(k) + ξ̃i(k)

)
= (I – Ki) ξ̃i(k) – Φ̃i∆ui(k) + Ki (I – Hi(k))Φi(k – 1)∆ui(k – 1)

(31)

By taking the norm and the expectation for (31), we derive

E
(∥∥∥ξ̃(k + 1)

∥∥∥) ⩽ ∥I – Ki∥E
(∥∥∥ξ̃i(k)

∥∥∥) + E
(
∥Ki (I – Hi(k))Φi(k – 1)∆ui(k – 1)∥

)
+ E

(∥∥∥Φ̃i∆ui(k)
∥∥∥) (32)
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Hence, given the established boundedness of Φ̃i(k) and ∆ui(k – 1) in Remark 3, there is a positive constant ςi such that
E
(
∥Ki (I – Hi(k))Φi(k – 1)∆ui(k – 1)∥

)
+ E

(∥∥∥Φ̃i∆ui(k)
∥∥∥) ⩽ ςi. Hence, for (32), there exists a positive constant β̃i(k) such that

E
(∥∥∥ξ̃(k + 1)

∥∥∥) ⩽ ∥I – Ki∥E
(∥∥∥ξ̃i(k)

∥∥∥) + ςi

⩽ ∥I – Ki∥2 E
(∥∥∥ξ̃i(k – 1)

∥∥∥) + ∥I – Ki∥ ςi + ςi

⩽ · · ·

⩽ ∥I – Ki∥k E
(∥∥∥ξ̃i(1)

∥∥∥) +
ςi

(
1 – ∥I – Ki∥k

)
1 – ∥I – Ki∥

≜ β̃i(k)

(33)

Since Ki = diag(ki,r), ki,r ∈ (0, 2), r = 1, · · · , p, ∥I – Ki∥ < 1. Hence, the boundedness of ξ̃i(k) is established. By substituting (26)
into (23), we have:

ξ̂i(k + 1) =ξ̂i(k) + Ki

(
ξc

i (k) – ξ̂i(k)
)

+ Φ̂i(k)

–
ηi2Φ̂i(k)TQu

i

(
ξ̂i(k) + Ki

(
ξc

i (k) – ξ̂i(k)
))

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥


=

(
I –

ηi2Φ̂i(k)Φ̂i(k)TQu
i

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥

)(
ξ̂i(k) + Ki

(
(Hi(k) – I)Φi(k – 1)∆u(k – 1) + ξ̃i(k)

)) (34)

By taking the norm and the expectation for all items of both sides in (34), we derive

E
(∥∥∥ξ̂i(k + 1)

∥∥∥) ⩽ ∥Υi(k)∥E
(∥∥∥ξ̂i(k)

∥∥∥) + ∥Υi(k)∥E
(
Ki
(
∥(Hi(k) – I)Φi(k – 1)∆u(k – 1)∥

))
+ ∥Υi(k)∥E

(∥∥∥ξ̃i(k)
∥∥∥) (35)

where Υi(k) = I – ηi2Φ̂i(k)Φ̂i(k)TQu
i

∥Φ̂i(k)TQu
i Φ̂i(k)∥+∥Ru

i ∥
. According to the Gershgorin Disk Theorem37, its Gershgorin disk Di,r, r = 1, · · · , p follow

Di,r =

zi

∣∣∣∣
∣∣∣∣∣zi –

∣∣∣∣∣1 –
ηi2
∑q

s=1 Φ̂
2
i,rs(k)ϱi,r

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥

∣∣∣∣∣
∣∣∣∣∣ ⩽

∣∣∣∣∣∣
p∑

l=1,l ̸=r

ηi2
∑q

s=1 Φ̂i,rs(k)Φ̂i,ls(k)ϱi,r

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥

∣∣∣∣∣∣
 (36)

where zi is the characteristic root of Υi(k), s = 1, · · · , q. By using the triangle inequality to (36), we have

Di,r =

zi

∣∣∣∣ ∣∣zi
∣∣ ⩽ ∣∣∣∣∣1 –

ηi2
∑q

s=1 Φ̂
2
i,rs(k)ϱi,r

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥

∣∣∣∣∣ +

∣∣∣∣∣∣
p∑

l=1,l ̸=r

ηi2
∑q

s=1 Φ̂i,rs(k)Φ̂i,ls(k)ϱi,r

∥Φ̂i(k)TQu
i Φ̂i(k)∥ + ∥Ru

i ∥

∣∣∣∣∣∣
 (37)

According to the proof of Theorem 2 in38, zi satisfies
∣∣zi
∣∣ < 1 when

∣∣Φi(k)
∣∣ ⩽ ϕi,

∣∣∣Φ̂i(k)
∣∣∣ ⩽ ϕ̂i. Hence, we have ρ (Υi(k)) < 1.

Based on Lemma 4, there is a positive constant ci and γi such that

∥Υi(k)∥ ⩽ ∥Υi(k)∥d ⩽ ρ (Υi(k)) + ci ≜ γi < 1 (38)

Hence, given the established boundedness of ξ̃i(k) and ∆ui(k – 1) in Remark 3, there exists a positive constant εi such that

∥Υi(k)∥E
(
Ki ∥(Hi(k) – I)Φi(k – 1)∆u(k – 1)∥

)
+ ∥Υi(k)∥E

(∥∥∥ξ̃i(k)
∥∥∥) ⩽ εi (39)

Based on (38) and (39), for (35), there exists a positive constant β̂i(k) such that

E
(∥∥∥ξ̂i(k + 1)

∥∥∥) ⩽γiE
(
∥ξ̂(k)∥

)
+ εi

⩽γiE
(
∥ξ̂(k – 1)∥

)
+ γiεi + εi

⩽ . . .

⩽γk
i E
(
∥ξ̂(1)∥

)
+
εi
(
1 – γk

i

)
1 – γi

≜ β̂i(k)

(40)

That is, the boundedness of ξ̂i(k) is guaranteed.
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Given (33) and (40), and ξi(k) = ξ̂i(k) + ξ̃i(k), we have

E
(
∥ξi(k)∥

)
⩽ β̂i(k – 1) + β̃i(k – 1) (41)

Hence, based on (12) and (41), we derive

E
(
∥eyi (k)∥

)
⩽

q∑
r=1

[
Ψ –1]

ir

(
β̂r(k – 1) + β̃r(k – 1)

)
≜ bi (42)

Hence, the URABC problem in Definition 3 is solved where bi =
∑q

r=1

[
Ψ –1
]

ir

(
β̂r(k – 1) + β̃r(k – 1)

)
.

4 NUMERICAL EXAMPLE

In this section, a numerical example is provided to validate the proposed results. Consider a communication digraph consisting
of 6 agents shown in Fig. 1. Let V1 = {1, 2, 4, 6} and V2 = {3, 5}. The influence coefficients are m = 2 and n = 4. The dimension
of input ui and output yi are 2. The probability of the successful DoS attacks are chosen as h̄i = [0.2, 0.3, 0.24, 0.33, 0.1, 0.22], i =
1, · · · , 6. The models of the agents are [

yi,1(k + 1)
yi,2(k + 1)

]
=

[
yi,1(k)ui,1(k)
1+yi,1(k)ci,1 + ci,2ui,1(k)
yi,2(k)ui,2(k)

1+yi,1(k)ci,3 +yi,2(k)ci,3 + ci,4ui,2(k)

]
(43)

where k ∈ [1, 2500], i = 1, · · · , 6, c1,1 = 2, c2,1 = 3, c3,1 = 4, c4,1 = 3, c5,1 = 1, c6,1 = 2, c1,2 = 2, c2,2 = 5, c3,2 = 5, c4,2 = 2,
c5,2 = 1, c6,2 = 2, c1,3 = 1, c2,3 = 0.9, c3,3 = 0.6, c4,3 = 1.1, c5,3 = 1.3, c6,3 = 1.5, c1,4 = 0.8, c2,4 = 0.5, c3,4 = 0.7, c4,4 = 1.2,
c5,4 = 1.4, c6,4 = 1.6. The desired reference signal is yd(k) =

[
5 5
]T

, k ∈ [0, 1249] and yd(k) =
[
3 3
]T

, k ∈ [1250, 2500].
Besides, other necessary parameters are ηi1 = 0.05, ηi2 = 0.05, µi = 1, Qu

i = 0.1I, Ru
i = 0.1I, QΦ̂

i = I, and Ki = 0.9I, i = 1, · · · , 6

1

3

5

6

4

2

F I G U R E 1 The communication digraph of the networked MAS.

The outputs of the agents using the proposed control protocols are profiled in Fig. 2. As seen, given yd = 5, yi for i ∈ V1 and yj

for j ∈ V2 converge to small boundaries around 10 and –20, respectively. For yd = 3, the values are around 6 and –12, respectively.
The observer errors ξ̃i showed in Fig. 3, demonstrate the efficacy of our proposed algorithm. This figure illustrates the

dynamic behavior of the observer errors over time. Notably, these errors rapidly converge towards zero, indicating a swift and
efficient stabilization by our algorithm. This rapid convergence is a clear testament to the effectiveness of the approach we have
implemented in dealing with observer errors within the system. This validates that by using the proposed DRMFAC algorithm,
the URABC problem is solved for nonlinear MAS against DoS attacks.

5 CONCLUSION

In this article, we have addressed the URABC problem for nonlinear MAS under DoS attacks by our DRMFAC algorithm.
We have proved that the URABC problem is solved by stabilizing the NABCE. Then, we have developed a DCFDL method
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F I G U R E 2 Output trajectories yi of the agents using the proposed control protocols.
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F I G U R E 3 Observer errors ξ̃i of the agents using the proposed control protocols.

to linearize the NABCE. Finally, we have used an EDSO to enhance the robustness against unknown dynamics and an attack
compensation mechanism to eliminate the adverse effects of DoS attacks.
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