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Abstract

We have proposed a Generalized Descent Symmetrical Hestenes-Stiefel algorithm [12] , GDSHS for short, which can generate

sufficient descent directions for the objective function. Using the Wolfe line search conditions, the global convergence property

of the method is also obtained based on the spectral analysis of the conjugate gradient iteration matrix and the Zoutendijk

condition for steepest descent methods. I propose in this paper a theoretical choice to improve the performance of the GDSHS

algorithm, by the use of an optimal parameter. Based on this, some descent algorithms are developed. 86 numerical experiments

are presented to verify their performance and the numerical results show that the new conjugate gradient method GDSHS with

the parameter c=1 , denoted GDSHS1, is competitive with GDSHS algorithms that have a parameter c chosen in the interval

] 0 , + [?] [ .
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Abstract

We have proposed a Generalized Descent Symmetrical Hestenes-Stiefel algorithm [12] , GDSHS
for short, which can generate sufficient descent directions for the objective function. Using the Wolfe
line search conditions, the global convergence property of the method is also obtained based on the
spectral analysis of the conjugate gradient iteration matrix and the Zoutendijk condition for steepest
descent methods. I propose in this paper a theoretical choice to improve the performance of the
GDSHS algorithm, by the use of an optimal parameter. Based on this, some descent algorithms are
developed. 86 numerical experiments are presented to verify their performance and the numerical
results show that the new conjugate gradient method GDSHS with the parameter c = 1 , denoted
GDSHS1, is competitive with GDSHS algorithms that have a parameter c chosen in the interval
]0,+∞[.
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Global convergence.

MSC Classification: 49M05; 49M30; 90C06; 90C30

1 Introduction

The nonlinear conjugate gradient (NCG) method is one of the most popular methods for solving
smooth unconstrained optimization problems due to its simplicity and low requirement. However,
the usage of NCG methods are mainly restricted in solving the large-scale problem:

min
x∈Rn

f(x). (1)

The classical conjugate gradient methods with line searches are as follows:

xk+1 = xk + αkdk, (2)

where αk is the step length of a line search and the directions dk are given by{
d0 = −g0,

dk+1 = −gk+1 + βkdk, ∀k > 0,
(3)

where gk = g(xk) = ▽f(xk) and βk is a scalar. In order to guarantee the global convergence
property of the NCG methods, the descent property or the sufficient descent property is necessary
and important, namely,[1]

dTk+1gk+1 < 0 (the descent property) (4)

dTk+1gk+1 ≤ −c0 || gk+1 ||2, c0 > 0 (the sufficient descent property). (5)

However, unlike the quasi-Newton methods, in general, the NCG methods may not meet the descent
or the sufficient descent property for inexact line searches. efforts have been devoted to investigating
the descent property. In 1978, Shanno [2] proposed the memoryless quasi-Newton methods and the
selfscaling conjugate gradient algorithms based on Perry’s idea [3], the quasi-Newton equation and the
self-scaling variable metric technique. Jinwei Wang et. al [4] proposed the Forensics feature analysis
in quaternion wavelet domain for distinguishing photographic images and computer graphics. Xuezhi
Wen et. al [5] presented A rapid learning algorithm for vehicle classification . In 2016, Yan Kong et.
al [6] suggested A belief propagation-based method for Task Allocation in Open and Dynamic Cloud
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Environments. Yanhua Zhang et. al [7] presented the Efficient Algorithm for K-Barrier Coverage
Based on Integer Linear Programming. Gonglin Yuan, Zehong Meng, and Yong Li [8] suggested A
modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations
and nonlinear equations. Gonglin Yuan, Maojun Zhang [9] developed A three-terms Polak-Ribière-
Polyak conjugate gradient algorithm for large-scale nonlinear equations . In 2017, Gonglin Yuan,
Zengxin Wei, Xiwen Lu [10] proposed Global convergence of BFGS and PRP methods under a
modified weak Wolfe-Powell line search . By applying the symmetrical technique [11] to conjugate
gradient methods, a symmetrized conjugate gradient method, satisfies the property (5) for any line
search, is introduced in [12] , and this idea can also be applied to other conjugate gradient algorithms.

2 Application of the symmetrical technique to conjugate
gradient methods

According to Perry’s notation [3], for the HS conjugate gradient method with the CG update pa-
rameter βk ,[13]

βk =
yT
k gk+1

dTk yk
,

the line search direction, dk+1, can be rewritten as follows:

dk+1 = −Dk+1gk+1, (6)

with,

Dk+1 = (I − dky
T
k

dTk yk
) = (I − sky

T
k

sTk yk
), (7)

According to Perry’s notation [3], for the HS conjugate gradient method with the CG update pa-
rameter βk ,[13]

βk =
yT
k gk+1

dTk yk
,

the line search direction, dk+1, can be rewritten as follows:

dk+1 = −Dk+1gk+1, (8)

with,

Dk+1 = (I − dky
T
k

dTk yk
) = (I − sky

T
k

sTk yk
). (9)

Thus, the matrix C1 can be symmetrized by the matrix C. Then, from the above symmetrizing
procedure, we conclud that the conjugate gradient iteration matrix Dk+1can be symmetrized by
D̄k+1as follows:

D̄k+1 = I − ykd
T
k + dky

T
k

dTk yk
+

yT
k yk

(dTk yk)
2
dkd

T
k =

(
I − dky

T
k

dTk yk

)(
I − ykd

T
k

dTk yk

)
. (10)

Thus, the conjugate gradient directions (3) are rewritten as:{
d0 = −g0,

dk+1 = −D̄k+1gk+1, ∀k > 0.
(11)

So dk+1 is called the symmetrical conjugate gradient direction and D̄k+1 is called the symmetrical
conjugate gradient iteration matrix or the symmetrical Hestenes-Stiefel matrix (SHS matrix) . If the
matrix D̄k+1 is updated with the rank-1 matrix as follows:

D̂k+1 = D̄k+1 +
skς

T
k

yT
k ςk

, ∀ςk ∈ Rn

then D̂k+1 satisfies the quasi-Newton equation, D̂k+1yk = sk , and under the exact line searches,
dk+1 = −D̂k+1gk+1 satisfies the condition :

yT
k dk+1 = 0, ∀k ≥ 0 (conjugacy). (12)

If ςk = sk, then

dmBFGS
k+1 = −

(
D̄k+1 +

sks
T
k

yT
k sk

)
gk+1,
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which just is the formula of the search direction of the memoryless BFGS.
In [12], (11) is substituted by

yT
k dk+1 = −σsTk gk+1, (13)

which is called Dai and Liao conjugacy condition [14] or the generalized conjugacy condition, where
σ is a parameter. We have supposed that D̄k+1 in (10) be updated by a rank one matrix, namely

P̄k+1 = D̄k+1 + uvT ,

where u and v two vectors in Rn such that (12) holds.
Thus, it follows from (9), (12) and dk+1 = −P̄k+1gk+1 that:

yT
k dk+1 = −yT

k

(
D̄k+1gk+1 + uvT gk+1

)
= −yT

k

(
I − dky

T
k

dTk yk

)(
I − ykd

T
k

dTk yk

)
gk+1 − yT

k uv
T gk+1

= −
(
yT
k − yT

k

)[(
I − ykd

T
k

dTk yk

)
gk+1

]
− yT

k uv
T gk+1

= −yT
k uv

T gk+1

= −
(
yT
k u

)
vT gk+1,

so,

−
(
yT
k u

)
vT gk+1 = −σsTk gk+1 ⇒

(
σsk − vyT

k u
)T

gk+1 = 0.

We have selected v such that v =
σsk
yT
k u

. Hence

P̄k+1 = D̄k+1 + σ
usTk
yT
k u

, (14)

where the vector u is any vector in Rn such yT
k u ̸= 0. The matrix P̄k+1 is also called the symmetrical

Hestenes-Stiefel matrix. So, we have introduced a new line search direction as follows:{
d0 = −g0,

dk+1 = −P̄k+1gk+1, ∀k > 0,
(15)

where P̄k+1 is defined by (13) with u = uk, i.e.,

dk+1 = −D̄k+1gk+1 − σ
uks

T
k

yT
k uk

gk+1. (16)

Thus, with different σ and uk

(
yT
k uk ̸= 0

)
, a family of methods can be obtained by (2) and (14)

with dk+1 defined by (15), which is called the family of Generalized Symmetrical Hestenes-Stiefel
gradient method, GSHS, for short. P̄k+1 is also called the iteration matrix of generalized symmetrical
Hestenes-Stiefel gradient method.

In [12], we have taken uk = yk and σ = c
yT
k yk
sTk yk

, c > 0 . Thus

P̄k+1 = D̄k+1 + c
yks

T
k

sTk yk
,

and,

dk+1 = −D̄k+1gk+1 − c
dTk gk+1

dTk yk
yk. (17)

We have denoted the iterative scheme (2) and (14) with dk+1 calculated by (16) by the GDSHS.

3 The sufficient descent property and descent algorithm

In this section, we have considered the sufficient descent property of the GDSHS method, that is,

dTk+1gk+1 ≤ −c0 || gk+1 ||2, c0 > 0.

3



By theorem (2.1) in [11] we have D̄k+1 is a positive semi-definite matrix and the eigenvalues of this
matrix are 0, 1(n - 2 multiplicity) and λk+1

max , respectively, where λk+1
max is the maximum eigenvalue:

λk+1
max =

|| yk ||2|| dk ||2

(dTk yk)
2

.

By (16) it is obtained that:

dTk+1gk+1 = −gTk+1D̄k+1gk+1 − c
yT
k gk+1

dTk yk
dTk gk+1,

since,
gTk+1D̄k+1gk+1 ≥ 0,

so,

dTk+1gk+1 ≤ −c
yT
k gk+1

dTk yk
dTk gk+1

dTk yk
dTk yk

⇒

dTk+1gk+1 ≤ −c
((gTk+1yk)dk)

T ((dTk yk)gk+1)

(dTk yk)
2

.

From the following inequality,

uT v ≤ 1

2
(a || u ||2 +

1

a
|| v ||2), ∀a > 0,

it can be derived that,

dTk+1gk+1 ≤ − c

2(dTk yk)
2
(a || (gTk+1yk)dk ||2 +

1

a
|| (dTk yk)gk+1 ||2)

≤ − c

2(dTk yk)
2
(a(gTk+1yk)

2 || dk ||2 +
1

a
(dTk yk)

2 || gk+1 ||2)

≤ −ca || gk+1 ||2|| yk ||2|| dk ||2

2(dTk yk)
2

− c

2a
|| gk+1 ||2 .

So,

dTk+1gk+1 ≤ −(ca
|| yk ||2|| dk ||2

2(dTk yk)
2

+
c

2a
) || gk+1 ||2 .

Thus (5) is true for

c0 = ca
|| yk ||2|| dk ||2

2(dTk yk)
2

+
c

2a
.

From above discussion, we have ,

dk+1 = −D̄k+1gk+1 − c
dTk gk+1

dTk yk
yk.

Thus, the conjugate gradient directions (14) are rewritten as{
d0 = −g0,

dk+1 = −P̄k+1gk+1 = −vk+1 + βkdk − cζkyk,
(18)

where,
vk+1 = tkgk+1 + (1− tk)gk = gk+1 − (1− tk)yk = gk + tkyk,

βk =
vTk+1yk

dTk yk
= tk

gTk+1yk

dTk yk
+ (1− tk)

gTk yk
dTk yk

,

ζk =
dTk gk+1

dTk yk
,

and,

tk =
−dTk gk
dTk yk

.

So, we have obtained the Generalized Descent Symmetrical Hestenes-Stiefel algorithm, denoted by
GDSHS, as follows:
Algorithm 3.1
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step 1. Give an initial point x0 and ε ≥ 0. Set k = 0.
step 2. Calculate g0 = g(x0). If || gk ||≤ ε, then stop; otherwise let d0 = −g0 and continue with step
3..
step 3. Calculate steplength αk with Wolfe line searches:

f(xk + αkdk) ≤ f(xk) + δ1αkd
T
k gk (19)

and,
dTk g(xk + αkdk) ≥ δ2d

T
k gk, (20)

where δ1 and δ2 are positive constants such that

0 < δ1 < δ2 < 1.

step 4. Set xk+1 = xk + αkdk.
step 5. Calculate gk+1 = g(xk+1).
step 6. If || gk+1 ||≤ ε, then stop.
step 7. Calculate the direction dk+1 via (17). Set k = k + 1, then go
to step 3..

4 The convergence of the GDSHS algorithm

In this section, to analyze the convergence of GDSHS algorithm, first, we have introduced the
following assumptions about the objective function f(x).

H1. f is bounded below in Rn and f is continuously differentiable in a neighborhood ℵ of the

level set Γ
def
= {x : f(x) ≤ f(x0)}, where x0 is the starting point of the iteration.

H2. The gradient of f is Lipschitz continuous in ℵ, that is, there exists a constant L > 0 such
that

|| ∇f(x̄)−∇f(x) ||≤ L || x̄− x ||, ∀x̄, x ∈ ℵ.
Next, we have introduced the spectral condition theorem of the global convergence for an objective

function satisfying H1 and H2, which generates Theorem 4.1 in [11].

Theorem 4.1. Assume that the line search direction of a nonlinear conjugate gradient method
satisfies {

d0 = −g0,
dk = −P̄kgk, ∀k > 0.

(21)

Let the objective function f(x) satisfy H1 and H2. For a nonlinear conjugate gradient method ((2)
and (20)), which satisfies the sufficient descent condition (5), if its line search satisfies the Wolfe
conditions (18) and (19), and [15]

∞∑
k=0

Λk = +∞, (the spectral condition) (22)

where Λk is the maximum eigenvalue of P̄T
k P̄k , then:

lim
x→∞

inf || gk ||= 0. (23)

Moreover, if Λk ≤ Λ̃ , where Λ̃ is a positive constant, then

lim
x→∞

|| gk ||= 0, (24)

see [12].

5 The theoretical choice for parameter c to optimize the
GDSHS algorithm

Suppose that f : Rn −→ Rn is twice continuously differentiable ,

5



by Taylor’s Theorem , which tells us that for any search direction dk and step-length parameter
α, we have :

f(xk + αdk) = f(xk) + αdTk ∇f(xk) +
1

2
αdTk ∇2f(xk + tdk)dk, for some t ∈ (0, α).

The rate of change in f along the direction dk at xk is simply the coefficient of α namely, dTk ∇f(xk)
.

The unit direction dk (∥dk = 1∥) of most rapid decrease is the solution to the problem

min
d∈Rn

dTk ∇f(xk) with ∥d∥ = 1,

and by (16) we have:

dk+1 = −D̄k+1gk+1 − c
dTk gk+1

dTk yk
yk, c > 0.

Let :

Ψ(c) = f(−D̄k+1gk+1 − c
dTk gk+1

dTk yk
yk) = f(p1 + cp2),

such as: p1 = −D̄k+1gk+1 and p2 = −dTk gk+1

dTk yk
yk. So, it is naturel to,

min
c>0

Ψ(c),

according to Cauchy’s idea, we will try to minimize the derivative of Ψ(c) in 0 .
We have ,

Ψ
′
(0) = pT2 ∇f(p1),

and we try to solve the problem :

min
p2∈Rn

Ψ
′
(0), with ∥p2∥ = 1.

The solution is of course:

p2 = − ∇f(p1)

∥∇f(p1)∥
.

So,

dk+1 = p1 − c
∇f(p1)

∥∇f(p1)∥
,

and, if ∥dk+1∥ = 1, we will have:

1 = ∥p1 − c
∇f(p1)

∥∇f(p1)∥
∥ ⇒ c ≤ 1 + ∥p1∥.

So,
c ≤ 1 + ∥D̄k+1∥∥gk+1∥,

and, by Theorem (2.1) in [11] we conclude :

0 < c ≤ 1 + λk+1
max∥gk+1∥.

6 Numerical experiment

In this section, we compare the GDSHS algorithms with different values of the parameter c in the
interval ]0,+∞[, and we also compare the performance of the new conjugate gradient method GDSHS
with the parameter c = 1, denoted GDSHS1, to the standard FR method and PRP+ version of the
conjugate gradient method developed by Gilbert and Nocedal [16], where the βk associated with the
Polak-Ribiere-Polyak conjugate gradient method [17] is kept nonnegative.

When comparing between the algorithms we have used the backtracking line search . The test
problems are the 86 unconstrained problems found in this work, and each test function is made as
an experiment with the number of variables being 2, 10, 100, 1000, 2000,..., 10000, respectively.

The starting points used are those given in An Unconstrained Optimization Test Functions Col-
lection [18].

The termination criterion of all algorithms is that ∥g∥ < 10−7. The tests are performed on a
PC using a Pentium Dual-core CPU T4400@2.20GHz, 2.0GB RAM, Mobil Intel 4 Series Express
Chipset Family, using MATLAB codes.

We have adopted the performance profiles of [19] to compare the performance among the tested
methods.
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6.1 The choice of parameter is far from value c=1

We compare the performance of the new conjugate gradient methods GDSHS with the parameter
c = 0.1, c = 1 and c = 2, denoted GDSHS0.1 , GDSHS1 and GDSHS2 respectively.
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Figure 1: Performance profile by CPU time
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Figure 3: Performance profile by 2-norm of the gradient of the objective function

In Figures 1, 2 and 3, we see that GDSHS0.1 and GDSHS2 algorithms can not be competitive
with the GDSHS1 algorithm, especially in performance regarding the the viewpoint of CPU time.
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6.2 The choice of the parameter is close to the value c=1

We compare the performance of the new conjugate gradient methods GDSHS with the parameter
c = 0.9, c = 1 and c = 1.1, denoted GDSHS0.9 , GDSHS1 and GDSHS1.1 respectively.
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Figure 4: Performance profile by CPU time
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In Figures 4, 5 and 6, we see that GDSHS1 algorithm is better and more competitive than the
GDSHS0.9 and GDSHS1.1 algorithms, especially in performance regarding the number of iterations.

6.3 The comparisons of the best numerical variant of GDSHS versus
some other conjugate gradient algorithms

In [12] we have compared the performance of the new conjugate gradient methods GDSHS with the
parameter c = 1 denoted GDSHS1, FR and PRP+ respectively.
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Figure 7: Performance profile by CPU time

In Figure 7, GDSHS1 is performed well from the viewpoint of CPU time.
But, the numerical performance should be compared by measures different from CPU time. For this
reason we provide Figures 8 and 9.
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Figure 8: Performance profile by number of iterations

In Figures 8 and 9, we see that GDSHS1 algorithm is better and more competitive than the FR
and PRP+ algorithms especially in the number of iterations performance.
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Figure 9: Performance profile by 2-norm of the gradient of the objective function

7 Concluding remarks

In this paper, we have proposed an optimal parameter for the Generalized Descent Symmetrical
Hestenes-Stiefel algorithm . Some numerical results have been reported. These results showed the
effectiveness of our method if we choose the parameter c = 1. The performance profile for our
conjugate gradient GDSHS1 algorithm, implemented with our new line search, was higher than
those of the GDSHS0.1, GDSHS2, GDSHS1.1 and GDSHS0.9 methods for a test set consisting of
86 problems from [18]. In our future research we would like further the theoretical properties of the
parameter c.
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