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II. Abstract page

Climate change is implicated as a leading cause of insect declines. One way that insects respond to the
warming climate is by advancing phenology and increasing voltinism (adding generations). However, if earlier
phenology changes cue-response relationships, then late season generations might lack time or resources to
complete development before winter and insects attempt doomed “lost generations”. Using 27 years of
monitoring of 30 butterfly species, we find the opposite, as added generations increase population growth
rates of multivoltine butterflies. We find lost generations are rare and occur at cooler sites in years with
cold winters or early frosts. Overall, long-term population trends are positively correlated with increasing
voltinism over time, suggesting additional generations as one mechanism by which species adapt to the
changing climate. Long-term monitoring programs can test mechanistic hypotheses about biotic responses
to warming while simultaneously tracking if population consequences match the predicted outcomes.

ITI. Main text

Introduction

Terrestrial insects, and notably butterflies, are declining in abundance regionally and globally by 1-3% per
year (Dirzo et al. 2014; Forister et al. 2021; Van Klink et al. 2020; Wepprichet al. 2019a). Habitat loss,
pesticides, and climate change are implicated as interacting contributors to declines (Harvey et al.2023;
Wagner et al. 2021; Warren et al. 2021). This complexity of stressors make predicting population trends
and climate responses for any butterfly species particularly uncertain, as some species fare worse and some
better under new climatic conditions (Breedet al. 2013; Crossley et al. 2021). Gradual warming and extreme
events could affect butterfly abundances through different mechanisms, for example by shifting distributions,
exceeding thermal limits of individuals, reducing host plant quality in drought (Harveyet al. 2023), or, the
subject of this study, changing phenology and the number of generations they complete annually.

Even though insects have responded to climate change by shifting phenology and ranges to track temperature
(Parmesan 2006), a key concern for conservation in a warming climate is whether insects will keep up with
the rate of change given the constraints from local adaptations to the past (Forrest 2016). Voltinism, or the
number of generations completed in a year, is one insect trait that is highly dependent on climate and a
target for natural selection to keep in sync with changes in season length (Cohen 1970; Tauber & Tauber
1976). If season length changes too rapidly as a result of anthropogenic global warming, the locally-adapted
environmental cues regulating voltinism may become maladaptive in an evolutionary trap (Schlaepfer et
al. 2002). An evolutionary trap has been proposed as a potential cause for a local population collapse
in a multivoltine butterfly attempting doomed late season generations, or “lost generations” (Van Dyck et
al.2015). Tt is not known if such traps are widespread in multivoltine insects confronting climate warming
and whether lost generations impact population viability. In this paper, we use 27 years of monitoring to
test whether 30 multivoltine butterfly species are attempting lost generations, and whether the voltinism
changes correlate with long-term population trends.

With thermal constraints on development, insect life history strategies vary spatially across climatic gradients
and temporally with annual environmental variability to match the time available for seasonal activity
(Danilevskii 1965; Masaki 1961; Tauber & Tauber 1976). In temperate climates, insects survive harsh
overwinter conditions through diapause, a developmental pathway that provides a more hardy metabolic
state (Kostal 2006). Multivoltine insects use environmental cues to induce pathways of attempting another



generation with direct development or pausing normal development to prepare for diapause. Photoperiod is
the predominant cue for initiating diapause development in temperate insects (Bradshaw & Holzapfel 2007;
Tauber & Tauber 1976). Local adaptations in the photoperiodic response have evolved so that voltinism
varies across species’ ranges corresponding to clines in season length and latitudinal gradients of day length
(Masaki 1961). As photoperiod at any location is a consistent cue, it is a prime candidate for becoming less
informative and mismatched with rapid environment change (McNamara et al. 2011), especially for insects
where climate warming shifts the phenology of life stages sensitive to cues. However, photoperiodism is a labile
trait, with rapid adaptive evolution in range-expanding insects (Bean et al. 2012; Bradshaw & Holzapfel 2001;
Ittonen et al. 2022; Urbanski et al.2012). Open questions are whether locally-adapted multivoltine insects
will be able to simultaneously adjust responses to diapause induction cues, and hence voltinism, through
adaptation or phenotypic plasticity, and whether voltinism mismatches contribute to negative demographic
consequences and, in turn, widespread insect declines (Forrest 2016).

Despite well-documented increases in annual number of generations in response to earlier emergence in
animals, the effect of changes in voltinism on population dynamics is rarely tested (Altermatt 2010; Ileret al.
2021; Poyry et al. 2011). Our approach quantifies both changes in voltinism and population demography to
explore the potential consequences for matches and mismatches (Fig. 1). Given the plasticity and evolutionary
potential in this trait, our expectation might be that it is largely adaptive for insects to increase voltinism
in response to warming. Warmer autumn temperatures increase the costs of prolonged diapause, which is
mitigated with direct development into extra generations (Gomi 2000; Nielsen et l.2022). In butterflies,
multivoltine species have had more positive, long-term population trends than inflexible univoltine species
(Colomet al. 2022; Macgregor et al. 2019; Michielini et al. 2021; Wepprich et al. 2019a). The potential for
lost generations, given this context, may be limited to specific circumstances without widespread population
impacts, akin to phenological mismatches in resource-consumer systems that have few long-term consequences
for fitness or demography (Kharouba & Wolkovich 2023). However, mismatched voltinism is well known in
insect introductions and in fact could create an alternative developmental trap — “missing generations” — if the
photoperiod response causes diapause too early (Grevstad et al. 2022; Grevstad & Coop 2015). Mismatches,
or either lost or missing generations, may be counterbalanced by the rewards of increased voltinism (i.e.,
“bonanzas” in Kerr et al. (2020)). We expect voltinism to affect population growth rates depending on winter
conditions and that these matched or mismatched demographic responses will impact long-term population
trends (Fig. 1).

Using nearly three decades of butterfly monitoring, we take a critical look at the lost generation hypothesis to
test it more broadly. First, we determine how voltinism has changed and how responsive it is to phenological
shifts across sites and years. Second, we pair observed voltinism differences with winter onset and severity to
determine whether overwinter population growth rates show evidence of matches or mismatches. Third, we
correlate species’ voltinism responses with long-term trends to determine whether matches or mismatches
affect population viability. We find that increasing voltinism is the strongest predictor of higher long-term
population trends across species. Even in species with potential voltinism mismatches in some circumstances,
generally we find that overwinter demography would benefit from increased voltinism.

Material and methods

Study system

Butterfly communities have been monitored from 1996 to present across the Midwestern state of Ohio, USA
(38.4 - 42.3°N, -84.8 —-80.5°W, 116,100 km? land area). Fixed transects are walked weekly from April through
October using the Pollard method where butterflies seen within a 5-meter box centered on the observer are
counted (Pollard & Yates 1993). We used 32,794 transects from 1996-2022 from 161 sites (median 23 surveys
per year and 8 years of monitoring) including 21 sites contributing 20 or more years. The monitoring program
uses species naming conventions from Iftner et al. (1992) and Opler & Krizek (1984).

Previous analysis showed overall abundance declines of 2% per year across all species. Univoltine species had



lower abundance trends than bivoltine and multivoltine species (Wepprich et al. 2019a). For this analysis, we
selected non-migratory species with two or more generations with limited overlap and an adequate sample
size for the models. The initial set of 42 species included species with partial second generations observed at
multiple sites even though they are often classified as univoltine (Iftner et al. 1992; Wepprich et al. 2019a).

Statistical analysis and reproducibility

All analyses were performed in R 4.3.1 (R Core Team 2023; Wepprichet al. 2024). Software packages were
used for temperature data (‘daymetr’), phenology models (‘mgev’), mixture models (‘Mclust’), population
models (‘lme4’, ‘lmerTest’, ‘merTools’), phylogenetic models (‘ape’, ‘caper’), and data visualization (‘corr-
plot’, ‘ggeffects’, ‘tidyverse) (Bates et al. 2015; Hufkens et al. 2018; Knowles & Frederick 2023; Kuznetsova
et al. 2017; Liidecke 2018; Orme et al. 2023; Paradis & Schliep 2019; Scrucca et al.2016; Wei & Simko 2021;
Wickham et al. 2019; Wood 2017).

Environmental covariates

Environmental covariates were obtained for each site from Daymet daily temperature estimates from 1996-
2022 (Thornton et al. 2022). Degree-days were calculated with the single-sine method (Buckleyet al. 2023).
While 10 base thresholds are commonly used for temperate insects when physiological constraints are un-
known (Caytonet al. 2015), we used 5 base thresholds so that early spring observations were not assigned
zero accumulated degree-days.

For measuring winter severity, we used the ordinal date of the first hard frost in the fall (daily minimum < -2)
as winter onset and the 5-month mean of the daily minimum temperature starting October 315, the end of the
monitoring season, aswinter temperature . Other potential variables, such as snow accumulation or autumn
degree-days, were not used because they were highly correlated with winter onset and temperature. We
calculated environmental trends with linear mixed models with a year covariate and site random intercepts.

Abundance and phenology of separate generations

We modified existing methods for estimating abundance and phenology to smooth weekly counts, interpolate
missing surveys, estimate annual abundance indices, and separate generations (Dennis et al. 2016, 2022).
The key difference in our approach was using degree-days (i.e., physiological time) as the seasonal timescale,
as it standardizes phenological responses across spatial and temporal temperature variation (Barker et al.
2020).

For each species, weekly counts were smoothed with generalized additive models to predict phenological
variation caused by temperature variation and latitudinal gradients in voltinism (Hodgson et al. 2011; Wood
2017). We used these models to select multivoltine species for analysis and impute missing weekly counts
(Dennis et al. 2013). We modeled weekly counts by degree-days and geographic coordinates to account for
voltinism variation and spatial correlation. Random effects accounted for differences in relative abundance
at sites and years (Wepprichet al. 2019a).

Mixture models can classify observations in weekly surveys to different generations and estimate generation
size and phenology across sites (Dennis et al. 2022; Matechou et al. 2014). For each species, we fit univariate
Gaussian mixture models to all counts with both ordinal date and degree-day timescales, selecting the
timescale that minimized classification uncertainty. Model fitting required adjustments, such as limiting the
number of clusters and requiring equal variance (Matechou et al. 2014). Species with too much generation
overlap were removed from analysis.

Weekly counts for each species, site, and year were multiplied by their classification probability for each
generation from the mixture model, which permitted a single survey’s counts to be apportioned to different
generations. For each generation’s apportioned counts, we calculated a population index with the trapezoidal
rule and the peak phenology with a weighted mean.



Last generation size variability

Voltinism was quantified by the last generation size accounting for the size of the penultimate generation.
Although the diapause switch for an individual insect is binary, at a population-level both the diapause
proportion over time and the last generation size vary as continuous traits (Gomi 2000; Kerr et al. 2020). Last
generation size was calculated as the natural logarithm of population growth rates between the penultimate
and last generations. We modeled last generation size in response to penultimate generation phenology,
density-dependence, and year with variables scaled as follows.

Phenology of the penultimate generation was the predicted driver of last generation size. We used the
ordinal date of penultimate generation peak as a proxy for photoperiod exposure. Phenology varies across
the climatic gradient of sites and in response to annual weather. We split the phenology variable to account
for this hierarchy, including bothsite mean phenology and annual variation in phenologyscaled by site, using
within-group centering (van de Pol & Wright 2009). An interaction between these two variables allowed
models to estimate site-dependent responses to annual phenological variation. A comparison of these two
variables quantified how voltinism responses were driven by local adaptation versus phenotypic plasticity.
The degree of local adaptation was estimated as the sensitivity of the last generation size to spatial differences
in phenology, while the degree of phenotypic plasticity was estimated as the sensitivity to annual variation
in phenology (Phillimore et al. 2012; Roy et al.2015).

Density-dependence was the annual variation in the natural logarithm of the penultimate generation size
mean-centered by site. Spurious density-dependence may be detected in population time-series due to the
uncertainty in counts (Freckleton et al. 2006), so we assume that its effect includes both observation bias
and real density-dependence (Wenger et al. 2022).

Year , scaled by subtracting the monitoring year from the midpoint, was used to estimate the trend in last
generation size beyond voltinism changes accounted for by spatial and temporal variation in penultimate
generation phenology.

We fit linear mixed effects models for each species with sites as random intercepts. All covariates described
above were used as fixed effects. The random effect was removed via likelihood ratio tests if not significant
(Kuznetsova et al. 2017).

A community model using all species was fit with the variables in the species model, but with an added
variable for the species’ mean penultimate generation peak . We assumed that there would be fundamental
differences between earlier- and later-flying species. This species trait interacted with site mean and annual
variation in last generation phenology. Species and sites were random intercepts. Model performance was
assessed by the variation explained when compared to a simpler model containing only density-dependence,
year, and random intercepts. Fixed and random effects were removed from the full model via likelihood ratio
tests.

Overwinter population growth rates

If voltinism mismatches were a concern, we would expect an interaction between last generation size and
winter conditions that lowered population growth rates (Fig. 1). We estimated overwinter population
growth rates as natural logarithms of population growth rates between the penultimate and first springtime
generations. We modeled how last generation size, winter onset, winter severity, year, and density-dependence
predicted overwinter population growth rates. We describe variable selection and scaling below.

Last generation size varied by species, site, and year. Context-dependent differences in annual voltinism were
the main interest in this study. Mean last generation size for each species was used as a voltinism trait in
a later analysis. Site mean last generation size and annual variation of last generation size , mean-centered
within site, were included in the overwinter model.

Winter onset and winter temperature were mean-centered within sites to create site mean and annual vari-
ation terms. Including both mean and annual terms permits an analysis of context-dependent demographic



responses to annual environmental conditions (Amburgeyet al. 2018). However, the voltinism gradient fol-
lows the climatic gradient across sites, so site mean winter variables were highly correlated with the site
mean last generation size. We only included uncorrelated annual variation in winter onset and temperature.

For each species, we fit linear mixed effects models of overwinter population growth rates with site mean
last generation size, annual variation in last generation size, annual variation in winter onset, and annual
variation in winter temperature and their 3-way interactions. We included density-dependence and year
terms without interactions as fixed terms and sites as random intercepts. Variables were removed with
likelihood ratio tests.

A community model using all species was fit with all variables in the species model, but with an added
variable for the species’ mean penultimate generation peak and its interactions with voltinism and weather
terms. Species and sites were included as random intercepts. We fit models as stated above.

We simulated the potential population consequences of a larger last generation, incorporating the variable
interactions for each species. It was unclear from the regression models alone if higher population growth in
years with well-matched voltinism would outweigh mismatched lost or missing generations. We estimated
overwinter population growth rates for each observation with one standard deviation added or subtracted
from the last generation size for 100 simulations that accounted for uncertainty in model residuals, fixed
effects, and random effects (Knowles & Frederick 2023). We calculated the geometric mean of predicted
overwinter population growth rates for each site across years, and then averaged them for a statewide
simulated effect of larger last generations.

Voltinism traits and long-term population trends

We correlated species-level traits, derived from the above analysis, with species’ population trends. Statewide
trends were calculated with generalized linear mixed models following Wepprich et al. (2019), with 6 addi-
tional years of monitoring in this study compared to the previous study. To avoid confounding population
trends with voltinism changes, we only used first generation counts. Trends were correlated with the follow-
ing traits: species phenology (mean peak date of penultimate generation), species mean last generation size,
trend in last generation size, sensitivity of last generation size to spatial variation in phenology (i.e., local
adaptation), sensitivity of last generation size to annual variation in phenology (i.e., phenotypical plasticity),
and the simulated effect of larger last generations on overwinter population growth.

Population trends and traits were estimated with uncertainty from their respective models. To account
for this uncertainty, we used a parametric bootstrap of 1000 draws from normal distributions with their
estimates and standard errors to perform the correlation analysis and report the median and 95% range of
bootstrap results. To account for non-independence of traits due to phylogenetic relatedness between species,
we constructed phylogeny from publicly available sequences (Wepprich et al. 2019a, b). We fit models to
test for effects of traits on population trends with phylogenetic generalized least squares (Orme et al. 2023)
and tested the robustness of the results by refitting models using the parametric bootstrap values.

Following the conceptual model of voltinism matches (Fig. 1), the interaction of two traits—trend in last
generation size and simulated effect of a larger last generation on overwinter growth rates—would test for
the lost generation hypothesis most directly. We tested if these two traits interacted using the phylogenetic
models. To highlight species that fit scenarios proposed in Fig. 1, we visualized these two traits and their
population trends.

Results

Environmental covariates

The annual thermal window for insect development, measured by accumulated degree-days, ranges from
2,157 to 3,687 with the combined effects of spatial and temporal variation. Over the study period (1996-
2022), monitoring sites warmed and growing seasons lengthened. Annual degree-days increased at a rate



of 98.5 degree-days per decade (SE = 2.63, t = 37.5, P < 0.001). First fall frosts trended 1.26 days later
per decade (SE = 0.165, ¢t = 7.60,P < 0.001). Mean daily fall (September, October, November) and winter
(December, January, February) temperatures increased at 0.478 per decade (SE = 0.0168, ¢ = 28.4, P<
0.001) and 0.202 per decade (SE = 0.0371, ¢t = 5.45,P < 0.001), respectively.

Abundance and phenology of separate generations

After filtering out species poor discrimination of separate generations, we included thirty species out of forty-
two candidates. Generalized additive models demonstrated spatial and temporal variation in voltinism, with
the proportion of null deviance explained by species models ranging from 0.56 to 0.94 (median 0.75). Mixture
models for 28 of 30 species had lower uncertainty assigning observations to generations when performed on
a degree-day timescale rather than an ordinal day timescale. An example species, Phyciodes tharos , has
voltinism variation in warmer and cooler sites on degree-day and calendar date timescales (Fig. 2 A-C).

By species, the proportion of counts classified as the last generation ranged from 4% to 64% of the total counts
across generations. Species had two to five maximum generations per year. The mean penultimate generation
peak phenology ranged from May 21% to September 5, with earlier phenology generally associated with
larger last generations (Fig S1).

Last generation size variability

In the community model across 30 species, last generation size increased over time (f = 0.014, SE = 0.002,
P < 0.001, Table S1). Penultimate generation phenology affects species more strongly later in the season.
For mid- and late-season species, years with earlier phenology leads to larger last generation sizes and sites
with earlier phenology (i.e., warmer sites) also have larger last generation sizes (Figure S2, Table S1). Last
generation size varies more strongly across sites (8 = -1.546, SE = 0.103, P < 0.001) than across years (8 =
-0.259, SE = 0.035, P < 0.001), consistent with stronger effects of local adaptation than phenotypic plasticity
on voltinism (Table S1).

From species models, 12 species had increasing last generation size over time, while one had decreasing
voltinism. In the test for local adaptation, 14 species had smaller last generation sizes when site mean
phenology was later, while two species had the opposite response. In the test for phenotypic plasticity, six
species had larger last generations with earlier annual phenology and five species had the opposite response
(Fig. 3). Of the seven species with sensitivity to both site and annual variation in penultimate generation
phenology, five had co-gradient negative responses (including our example species in Fig. 1D), two had
co-gradient positive responses, and one species had counter-gradient responses (Fig. 3). All species had
strong negative density dependence, where larger penultimate generations lowered the population growth
rate producing the last generation.

Overwinter population growth rates

In the community model across 30 species, overwinter population growth rates have declined over time (8 =
-0.011, SE = 0.002, P < 0.001, Table S2). Larger last generations at warmer sites increased overwinter pop-
ulation growth rates regardless of winter temperature or species phenology. However, overwinter population
growth declined with larger last generations at cooler sites with cold winters or early frosts (Fig. 4, Table
S2). Winter onset and winter temperature had similar effect sizes in their interactions with other variables,
but their interaction with each other shows that negative effects of early winter onset (for species with late
season phenology only) are counteracted by positive effects of warmer winter temperatures (Fig. S3).

Nearly all species’ overwinter population growth rates were influenced by both last generation size and winter
variables, often with interactions. Species models included site mean last generation size for 24 species, annual
variation in last generation size for 25 species, annual variation in winter temperature for 23 species, and
annual variation in winter onset for 19 species. While warmer winter temperature was evenly split between
having a positive or negative effect on growth rates, earlier frosts had a negative effect in nearly all species.



All but one species had strong negative density dependence, where larger penultimate generations lowered
the overwinter population growth rate producing the springtime generation. Eleven species had declines over
time in overwinter growth rates with no species having an increase.

Simulations for individual species show that larger last generations generally benefit geometric mean growth
rates, with a median increase in overwinter growth rate of 0.60 (-0.57 to 0.56 range). Fifteen species had
positive consequences with larger last generation sizes, while only two species had negative responses to
larger last generation sizes (Fig. 3).

Voltinism traits and long-term population trends

Long-term population trends have a median -0.01 slope per year (-0.08 to 0.11 range) with 10 positive trends
(3 significant) and 20 negative trends (6 significant) (Fig. 3). These trends are less negative compared to
those across all species, including univoltine, and all generations analyzed in Wepprich et al. (2019).

The species traits positively correlated with population trends were trends in last generation size (r = 0.42,
CI -0.03 — 0.67), simulated effects of larger last generations (r = 0.29, CI 0.01 — 0.54), and mean size of
the last generation (r = 0.26, CI 0.12 — 0.40) (Fig. 5A). Species with generations later in the season were
more likely to have last generation sizes that were sensitive to site phenology (r = -0.42, CI -0.52 — -0.24)
and annual variation in phenology (r = -0.63, CI -0.73 — -0.52) of the penultimate generation, matching the
community model of last generation size variability (Table S1). These two traits showing the last generation
sensitivity to spatial and temporal phenological variation (i.e., local adaptation and phenotypic plasticity,
respectively) were positively correlated with each other (r = 0.57, CI 0.27 — 0.76) (Fig. 5A).

The phylogenetic regression models of traits versus population trends demonstrated that trends in last
generation size predicted population trends (8 = 0.5021, SE = 0.176, P = 0.0083, Table S3, Fig. S4). The
interaction of the trend in last generation size and the simulated consequences of larger last generations was
not robust when trait uncertainty was included (Table S3, Fig. S5). However, grouping species based on
this interaction visualizes the proposed scenarios of voltinism matches and mismatches even if there is no
consistent relationship across all species (Fig. 5B).

Discussion

Using long-term butterfly monitoring data from Ohio, we find that increasing voltinism generally benefits
butterflies, thus rejecting the generality of the lost-generation hypothesis. If the lost generation hypothesis
were commonplace, years with larger attempted last generations would have fared worse when confronted
with early frosts or colder winters and these mismatches would be reflected in population trends. Instead,
we found that larger last generations generally increase species overwinter growth rates. We also found that
long-term population trends are positively correlated with increasing voltinism over time. These lines of
evidence suggest that lost generations are rare, and that increasing voltinism may allow many butterflies to
track, and even adapt to warming.

The degree to which increasing voltinism has positive effects on population growth varies across space, time,
and species. Even without warming, spatiotemporal variation in phenology and winter conditions can flip
voltinism mismatches to demographic bonanzas in different years or regions (Kerr et al. 2020). Here, lost
generations where larger last generation size leads to lower overwinter growth rates occur in a limited set
of circumstances across species. The species and populations most susceptible to lost generations are ones
that inhabit cooler sites within this sample. Even in cooler sites, the consequences of increased voltinism are
only negative in cold years when larger last generations are confronted with cold winters or early frosts (Fig.
4, Table S2). If observed trends in season length, first fall frost, and winter temperature continue in Ohio,
the benefits of adding generations will likely increase. This is one mechanism that may facilitate expansion
at poleward range limits (Ittonen et al. 2022; Macgregor et al. 2019), for which Cyllopsis gemma provides
an example as it expands in southern Ohio and has the largest magnitude population and voltinism trends
(Fig. 3).



Our classification of species traits finds few likely candidates for lost generation mismatches that have
both increasing voltinism over time and a simulated negative impact of larger generation sizes (lower right
quadrant, Fig. 5B). There are more species that have not increased voltinism despite overwinter models
predicting higher growth rates with larger last generations (e.g., Lycaena phlaeus and Papilio polyxenes |
upper left quadrant of Fig. 5B). These species with “missing generations” may have voltinism limited by late-
season resource availability or might have an unknown evolutionary trap that limits voltinism flexibility. We
acknowledge that our search for lost or missing generations in these species could be hindered by analyzing
a snapshot in time without knowing how natural selection has already shaped voltinism patterns.

Our results suggest that multivoltine species have the capacity to adapt to longer seasons even though their
voltinism response is locally adapted across sites. Local adaptation in butterfly springtime phenology may
constrain responses to climate warming compared to phenotypic plasticity (Roy et al. 2015). Even though we
found smaller contributions of phenotypic plasticity in the voltinism response, larger last generations seem to
match the annual variation in overwinter conditions. There are other factors that influence voltinism beyond
the photoperiod exposure that we assume determines diapause. When diapause and voltinism are examined
in more detail for any species, nuances of interacting cues and co-evolved traits modulate development to
fit within the growing season. For example, faster development rates that allow for more generations can
vary by genotype in sawtooth latitudinal clines (Levy et al. 2015) or plastically with exposure to shorter
day lengths near season end (Lindestad et al. 2019). Host plant quality, which we presume also varies
with annual weather conditions or butterfly density, changes diapause rates and voltinism (Abarca 2019;
Henry et al. 2022). Testing for evolution in critical photoperiods for diapause could determine whether Ohio
butterflies are adapting to warming by using multiple cues or evolving photoperiod reaction norms (Nielsen
& Kingsolver 2020).

Despite the possible evidence for adaptation to climate change, the benefits of an extra generation are not
enough to reverse declines of most species. Consistent with flexible voltinism helping species keep pace with
a changing climate, we found that species with increasing voltinism have more positive state-wide population
trends (Fig. 5A, Fig. S4). However, this subset of multivoltine species were already known to have higher
population trends compared to obligate univoltine species (Wepprich et al. 2019a) and even here there are
more declines than bonanzas (Fig. 3). Climate change is only one driver of insect declines and species are
forced to respond to warming in a highly fragmented and degraded landscape (Hodgson et al. 2022; Warrenet
al. 2001). Pesticide use in Ohio, specifically neonicotinoids, is associated with lower abundance in common
butterflies (Van Deynzeet al. 2022). To increase insect adaptability to climate change, conservation actions
should prioritize actions that increase adaptive capacity. Large, connected populations can maintain a high
level of genetic diversity that allows for in-situ adaptation (Habel & Schmitt 2018). The locally-adapted
variability in phenological response speaks to the need to maintain variation in microclimates across, and
even within, sites to allow for variation in phenology on which natural selection can act (Suggitt et al.
2018). When considering the entire butterfly community, univoltine species do not have the adaptability of
multivoltine species and should be a greater conservation concern than voltinism mismatches.

Long-term monitoring allowed us to characterize late-season generations as potential adaptations to a warm-
ing climate and not just random or rare events. Insect populations fluctuate notoriously, making it especially
challenging to separate signal from noise without long-term data. Further complicating this are the complex
ways we have demonstrated that sites and weather interact to shape local population dynamics. With mon-
itoring across sites spanning a 7 mean annual temperature gradient confronting 27 years of winter variation,
we have a dataset that includes 12,377 observations of voltinism variation and 8,676 observations of overwin-
ter demography. It is only with this extensive record that we can test, and mostly reject, the lost generation
hypothesis. Most monitoring studies are designed for surveillance for conservation, however, these long-term
datasets are key to understanding how, when, and where species are adapting to climate change or not.
With this long-term, large-scale data, we can conclude that it is other factors besides the lost generation
hypothesis that explain butterfly declines in Ohio.
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Figure legends

Fig. 1: Conceptual diagram of population consequences from voltinism changes.

Lost generations are predicted when increased voltinism is mismatched with winter (onset or severity) and
would potentially decrease fitness and population growth rates. There are three other potential scenarios for
species with voltinism change confronting various winter conditions, including matches that would increase
population growth rates. A mismatch when species do not increase voltinism enough for warming winters is
coined “missing” generations as a counterpoint to lost generations.

Fig. 2: Phenological variation for an example species (Phyciodes tharos).

Seasonal phenology was modeled from weekly counts to predict relative abundance on a degree-day timescale,
with example model predictions from warmer or cooler sites during warmer or cooler years (A). When these
same model predictions are visualized on a calendar date timescale, phenological shifts in response to site
and annual temperature misalign generations (B). Mixture models assign counts to different generations on
the degree-day timescale, with example shown from all sites during warm and cool years, split by warm and
cool sites (C). The log population growth rate between the penultimate and last generations is the measure of
last generation size, which varies in part due to photoperiod exposure that varies by latitude and phenology
of the sensitive life stage (D). Years in this example (2008-2017) are split in half into warm or cool years.
Sites in this example are split into warm or cool by southern and northern regions of Ohio.

Fig. 3: Voltinism trait estimates and long-term population trends.

Species’ estimates and uncertainty (95% confidence intervals) for four voltinism traits and their statewide
population trend. Solid black coloration indicates that the estimate’s uncertainty does not overlap zero,
while gray coloration indicates otherwise. Species are ordered by the population trend estimate. LG = “last
generation”.

Fig. 4: Overwinter population growth rate across all 30 species.

Overwinter population growth rate (y-axis) is influenced by the interaction of last generation size (annual
variation and site mean), species phenology (earlier-, mid-, or later-season), and winter temperature. Annual
variation in last generation size on the x-axis shows increased voltinism at larger numbers. The three rows of
species phenology shows the model prediction if the penultimate generation peaks on July 2 (top), August
1 (middle), or August 31 (bottom). The two columns are divided by cooler winter temperatures (left) and
warmer winter temperatures (right), scaled by +/- 1 SD of the annual variation in winter temperature. Site
variation is shown by separate lines in each panel for warmer sites in red and cooler sites in blue (4/- 1 SD
of site mean last generation size).

Fig. 5: Correlation of voltinism traits and population trends.

A) A correlation matrix of six voltinism traits and population trends are based on Pearson correlations
between variables performed with a parametric bootstrap. Values are the median bootstrap correlation with
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95% bootstrap confidence intervals in parentheses. Colors indicate the direction (positive or negative) and
magnitude (circle size) of the correlation.

B) Grouping species by the trend in last generation size and the simulated consequence of larger generations
shows 4 zones of the potential scenarios in Fig. 1. The lower right quadrant would fit the lost generation
hypothesis. The upper right quadrant would fit a “bonanza” scenario of matching voltinism to a warming
climate. The upper left quadrant would also be a mismatch scenario with species not taking advantage of a
warming climate by increasing voltinism. The lower left quadrant would be species not increasing voltinism,
an appropriate match to the detrimental effect of attempting larger last generations.
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Fig. 1: Conceptual diagram of population consequences from voltinism changes.
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Fig. 2: Phenological variation for

an example species (Phyciodes tharos).
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Fig. 4: Overwinter population growth rate across all 30 species.
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Fig. 5: Correlation of voltinism traits and population trends
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