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In this paper, the multiple bifurcation of limit cycles for a segmented disc dynamo system is studied. The formal series method

for calculating the singular point quantities is applied to determine the highest order focus value at Hopf bifurcation point.

For two cases of the segmented disc dynamo system, namely the system with or without friction coefficient (abbr. SDDF-
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of synchronous perturbation respectively. At the same time, the parameters condition is classified for exact number of limit
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1 Introduction

Since the double disc motor system was derived in [1], its dynamic behavior has been widely
concerned. And from it and based on the azimuth current distribution, the segmented disc
generator model was given in [2] with the following reduced form:

ẋ(t) = r(y − x),

ẏ(t) = mx− (1 +m)y + xu,

u̇(t) = g(mx2 + 1− (1 +m)xy)

(1)

where x(t) and y(t) denote the magnetic radial and azimuthal current distributions, u(t)
measures the angular velocity of the disc, g represents the applied torque, moreover, m and r
are dimensionless parameters. For system (1), the author of [3] investigated comprehensively
its dynamic properties including Darboux integrability and existence of Hopf bifurcation. The
author of [4] studied multi-stability and coexistence of three types of attractors: equilibrium
points, limit cycles and hidden chaotic attractors, and found hidden chaotic solutions to occur
well away from the subcritical Hopf bifurcation. Subsequently, the control of hidden chaos
in system (1) was studied and applied to electronic circuit design in [5]. The authors of [6]
also analyzed its mechanism of chaos from the perspective of geometry.

Furthermore, to make the segmented disc dynamo model better to reflect the practical
significance in physics, especially for azimuthal currents in the rotating discs, the authors of

*Corresponding authors: wqinlong@163.com(Q. Wang), huangwentao@163.com (W. Huang)
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[7] proposed a new description of the two-disc dynamo, yielding the segmented disc dynamo
system with mechanical friction as follows:

ẋ(t) = r(y − x),

ẏ(t) = mx− (1 +m)y + xu,

u̇(t) = g(mx2 + 1− (1 +m)xy)− fu,
(2)

where f is a mechanical friction coefficient, naturally system (1) is one special case of system
(2). Recently, the authors of [8] studied the complex dynamics of the equilibrium point of
system (2) by using the center manifold theory, and determined the existence conditions of
Hopf bifurcation, at the same time, the Darboux integrability of the system was discussed in
detail. For the mechanism of chaos in system (2), some theoretical and numerical analyses
were also given in [9] and [10] successively.

However, there is a little with respect to the report of investigating the multiple small-
amplitude limit cycles bifurcation and local integrability restricted to one single center mani-
fold in system (2). Then we will continue to study its dynamic properties in the two aspects,
particularly, the maximal number of limit cycles in the vicinity of a Hopf singular point.

In planar polynomial systems, the maximal number of limit cycles bifurcating from an
elementary focus or center is sometimes called the local version of the second part of the
Hilbert’s 16th problem, each reader can refer to the literatures [11, 12, 13] to learn about
this famous problem and its research progress. As for the local version around an elementary
focus or center, in general quadratic systems, the maximal number M(2) = 3 was solved by
Bautin in 1952 [14]. However, in general cubic systems, the maximal number M(3) is still
open, many results have been obtained on its low bound [15, 16], so far, the best result is
M(3) ≥ 12 [17]. For other relevant results, one can see [18, 19] and references therein.

Compared with two-dimensional systems, the maximal number of limit cycles bifurcating
from a Hopf singular point is more challenging for a three-dimensional systems [20, 21].
Such problems are solved in only a few specific models, e.g. [22, 23, 24]. For general three-
dimensional systems, only some low bounds were obtained, e.g., the examples of 12 small-
amplitude limit cycles in quadratic vector fields were given recently [25, 26], the readers can
also refer to [21, 27] for other results.

In general, the main task of solving the above problem is to compute the focus values and
determine the center conditions at the equilibrium, which is exactly a extended version from
planar systems to center manifold of three dimensional systems. There exist some classical
methods such as Liapunov-Schmidt method [28], the direct dimension reduction method [23]
and the averaging theory [29]. And more some new research approaches were put forward,
e.g., the inverse Jacobi multiplier [30, 31], the formal first integral method [32] and the
simple normal form [33]. Recently, the authors of [34] also presented a useful conclusion on
the bound of the cyclicity around a center on center manifold in terms of the Bautin ideal.
In our research, the linear and simple algorithm proposed in [35] is applied to compute the
singular point quantities corresponding to the focal values.

The rest of the paper is organized as follows. In the section 2, some preliminary methods
for studying Hopf bifurcation of three-dimensional systems are given. In the section 3 and
4, the maximum number of bisymmetric limit cycles of the segmented disk generator system
with friction and without friction are determined and proved strictly respectively. In the
section 5, the Jacobian stability at the equilibrium point is obtained. Finally, we draw some
conclusions about this work.
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2 Preliminary results and method

In this section, we first introduce the method and basic results about limit cycle bifurca-
tion at Hopf singular point on center manifold. Based on the works of Liu and Li [36], the
authors of [35] extended these methods of computing singular point quantities from the pla-
nar polynomial system to three-dimensional systems, namely the following three-dimensional
systems are considered:

dx

dt
= −y +

∞∑
k+j+l=2

Akjlx
kyjul = X(x, y, u),

dy

dt
= x+

∞∑
k+j+l=2

Bkjlx
kyjul = Y (x, y, u),

du

dt
= −du+

∞∑
k+j+l=2

Dkjlx
kyjul = U(x, y, u),

(3)

where x, y, u, Akjl, Bkjl, Dkjl ∈∈ R (k, j, l ∈ N).
In general, we analyze the Hopf bifurcation of system (3) by applying the center manifold

theory [37], thus system (3) has a center manifold u(x, y), which can be expressed as the
following series:

u(x, y) = u2(x, y) + h.o.t., (4)

where u2 is a quadratic homogeneous polynomial in x and y, h.o.t. stands for higher-order
term. By means of transformation:

z = x+ iy, w = x− iy, u = u,

T = it, i =
√
−1,

(5)

system (3) can be transformed into the following complex system:

dz

dT
= z +

∞∑
k+j+l=2

akjlz
kwjul = Z(z, w, u),

dw

dT
= −w +

∞∑
k+j+l=2

bkjlw
kzjul = −W (z, w, u),

du

dT
= idu+

∞∑
k+j+l=2

dkjlz
kwjul = U(z, w, u)

(6)

where z, w, u, akjl, bkjl, dkjl ∈ C (k, j, l ∈ N) and bkjl = ākjl with ākjl denotes the conjugate
complex number of akjl, we call that system (6) and (3) are concomitant. For system (6), we
can obtain the following Lemma.

Lemma 2.1. For system (6), when taking c110 = 1, c101 = c011 = c200 = c020 = 0, ckk0 = 0,
k = 2, 3 · · · , we can derive successively and uniquely the following series:

F (z, w, u) = zw +
∞∑

α+β+γ=3

cαβγz
αwβuγ , (7)

such that
dF

dT
=
∂F

∂z
Z − ∂F

∂w
W +

∂F

∂u
U =

∞∑
m=1

µm(zw)m+1, (8)
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and if α 6= β or α = β, γ 6= 0, cαβγ is determined by the following recursive formula:

cαβγ =
1

β − α− idγ

×
α+β+γ+2∑
k+j+l=3

[(α− k + 1)ak,j−1,l − (β − j + 1)bj,k−1,l + (γ − 1)dk−1,j−1,l+1]

× cα−k+1,β−j+1,γ−l,

(9)

and for any positive integer m, µm is determined by the following recursive formula:

µm =

2(m+1)∑
k+j+l=3

[(m− k + 1)ak,j−1,l − (m− j + 1)bj,k−1,l − ldk−1,j−1,l+1]

× cm−k+1,m−j+1,−l,

(10)

and when α < 0 or β < 0 or γ < 0 or γ = 0, α = β, we have let cαβγ = 0. µm is called m-th
singular quantity at the origin of system (6).

Lemma 2.2 (see [35]). The first nonvanishing focal value of the origin of system (3): v2m+1

and the first nonvanishing singular quantity of the origin of system (6): µm are related as

v2m+1 = iπµm.

Definition 2.1. If the values µ1 = µ2 = · · · = µk−1 = 0 and µk 6= 0, then the origin of
system (3) is called the fine focus of order k, k = 1, 2, · · · . If for any positive integer k,
µk = 0 hold, then the origin of system (3) is called a center.

Lemma 2.3 (see [35]). If the origin of undisturbed system (3) is a fine focus with n order as
its highest order, then the origin of the system (3) can bifurcate n at most small amplitude
limit cycles under a suitable perturbation.

In order to obtain sufficient conditions for the existence of limit cycles, we introduce the
following lemma.

Lemma 2.4 (see [38]). Suppose that the focus values depend on k parameters, expressed as
vj = vj(ε1, ε2, · · · , εk), j = 1, 3, · · · , 2k+ 1, satisfying vj(0, 0, · · · , 0) = 0, j = 1, 3, · · · , 2k− 1,
v2k+1(0, 0, · · · , 0) 6= 0, and

det[
∂(v1,v3,··· ,v2k−1)
∂(ε1,ε2,··· ,εk) (0, 0, · · · , 0)] 6= 0. (11)

then the origin of the perturbed system (3) has k limit cycles.

3 Hopf bifurcation cyclicity of a segmented disk dynamo mod-
el with friction.

In this section, we analyze the limit bifurcation of system (2), namely segmented disk
dynamo model with friction f 6= 0. It is easy to know that when f < g, system (2) has three

equilibrium points E0 = (0, 0, gf ) and E1,2 = (±d0,±d0, 1) with writing
√

1− f
g = d0, when

f ≥ g, system (2) has only equilibrium point E0.

4



3.1 Singular point quantities of equilibrium point E1

Here we will study the Hopf bifurcation at the symmetric equilibrium point E1,2 of system
(2). For system (2), due to the invariance under transformation (x, y, z) 7→ (−x,−y, z), we
only need to consider the equilibrium point E1 = (d0, d0, 1). By choosing appropriate per-
turbation parameters, we will obtain at most three limit cycles at the symmetric equilibrium
points of system (2) via a Hopf bifurcation synchronously and respectively.

For the convenience of analysis, we translate the equilibrium point E1 to the origin, then
the system (2) changes to the following form:

ẋ(t) = r(y − x),

ẏ(t) = (1 +m)(x− y) + u(x+ d0),

u̇(t) = g − f(1 + u) + gm(x+ d0)
2 − g(1 +m)(x+ d0)(y + d0)

(12)

where d0 =
√

1− f
g .

It is easy to know that the Jacobian matrix of system (12) at the origin is

A1 =


−r r 0

1 +m −1−m d0

(m− 1)d0 −(1 +m)d0 −f

 , (13)

and its corresponding characteristic polynomial is

P (λ) = λ3 + (1 + r +m+ f)λ2 + (rf + g + gm)λ+ 2r(g − f). (14)

Then we let
P (λ) = (λ2 + ω2)(λ+ λ0) (15)

where ω > 0 and λ0 > 0, such that there is a pair of purely imaginary conjugate eigenvalues
eigenvalues ±ωi and one negative eigenvalue −λ0, which implies that E1 is of center-focus
type. Further, we obtain its necessary and sufficient condition:

λ0 = 1 + r + f +m, ω2 = rf + g + gm, fr(f +m+ r + 3)− gd1 = 0 (16)

where d1 = r(1 −m) − (1 + m)(1 + f + m). And from the above third equation, if d1 = 0,
then f +m+ r + 3 = 0, yielding λ0 = −2 < 0, therefore d1 can not vanish, we have

g = G(f,m, r) := fr(f+m+r+3)
d1

, and ω2 =: Θ(f, r,m) = 2rf(1+r+m)
d1

> 0. (17)

Above all, we conclude that if and only if the parameters lie in the set

Ω1 := {(r,m, g, f) : g = G(f, r,m), Θ(f, r,m) > 0, 1 + r + f +m > 0}, (18)

the equilibrium E1, i.e., the origin of system (12) is a weak focus on the center manifold.
For system (12) in the parameter set Ω1, there exists an invertible matrix T2 such that

A1 becomes the following diagonal matrix:

T−12 A1T2 =


iω 0 0

0 −iω 0

0 0 −λ0

 , (19)
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where

T2 =


T11 T12 T13

T21 T22 T23

1 1 1

 ,

in which T11, T12, T13, T21, T22 and T23 see Appendix (A.1).
Further, by non-degenerate linear transformation (x, y, u)′ = T2(z, w, ũ)′, system (12)

becomes the following complex symmetric system:

dz

dT
= z + a200z

2 + a020w
2 + a002u

2 + a110zw + a101zu+ a011wu = Z(z, w, u),

dw

dT
= −(w + b200z

2 + b020w
2 + b002u

2 + b110zw + b101zu+ b011wu) = −W (z, w, u),

du

dT
= d001u+ d200z

2 + d020w
2 + d002u

2 + d110zw + d101zu+ d011wu = U(z, w, u),

(20)

where z, w, u, T ∈ C and ũ is still written as u, the coefficients bkjl = ākjl, dkjl are represented
by the parameters of system (12), kjl = 200, 020, 002, 110, 011, 101.

When applying the transformation: z = x+iy, w = x− iy, T = i t, we can get its complex
conjugate system with the same form of (3):

dx
dt = −y + P2(x, y, u) = X,

dy
dt = x+Q2(x, y, u) = Y,

du
dt = −λ0u+ U2(x, y, u) = U,

(21)

where P2, Q2 and U2 are all quadratic homogeneous polynomials in (x, y, u). In fact, there
exists necessarily a nondegenerate real matrix T1 such that system (12) ban be changed
directly into (21) via the transformation: (x, y, u)′ 7→ T1 (x, y, u)′.

Next, according to Lemma 2.1, we figure out easily the first 10 singular point quantities
at the origin of system (20) as follows

µ1 =
2iωλ20(f − λ0)3F1(f, λ0, ω)

((f − λ0)2 + ω2)(λ20 + ω2)D1
,

µ2 = − iωλ30(f − λ0)5F2(f, λ0, ω)

6((f − λ0)2 + ω2)2(λ20 + ω2)3D2
,

µ3 =
iωλ40(f − λ0)7F3(f, λ0, ω)

576((f − λ0)2 + ω2)3(λ20 + ω2)5D3
,

µ4 = µ5 · · ·µ10 = · · · = 0,

(22)

where
F1(f, λ0, ω) = 2f3λ0 − 3f2λ20 − 10f2ω2 + 2fλ0ω

2 + 2ω4,

D1(f, λ0, ω) = (λ20 + 4ω2)(2f(f − λ0) + (2 + λ0)ω
2)2,

D2(f, λ0, ω) = (λ20 + 4ω2)2(λ20 + 9ω2)(2f(f − λ0) + (2 + λ0)ω
2)4,

D3(f, λ0, ω) = (λ20 + ω2)5(4λ20 + ω2)(λ20 + 4ω2)4(λ20 + 9ω2)2(λ20 + 16ω2)

× (2f(f − λ0) + (2 + λ0)ω
2)6

F2(f, λ0, ω) is shown in Appendix (A.2). The polynomial F3(f, λ0, ω) of 1026 terms is too
long for display, and we have let µ1 = µ2 = µ3 = 0 for each µi, i > 3.
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3.2 Center-focus problem of equilibrium points E1,2

Here, we search possible center conditions and determine the highest order of focus at
E1,2, which is closely related to the maximum number of limit cycles via Hopf bifurcation
around the equilibrium points for system (2).

By analyzing the singular point quantities in (22), one can see a common factor (f−λ0) in
µ1, µ2 and µ3. When the factor (f−λ0) is not zero, real zeros of µ1, µ2 and µ3 are determined
by Fi(f, λ0, ω) (i = 1, 2, 3).

Next, By computing the polynomial resultants of F2, F3 for F1 with respect to f via
Mathematica, we get the following results:

Resultant[F2, F1, f ] = 7077888λ20ω
18(λ20 + ω2)6(λ20 + 4ω2)3G1,

Resultant[F3, F1, f ] = 16307453952λ30ω
22(λ20 + ω2)6(4λ20 + ω2)3(λ20 + 4ω2)7G2,

where

G1 = 1715λ140 + 26411λ120 ω
2 + 133977λ100 ω

4 + 126353λ80ω
6 − 640648λ60ω

8

− 1518912λ40ω
10 − 2592000λ20ω

12 + 419904ω14

and G2 is a polynomial of degree 50 with respect to ω and λ0, see Appendix (A.3).
Furthermore, we have

Resultant[G1, G2, λ0] = 779218637 · · · 0ω700 6= 0, (23)

this shows that there is no λ0 or ω to make G1 = 0 and G2 = 0 hold at the same time, that is,
when G1 = 0, G2 must satisfy G2 6= 0, namely F1 = F3 = 0 can not hold. Now, set G1 = 0,
and calculate the following resultants

Resultant[G1, F1, λ0] = 7077888λ0
2ω18(λ0

2 + ω2)6(λ0
2 + 4ω2)3H8H28,

Resultant[G1, F2, λ0] = 163 · · · 2λ03ω22(λ0
2 + ω2)6(4λ0

2 + ω2)3(λ0
2 + 4ω2)7H8H84,

Resultant[H28, H84, f ] = 535890196 · · · 0ω2352 6= 0,
(24)

where H8 = 180f14 − 3953f12ω2 − 27816f10ω4 − 139446f8ω6 + 156764f6ω8 − 38553f4ω10 −
3528f2ω12 + 1372ω14, H28 =

∑14
i=0Nif

2i and H84 =
∑42

j=0Njf
2j where Ni and Nj are

polynomials in ω2. From the above three resultants (24), we easily know that under the
condition G1 = 0, if and only if H8 = 0, F1 = F2 = 0 holds, and at this time F3 6= 0.

From the above analysis, we get the following lemma.

Lemma 3.1. For the first three singular point quantities at the origin of system (20), if
µ1 = µ2 = 0, then µ3 6= 0 holds under the condition λ0 6= f .

In fact, when λ0 = f , from (16), we get 1 + r +m = 0, then yielding ω2 = 0 in (17), this
contradicts the fact ω > 0, so λ0 6= f must be satisfied. This also implies that the origin of
system (20) is not a center, then we have

Theorem 3.2. The equilibrium points E1,2 can not be centers on the center manifold of
system (2).

Similarly, we can verify that when F1 = F2 = 0, the signed indeterminate factor

d2 := 2f(f − λ0) + (2 + λ0)ω
2

is not equal to zero in D1, D2 and D3 for (22), which shows that all the denominators in the
three expressions (22) can not vanish. According to Lemma 3.1 and the above analysis, the
following theorem obtained.
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Theorem 3.3. If (r,m, g, f) ∈ Ω1 and λ0 6= f , the symmetrical equilibrium E1,2 of system (2)
are weak foci of order at most 3. Moreover, E1,2 are of order i, if and only if (r,m, g, f) ∈ Ci,
i = 1, 2, 3, where

C1 := Ω1 \ {(r,m, g, f) : d2 6= 0, λ0 6= f} \ C2 \ C3,

C2 := {(r,m, g, f) ∈ Ω1 : F1(f, λ0, ω) = 0, F2(f, λ0, ω) 6= 0, d2 6= 0, λ0 6= f},
C3 := {(r,m, g, f) ∈ Ω1 : F1(f, λ0, ω) = F2(f, λ0, ω) = 0, λ0 6= f}.

3.3 Limit cycles bifurcation at equilibrium points E1,2

Now we turn to the discussion about the maximum number of small-amplitude limit cycles
from E1,2 of system (2). According to the lemma 2.3 and the theorem 3.3, we know that
there are at most three small-amplitude limit cycles around the origin of system (21) or the
equilibria E1,2 of system (20), but whether the number of limit cycles can reach three, we
need further analysis and demonstration.

From the discursion in the last subsection, we know that F1, F2 and F3 have no common
zero, but F1 and F2 should have. In fact, only two classes of solution groups satisfy F1 =
F2 = 0 and the other conditions in C3 of the theorem 3.3 as follows

(λ
(1)
0 , f (1))

.
= (1.58165284021ω, 5.32357646783ω),

(λ
(2)
0 , f (2))

.
= (0.38513387878ω, 0.48551387918ω).

(25)

Further, if g and r in the parameter conditions (17) are perturbed as follows

g = − δ2(λ0+2)−4δλ0+(λ0+2)ω2

2(2δ+f−λ0) = − (λ0+2)ω2

2(f−λ0) +O(δ),

r =
λ0(δ2+ω2)(2δ+f−λ0)

δ2λ0+2δ2−4δλ0+2f2+4δf−2fλ0+λ0ω2+2ω2 = λ0ω2(λ0−f)
2f2−2fλ0+λ0ω2+2ω2 +O(δ)

(26)

where |δ| � 1, then we can add linear perturbations to system (21) yielding

ẋ = −y + δx+ P2(x, y, u), ẏ = x+ δy +Q2(x, y, u), u̇ = −λ0u+ U2(x, y, u). (27)

According to the lemma 2.2, for the perturbed real system (27), each focal values v2i−1 of
the origin is analytic at δ = 0 to parameter δ (the detail can be seen in [15, 35]), thus its first
4 focal values can be expressed as follows

v1 = e2πδ − 1 = 2πδ +O(δ), v3 = iπµ1(ω
2, λ0, f) +O(δ),

v5 = iπµ2(ω
2, λ0, f) +O(δ), v7 = iπµ3(ω

2, λ0, f) +O(δ).

Next, we calculate the Jacobian determinant of the function group (v1, v3, v5) with respect
to the variables(δ, λ0, f). Without loss of generality, we choose freely positive real number
ω = 1/1000 and the first set of solutions for which the first three focal values become v1 =
v3 = v5 = 0, v7 = 0.000592461 · · · 6= 0. Moreover, one can directly verify that the Jacobian
evaluated at the critical point has∣∣∣∣∣∣∣

∂v1
∂δ

∂v1
∂λ0

∂v1
∂f

∂v3
∂δ

∂v1
∂λ0

∂v3
∂f

∂v5
∂δ

∂v1
∂λ0

∂v5
∂f

∣∣∣∣∣∣∣
(δ,λ0,f)=(0,λ

(1)
0 ,f (1))

= −2π · (0.31506761 · · · ) 6= 0, (28)

implying that system (27) can have necessarily three small-amplitude limit cycles bifurcating
from the origin by Lemma 2.4.

Based on the above analysis, we know that system (2) can have three small-amplitude
limit cycles bifurcation from the equilibrium E1, and the following theorem can be established.
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Theorem 3.4. At most six limit cycles can be bifurcated around the two symmetric equilibria
E1 and E2 with a (3, 3) distribution via a Hopf bifurcation under small perturbation within
the system (2).

Using numerical method, we get an example of two limit cycles bifurcated from the origin
of system (27) and the symmetrical equilibria E1,2 of system (2) respectively. First we choose
ω = 1

1000 , a = −1, b2 = 51+ε
115 with ε > 0, then we set

b1 = 32δ
3 −

ε
115 −

1431
115 , b4 = 14δ

3 −
ε

115 −
396
115 (29)

where δ > 0. As a matter of fact, by comparison with the conditions (17), it is easy to see
how the perturbation of coefficients occurs in (29), which just makes system (21) become
(27) with perturbed linear parts. Moveover, letting ε = 0.7, δ = −0.001, we have the first
two focal values of the origin v3 = 0.000119 · · · , v5 = −1.49094 · · · .

-0.4 -0.2 0.2 0.4 0.6
x

-0.4

-0.2

0.2

0.4

y

(a) (b)

Fig.1. Phase portraits of system (27) with the initial points (x, y, u) = (0.2, 0.2, 0.2) and

(0.02, 0.02, 0.02) respectively in the projection plane x-y for (a) and in the 3-d space x-y-u for (b).

As shown in Fig.1, these figures illustrate that the trajectories of the system (27) spiral
toward one big stable limit cycle and away from another small unstable limit cycle in the
neighborhood of the origin on a certain approximate center manifold.

4 Hopf bifurcation of friction free segmented disk dynamo
model

In this section, we analyze the limit cycle bifurcation of system (1) at the equilibrium
point. It is easy to know that system (1) has only two symmetric equilibrium points
E± = (±1,±1, 1) for any parameter value. Since the system (1) is invariant under the trans-
formation: (x, y, z) 7→ (−x,−y, z), thus we only analyze equilibrium point E+ = (1, 1, 1).

4.1 Limit cycle bifurcation at equilibrium point E+

First, we note the Jacobian matrix of system (1) at equilibrium point E+ as follows

A =


−r r 0

1 +m −1−m 1

g(−1 +m) −g(1 +m) 0

 . (30)
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Moreover, the characteristic polynomial of A is

P (λ) = λ3 + (1 + r +m)λ2 + g(1 +m)λ+ 2rg. (31)

In order to make the equilibrium point E+ undergo Hopf bifurcation, that is, the Jacobian
matrix A has a pair of purely imaginary eigenvalues ±iω (ω > 0) and a real eigenvalue with
negative real part −λ0 (λ0 > 0), we can obtain the following critical conditions:

(1 + r +m)(1 +m)g = 2rg ⇒ r =
(1 +m)2

m− 1
, (32)

and yielding

ω =
√
g(1 +m), λ0 =

2(1 +m)

1−m
; or g =

(λ0 + 2)ω2

2λ0
,m =

λ0 − 2

λ0 + 2
. (33)

where −1 < m < 1, g(1 + m) > 0. For the convenience of calculation, we translate the
equilibrium point E+ to the origin, then system (1) becomes the following form.

ẋ(t) = r(y − x),

ẏ(t) = z(1 + x) + (1 +m)(x− y),

ż(t) = g[m(x+ 1)2 + 1− (1 +m)(x+ 1)(y + 1)].

(34)

We can construct a matrix T1, which transforms A into a diagonal matrix, that is, using the
non-degenerate linear transformation (x, y, z) = T1(z, w, u), so that

T−11 AT1 =


iω 0 0

0 −iω 0

0 0 −λ0

 , (35)

where

T1 =


− ω2

g(2g+2iω−ω2)
− ω2

g(2g+2iω−ω2)
ω2

−2g+ω2

− 2ig2−igω2+ω3

gω(2g−2iω−ω2)
−−2ig

2+igω2+ω3

gω(2g+2iω−ω2)
1

1 1 0

 , (36)

Therefore, by nonlinear transformation (x, y, z) = T1(z, w, u)T and setting T = iωt, system
(34) becomes the following form similar to system (6):

dz

dT
= z + a200z

2 + a020w
2 + a002u

2 + a110zw + a101zu+ a011wu = Z(z, w, u),

dw

dT
= −(w + b200z

2 + b020w
2 + b002u

2 + b110zw + b101zu+ b011wu) = −W (z, w, u),

du

dT
= d001u+ d200z

2 + d020w
2 + d002u

2 + d110zw + d101zu+ d011wu = U(z, w, u),

(37)

where T ∈ R, z, w, u ∈ C, and bkjl = ākjl, dkjl (kjl = 200, 020, 002, 110, 011, 101) Appendix
(A.4).

Now, using the recursive formula in Lemma 2.1, we can easily calculate the first 10 singular
point quantities of the origin of system (37):

If m 6= 1, then

µ1 =
2i(−1 +m)3(1 +m)2

√
g(1 +m)

(1 + g(−1 +m)2 +m)(g(−1 +m)2 + 4(1 +m))2
. (38)
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From the condition of (32), we know that m 6= ±1, g 6= 0, therefore µ1 must satisfy µ1 6= 0
(namely the equilibrium point E+ is never a center). This also implies that equilibrium E+

can produce a limit cycle at most. However, we can take g as a small perturbation parameter
(i.e. g = ε � 1, µ1 ≈ 0), so that the equilibrium point E+ becomes a second-order weak
focus.

If m 6= 1, then

µ2 = −2i(−1 +m)3(1 +m)6f1(ε,m)

3M1(ε,m)
,

µ3 = µ4 · · · = 0,

(39)

where f1(ε,m) = 80(1 + m)3 +
∑3

i=1Hiε
i, M1(ε,m) = 4096(1 + m)8 +

∑8
j=1Hjε

j (Hi and
Hj are all polynomials just in m).

In fact, when the perturbation parameter ε is small enough to approach zero, the first
singular point quantity also approaches zero (i.e.µ1 ≈ 0). Thus f1 ≈ 80(1 + m)3 6= 0
(i.e.µ2 6= 0). Further, we obtain the following Theorem.

Theorem 4.1. At most two limit cycles can be bifurcated around the two symmetric equilibria
E+ and E1 with a (2, 2) distribution via a Hopf bifurcation under small perturbation within
the system (1).

In order to verify the results of the theoretical analysis, in the next subsection, we perturb
the bisymmetric limit cycle at the symmetric equilibrium point E+ of system (1) by numerical
simulation.

4.1.1 Numerical simulation of bisymmetric limit cycles at symmetric equilibri-
um point E+

By satisfying conditions (32) and (38), the parameter values are set as follows:

r = 12.25, m = 0.75, g = 20.

Then this characteristic equation (31) has a pair of purely imaginary roots and a real root with
negative real part, ±5.91608i, −14. First, we set a sufficiently small perturbation parameter
δ on the coefficient m. And δ as a new independent variable, namely,

m = 0.75 + δ,

then system (34) can be converted into the following form:

ż1 = −5.91608z2 + f1(z1, z2, z3, δ),

ż2 = 5.91608z1 + f2(z1, z2, z3, δ),

ż3 = −14z3 + f3(z1, z2, z3, δ),

(40)

via the variable transformation:
x

y

z

 =


−0.0530303 −0.125493 −7

0.00757576 −0.151103 1

1 0 0



z1

z2

z3

 , (41)

where

f1(z1, z2, z3, δ) = 0, 004329(1.18322× 102z2δ − 280(132z3 + z1)δ) +Nf1(z1, z2, z3, δ),

f2(z1, z2, z3, δ) = 47.3286z3δ − 0.151515z2δ + 0.35855z1δ +Nf2(z1, z2, z3, δ),

f3(z1, z2, z3, δ) = 0.363636z3δ + 0.000196773(−5.91608z2δ + 14z1δ) +Nf3(z1, z2, z3, δ),
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and Nfi (i = 1, 2, 3) can be seen in Appendix (A.5).
Similar to the previous calculation, system (40) is restricted to the following two-dimensional

center manifold.

ż1 = −2.42424z1(1 + 0.0362062δ)δ + 0.000070553z2

× (83853 + 14520δ + 1280δ2) +O(||(z1, z2)||2),
ż2 = −0.000834794z2δ(363 + 32δ) + 0.179275z1

× (−33 + 4δ + 0.144825δ2) +O(||(z1, z2)||2).

(42)

Thus, the eigenvalues of the linear part of system (42) are α(δ)± β(δ)i, where

α(δ) = −0.121212δ − 0.057243δ2,

β(δ) = 0.5
√

140 + 7.27273δ − 5.91535δ2 − 0.624469δ3 − 0.0131071δ4.

Then we have
α(0) = 0, β(0) = 5.91608 > 0,

dα

dδ

∣∣
δ=0

= −0.121212 6= 0.

According to the Hopf bifurcation theorem, system (42) will produce a Hopf bifurcation near
the origin. In other words, system (40) experiences a Hopf bifurcation near the origin. In
order to verify the results of the theoretical analysis in the previous section, we can obtain
the Hopf bifurcation solution and its stability via the calculation of the normal form [33]:

dr

dt
= r(−0.121212δ − 0.0289052r2),

dθ

dt
= 5.91608 + 0.35855δ − 1.06061r − 0.012499r2,

(43)

where r and θ represent the phase and amplitude of periodic orbital motion respectively.
By equation (43), we can obtain an initial equilibrium solution r1 = 0 and a unique Hopf

bifurcation solution r21 = −4.19343δ. When δ < 0, the stability of the Hopf bifurcation
solution is determined by d

dr (drdt ) = 0.24299δ, which means that the limit cycle bifurcation
solution is stable, as shown in Fig. 1.

(a) (b)

Figure 1: Trajectory projection of system (34) with initial condition (x0, y0, z0) =(0.15, 0.15,
0.15) when δ = −0.01. (a) x(t)-y(t)-z(t)-space and (b) x(t)-z(t)-plane.

5 Jacobi Stability of The Segmented Disc Dynamo System
with Friction Coefficient

In this section, we calculate the KCC invariant of system (2), by changing system (2) into a
second-order differential equation. From the first equation of system (2), y can be expressed

12



as

y =
rx+ ẋ

r
. (44)

By substituting y into the second equation of system (2), we obtain

−1

r
(rẋ+ ẍ+mẋ+ ẋ) + xz − x = 0. (45)

Taking the derivative of the third equation of system (2) with respect to time t we get

z̈ = −fż + 2gmxẋ− gmxẏ − gmẋy − gxẏ − gẋy. (46)

Substituting Eq. (44) and Eq. (45) into Eq. (46), we obtain the following equation for z̈,

z̈ − 1

r
[rzf2 + ẋxfg(m+ 1) + fgr

(
x2 − 1

)
+ grxẋ((m− 1)

− x(m+ 1)(z − 1)) + gẋ(m+ 1)(mx+ x− ẋ)] = 0.
(47)

In above system of equation, let us change the notation as

x = x1,
dx

dt
= y1, z = x2,

dz

dt
= y2,

then Eq. (47) can be changed into the following second-order differential equation

d2xi
dt2
− 2Gi(xi, yi, t) = 0, i = 1, 2,

where

G1(x1, x2, y1) =
1

4
[rx1(−1 + x2)− (1 +m)y1 − ry1],

G2(x1, x2, y1) =
1

4r
[fgr(−1 + x21)− f2rx2 − fgx1y1(1 +m)

− grx1(x1(−1−m)(−1 + x2) + (−1 +m)y1)

− gy1(1 +m)(x1 +mx1 − y1)].

Therefore, we can first get the components of nonlinear connection, as shown in the following
form

N1
1 =

1

2
(−1−m− r), N1

2 = N2
2 = 0,

N2
1 =

1

2r
[−g(1 +m2 + f(1 +m)− r +m(2 + r))x1 + 2g(1 +m)y1].

For the components of the Berwald connection we obtain

G1
12 = G1

21 = G1
22 = G2

12 = G2
21 = G2

22 = G1
11 = 0,

G2
11 =

1

r
g(1 +m).

Meanwhile, the components of the first KCC-invariant and the deviation curvature tensor
namely the second KCC-invariants can be obtained as

ε1 = rx1(−1 + x2)−
1

2
[(1 +m)y1 − ry1],

ε2 =
1

2r
[−2f2rx2 − fg(2r(−1 + x21) + (1 +m)x1y1)

+ gx1(−(1 +m)2y1 + r(2x1(1 +m)(−1 + x2) + y1 −my1))],
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and

P 1
1 = r +

1

4
(1 +m+ r)2 − rx2, P 1

2 = −rx1,

P 2
2 = f2 − g(1 +m)x21, P 2

1 =
1

2r
[g((1 +m)(3 + f + 3m)y1

+ r(4fx1 − 6x1(1 +m)(−1 + x2) + y1 + 3my1)))].

(48)

In fact, the matrix of the deviation tensor is given by P 1
1 P 1

2

P 2
1 P 2

2

 ,

and its characteristic equation is

λ2 − (P 1
1 + P 2

2 )λ+ P 1
1P

2
2 − P 2

1P
1
2 = 0. (49)

Via the definition [39] and the Routh-Hurwitz criteria, we can determine the Jacobi stability
of the segmented disc dynamo system. That is, system (2) is Jacobi stable only when

−(P 1
1 + P 2

2 ) > 0, P 1
1P

2
2 − P 2

1P
1
2 > 0, (50)

otherwise it is Jacobi unstable. Therefore, the results of Jacobi stability at the equilibrium
point can be obtained as follows.

Theorem 5.1. (a) The equilibrium point E0 = (0, 0, gf ) of the system (2) is Jacobi unstable
for any parameter value.
(b) The equilibrium point E1,2 = (±d0,±d0, 1) are Jacobi stable if it satisfies simultaneously
the constraints

r ∈ R and g >
r(2m+ r + 2)

4(m+ 1)
, m > −1

1

2

(
−
√

∆−m− 1
)
< f <

1

2

(√
∆−m− 1

)
,

(51)

where ∆ = 4g(m+ 1)− r(2m+ r + 2), and Jacobi unstable, otherwise.

Proof. (a) Calculation the components of the deviation curvature tensor at the the equilibri-
um point E0,

p11(E0) = −gr
f

+
1

4
(m+ r + 1)2 + r, P 1

2 (E0) = P 2
1 (E0) = 0, P 2

2 (E0) = f2.

Then it is easy to obtain the eigenvalues of the deviation curvature tensor at at the the
equilibrium point E0 by using Eq. (53) as

λ+(E0) = f2, λ−(E0) =
1

4

(
r

(
−4g

f
+ r + 6

)
+m2 + 2m(r + 1) + 1

)
. (52)

Therefore, Eq. (52) means that the eigenvalue is always positive, so the equilibrium point E0

is Jacobi unstable.
(b)Due to the system (2) are invariant under the transformation (x, y, z) 7→ (−x,−y, z), thus
we only analyze equilibrium point E1. The Jacobi matrix at the equilibrium point E1 is

pij =

 1
4(m+ r + 1)2 −r

√
1− f

g

2f
√
g2 − gf f2 + (m+ 1)(f − g)

 ,
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its characteristic equation is

λ2 − tr(pij)λ+ det(pij) = 0. (53)

By using Routh-Hurwitz criteria, we obtain the result (51).

6 Conclusion

In this work, we have studied the limit cycle bifurcation problem of two kinds of segment-
ed disc dynamo system by applying the formal series method of computing singular point
quantities. And we have strictly proved that the SDD model perturbs at most four small
amplitude limit cycles simultaneously at the symmetric equilibrium point E± = (±1,±1, 1),
two of which are stable. Furthermore, we also study in detail that SDDF model perturbs at
most six limit cycles synchronously at the symmetric equilibrium point E1,2 = (±d0,±d0, 1),
four of which are stable. In addition, by choosing the appropriate bifurcation parameters,
we have found the bifurcation path of the limit cycle and judged the bifurcation direction.
Via numerical simulation, the results of theoretical analysis have been perfectly verified. At
the same time, it also implies that limit cycle oscillation will occur when SDD and SDDF
systems are operating on a certain parameter interval.
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Appendix A

T11 =
iM2λ0(−f + λ0)ω

(f − λ0 − iω)(2f(f − λ0) + (2 + λ0)ω2)
, T12 = − iM2λ0(−f + λ0)ω

(f − λ0 + iω)(2f(f − λ0) + (2 + λ0)ω2)
,

T13 = − f − λ0
2M2f +M2fλ0

, T21 = −M2(2f(f − λ0) + i(f − λ0)λ0ω + (2 + λ0)ω
2)

(f − λ0 − iω)(2f(f − λ0) + (2 + λ0)ω2)
,

T22 = −M2(2f(f − λ0)− i(f − λ0)λ0ω + (2 + λ0)ω
2)

(f − λ0 + iω)(2f(f − λ0) + (2 + λ0)ω2)
, T23 =

M2(2f(−f + λ0)− (2 + f)ω2)

f(2f(f − λ0) + (2 + λ0)ω2)
,

M2 =
√

1 + 2f(f − λ0)/(2 + λ0)ω2.
(54)

a200 =
λ20(−3iλ0 + 4ω)

4(2 + λ0)(λ0 + iω)2ω
, a110 =

iλ20(λ0 + 2iω)

2(2 + λ0)ω(λ20 + ω2)
,

a010 = −λ0(λ0 + 2iω)

4(λ0 + iω)
, a020 =

iλ30
4(2 + λ0)(λ0 − iω)2ω

,

a011 = − λ20
4λ0 − 4iω

, a002 = − iλ0(2 + λ0)ω

16
,

d200 = − λ30(2λ
2
0 + iλ0ω + 2ω2)

(2 + λ0)2(λ0 − iω)(λ0 + iω)3ω2
, d110 =

2iλ40
(2 + λ0)2ω(λ20 + ω2)2

,

d101 =
iλ20(λ

2
0 + iλ0ω + ω2)

(2 + λ0)(λ0 − iω)(λ0 + iω)2ω
, d020 =

λ30(2λ
2
0 − iλ0ω + 2ω2)

(2 + λ0)2(λ0 − iω)3(λ0 + iω)ω2
,

d011 =
λ20(iλ

2
0 + λ0ω + iω2)

(2 + λ0)(λ0 − iω)2(λ0 + iω)ω
, d002 =

iλ20ω

4(λ20 + ω2)
.

(55)
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Nf1 = z22(−0.4274568− 0.0642715δ) + z23(979.99999 + 119.99999δ) + z1(0.0564426079z1

− 1.212211212δ + 0.062715518z1δ) + z2(−0.04753631z1 + 0.5124698δ + 0.1249443z1δ)

+ z3(14.84848848z1 − 159.999999δ + 16.969696z1δ + z2(−6.27463007 + 16.49331333δ)),

Nf2 = 41.41258z3z1 + 0.7242z2z1 + 0.31331z21 + 47.32882z3δ − 0.155151z2δ + 0.3585284z1δ,

Nf3 = z23(−7.42424− 8.48444δ) + z22(0.00383 + 0.000869δ) + z3(−0.854124z1 + z2(0.047535

− 0.124993δ) + 0.36366δ − 0.12858z1δ) + z2(−0.012947z1 − 0.014127δ − 0.094658z1δ)

+ z1(−0.00605051z1 + 0.00275482δ − 0.00048696z1δ).
(56)

f2 = 64f4(f − λ0)2λ80(−2f + 3λ0) + f2λ60(−640f5 + 3536f4λ0 − 5688f3λ20

+ 3128f2λ30 − 270fλ40 + 15λ50)ω
2 − 2fλ40(448f6 − 4784f5λ0 + 12992f4λ20

− 12528f3λ30 + 3330f2λ40 − 378fλ50 + 5λ60)ω
4 + λ20(−3456f7 + 22032f6λ0

− 69400f5λ20 + 100440f4λ30 − 43966f3λ40 + 6311f2λ50 + 412fλ60 − 10λ70)ω
6

+ 2λ0(14688f6 − 55880f5λ0 + 96856f4λ20 − 60508f3λ30 + 10865f2λ40

+ 1111fλ50 + 50λ60)ω
8 + 2(−31968f5 + 67296f4λ0 − 70904f3λ20 + 16000f2λ30

+ 2724fλ40 − 233λ50)ω
10 − 192(180f3 + 46f2λ0 − 109fλ20 + 22λ30)ω

12 + 8640fω14).
(57)

G2 = 5126135λ500 + 268110066λ480 ω
2 + 1502553085λ− 046ω4 − 520598497926λ440 ω

6

− 34949021828178λ420 ω
14 − 1260337141317916λ400 ω

10 − 29914183333475478λ380 ω
12

− 500020317085453044λ360 ω
14 − 6094302809080027349λ340 ω

16 − 5531653499158λ320 ω
18

− 378944349371621917791λ300 ω
20 − 19740103509002512λ280 ω

22 − 782381173445λ260 ω
24

− 232478181683428λ240 ω
26 − 4853512758411730803λ220 ω

28 − 50557038465137280λ200 ω
30

+ 9177992526648467λ180 ω
32 + 62198405253177866829λ160 ω

34 + 179615716630024λ140 ω
36

+ 35355356946162879894λ120 ω
38 + 505917133669081λ100 ω

40 + 5187437948120λ80ω
42

+ 351790582998186433λ60ω
44 + 12050077796558696223λ40ω

46 + 56540934714576λ20ω
48

− 475383650683862464000ω50.
(58)
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