
P
os
te
d
on

20
A
p
r
20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
71
35
97
75
.5
02
78
36
1/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Uncertain optimal control problem of production and inventory

under time-varying customer demand

Ting Jin1, Zixuan Li1, Tingqing Ye2, Yifu Song1, and Shijun Xiao3

1Nanjing Forestry University
2Beihang University
3University of Birmingham

April 20, 2024

Abstract

In the dynamic landscape of global trade and logistics, the optimization of inventory control has risen as a crucial topic of

academic discourse. Acknowledging that inventory management functions as the intersection of production and sales, these

domains often manifest significant uncertainty, which consequently poses formidable challenges to the inventory management

optimization. This paper leverages uncertainty theory in a novel approach to articulate the optimal production strategy for

navigating time-varying demand with inherent fluctuations. And the inventory state equation, characterized by fluctuations,

is proposed as a constraint condition. By factoring in the residual value of terminal inventory, a production inventory model

catering to time-varying demand is devised, and the optimal production strategy is ascertained. Simultaneously, solutions

along the α- Path are introduced to procure more intuitive numerical results. Finally, a case study of Chinese clothing sales was

harnedded to substantiate the reliability of the model conclusion. This research amplifies the application of uncertainty theory

to the optimization of production strategies, offering a novel perspective on inventory control in the ambit of uncertain factors.

It provides a theoretical paradigm for companies with uncertain customer needs to orchestrate production, thereby bolstering

the operational efficiency and profitability of the company.
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Abstract
In the dynamic landscape of global trade and logistics, the optimization of inven-

tory control has risen as a crucial topic of academic discourse. Acknowledging that
inventory management functions as the intersection of production and sales, these
domains often manifest significant uncertainty, which consequently poses formidable
challenges to the inventory management optimization. This paper leverages uncer-
tainty theory in a novel approach to articulate the optimal production strategy
for navigating time-varying demand with inherent fluctuations. And the inventory
state equation, characterized by fluctuations, is proposed as a constraint condition.
By factoring in the residual value of terminal inventory, a production inventory
model catering to time-varying demand is devised, and the optimal production
strategy is ascertained. Simultaneously, solutions along the α- Path are introduced
to procure more intuitive numerical results. Finally, a case study of Chinese cloth-
ing sales was harnedded to substantiate the reliability of the model conclusion. This
research amplifies the application of uncertainty theory to the optimization of pro-
duction strategies, offering a novel perspective on inventory control in the ambit
of uncertain factors. It provides a theoretical paradigm for companies with uncer-
tain customer needs to orchestrate production, thereby bolstering the operational
efficiency and profitability of the company.

Keywords: Optimization of Inventory Control, Uncertainty Theory, Cycle cus-
tomer demand, Optimality Equation, α-Path
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1 Introduction
With the emergence of trade globalization and the widespread adoption of global logistics,
optimal inventory control has ascended to become one of the most compelling academic
topics today. Optimal control pertains to the pursuit of a control under given constraints
to realize a maximum (or minimum) of a given system performance index. It is categorized
into deterministic optimal control, stochastic optimal control, and uncertain optimal con-
trol, predicated on the consideration of uncertain factors. The optimal inventory control
resides in the middle stage of actual production and maintains a strong correlation with
upstream production and downstream sales. There are inherently many uncertain factors
in the production and sales process, which consequently leads to significant uncertainty
in optimal inventory control. This uncertainty can be perceived as a disturbance to the
production inventory system, and this disturbance will induce some changes and effects
on the production inventory plan. Therefore, it is imperative to consider uncertainty
when studying optimal inventory control.

The current research on inventory control predominantly focuses on the dynamic in-
ventory and pricing of perishable products. In contrast to the optimal control of random
models, the uncertain optimal control eradicates the dependence on confidence. The
consideration of external disturbances as random variables necessitates the use of prob-
ability theory tools, while the underlying assumption of using probability theory is that
the obtained probability distribution is sufficiently aligned with the true frequency. How-
ever, in the scenario of inadequate data support, relying solely on experience to estimate
confidence is untenable, which makes uncertainty theory emerges as a more reliable tool.

The salient contributions of this article encompass the following aspects: It contem-
plates time-varying customer demand, which exhibits temporal variations and typically
possesses characteristics of instantaneity and periodicity. It delves into the optimal pro-
ductivity of a company predicated on customer demand when the demand rate fluctuates
periodically. This article provides a robust framework for companies to strategically devise
production strategies to cater to diverse customer needs, mitigate storage and production
management costs, and realize enhanced profits.

The composition of this article is articulated as follows: Chapter 1 furnishes an
overview of the research purpose, methods, and content of this article. Chapter 2 un-
dertakes a review of extant literature on optimal inventory control. Chapter 3 proffers a
preliminary introduction to the uncertain optimal control model. Chapter 4 formulates
an uncertain optimal control model and Chapter 5 elucidates the processes to decipher it.
Chapter 6 employs Chinese clothing sales data to validate the proposed model. Chapter
7 recapitulates and summarizes the entire text.

2 Literature Review
There has been a wealth of literature on inventory control in the past, and many scholars
such as Pooya and Balata have conducted detailed research on inventory control[1][2].This
chapter aims to summarize existing literature from three aspects: deterministic optimal
control, stochastic optimal control, and uncertain optimal control.

2



Athans (1966) first focused on organizing past research on deterministic optimal con-
trol and provided suggestions for future research directions[3]. Bertsekas considered the
deterministic discrete-time optimal control problem in the infinite time domain in 1979[4],
and later expanded this research to the terminal state set in 2015[5]. Reissig (2016) re-
considered the problem in uncertain or prior bounded time[6]. Dupuis (2001) considered
a numerical approximation method based on Markov chains for a class of deterministic
nonlinear optimal control problems[7].

Soravia (2008) defined the viscous solution of the Aronsson equation and proved that
the corresponding value function for determining the optimal control problem is the so-
lution of the bilateral viscous solution of the Hamilton-Jacobi-Bellman equation[8]. In
the same year, Akian proposed another finite element MAX-PLUS method to solve such
problems[9]. Gonz ¨¢ lez Aribas (2018) introduced a framework based on optimal con-
trol to solve robust and efficient trajectory planning problems under wind prediction
uncertainty[10]. Lefebvre (2022) obtained a random search algorithm suitable for trajec-
tory optimization by estimating expected values through Monte Carlo sampling[11].

Porteus first proposed the concept of random inventory theory in his book Founda-
tions of Stochastic Inventory Theory in 2002[12]. Afterwards, Gao et al. (2013) consid-
ered the general dynamic resource allocation problem within a stochastic optimal control
framework[13]. Later Nie et al. (2014) studied the theory of optimizing stationary ran-
dom vibration disturbances in the context of wave energy collection[14]. Chen et al.
proposed and analyzed a multi-level weighted reduction basis method for solving Stokes
equation constrained stochastic optimal control problems in 2015, which improved com-
putational efficiency in high-dimensional situations[15]. In the same year, Malikopoulos
considered the problem of minimizing the long-term expected average cost of a complex
system composed of interactive subsystems and provided a framework to demonstrate
that the control strategy for generating Pareto optimal solutions minimizes the average
cost criterion of the system[16]. Lesniewski (2020) studied the optimal control problem of
stochastic SIR model in the context of COVID-19[17]. Vlasenko et al. (2020) studied the
optimal control problem of singular systems under the evolution description of Ito differ-
ential equations[18]. De Vecchi et al. (2021) derived an extension of Noether’s theorem
in stochastic optimal control problems[19].

Liu founded the uncertainty theory in the book Uncertain Optimal Control in 2008[20],
and later extended it to fuzzy mathematics and financial mathematics theory[21]. Zhu et
al. combined uncertainty theory with optimal control in 2010 and studied the expected
value model of uncertain optimal control problems in 2013[22] [23], providing the opti-
mality principle of the model. Later, in the same year, he used the Hurwicz criterion and
uncertain differential equations to solve the problem again[24] [25]. Subsequently, in 2016,
uncertain optimal control problems were solved in uncertain linear systems with multiple
input delays and linear quadratic conditions, respectively[26]. In 2018, Sheng et al. de-
scribed a production inventory model under uncertain dynamic systems. They attribute
the change in inventory to sudden fluctuations in sales. In addition, they use threshold
criteria to consider decision makers’ risk attitudes[27]. Subsequently, In 2020, research
on the optimal control problem of multi-level dynamic systems was completed[28]. In
addition, Yao (2013)[29], Kaya (2017)[30], Duan (2018)[31], Shi (2022) and others have
conducted detailed research on this aspect[32]. Specifically, Yao’s (2013) study introduced

3



the concept of uncertain differential equations α- Path and its related numerical solutions
provide a very effective method and approach for solving uncertain differential equations,
and also play a highly guiding role in solving the model in this paper.

Upon synthesizing existing literature, the novelty of this article manifests as follows:
It employs uncertainty theory to decipher the optimal production strategy under time-
varying demand when the demand rate exhibits periodic variations; In the process of
solving the model, the analytical solution is inherently complex, prompting the consid-
eration of introducing a numerical solution using the α-path to procure more intuitive
numerical results.

3 Preliminary Study on Uncertain Optimal Control
Cs represents the prototypical Liu process, and we consider the following uncertain ex-
pected value optimization problem

J(0, x0) ≡ sup
ut∈U

E[

∫ T

0

f(s, us, Xs)ds+G(T,XT )]

s.t.
dXs = v (s, us, Xs) ds+ σ (s, us, Xs) dCs and X0 = x0,

(3.1)

where Xs represents the state variable, and Us represents the decision variable (func-
tion Us(s,Xs) is represented by time s and state Xs), whose value resides in the set U . f
represents the profit objective function, and G represents the terminal reward function.
For any given us, Xs is provided by the constraint equation in model (3.1), where v and
σ are two functions of time s, decision variable Us, and state variable Xs. The function
J(0, x0) represents the optimal expected return that can be obtained in the time interval
[0, T ], with the initial condition being in the initial state x0 at time 0. For any 0 < t < T ,
J(t, x) is the expected best return that can be obtained in [t, T ], assuming that at time t
we are in state Xt = x, which corresponds to model (3.2).

J(t, x) ≡ sup
ut

E

[∫ T

t

f (s, us, Xs) ds+G (T,XT )

]
s.t.
dXs = v (s, us, Xs) ds+ σ (s, us, Xs) dCs

(3.2)

3.1 Principle of optimality
Now we propose the optimality principle for uncertain optimal control. For ∀(t, x) ∈
[0, T )×R, we stipulate that ∆t > 0,t+∆t < T , and we establish

J(t, x) = sup
ut

E [f (t, ut, Xt)∆t+ J (t+∆t, x+∆Xt) + o(∆t)] , (3.3)

where x+∆Xt = Xt+∆t.
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3.2 Optimality Equation
In the context of the uncertain optimal control problem (3.2), we present a fundamental
result known as the optimality equation in uncertain optimal control.

(Optimality equation) Let J(t, x) be differentiable twice on [0, T ]× R, it follows that

−Jt(t, x) = sup
ut

{f (t, ut, x) + Jx(t, x)v (t, ut, x)} . (3.4)

where, Jt(t, x) and Jx(t, x) denote the partial derivatives of function J(t, x) with respect
to t and x respectively.

4 Model description and formulation
As customer demand fluctuates, the company’s production and inventory plans neces-
sitate adaptive adjustments. The initiation of production incurs associated production
costs, and if the manufactured product does not immediately find a market, additional
storage costs accrue. To optimize profitability, companies must adeptly manage both
production and storage costs, making production control paramount. With demand as
a determining factor, diverse production strategies are devised to align with customer
needs. Moreover, by implementing these production strategies, companies can aspire to
attain peak profitability.

We define the following symbols:

Table 1: Symbol description

Symbol Explanation
It inventory level at time t(state variable)
Pt Productivity of time t(control variable)
St The demand rate for time t and S > 0
T Cycle length
I0 Initial inventory level
L Residual value per unit of inventory at time T
Ct Typical Liu process
σ Constant diffusion coefficient.

To optimize production, it is imperative to establish an optimization control model.
P is the control variable, I is the state variable, and the state equation is given by
the inventory flow differential equation İ = P (t) − S(t). In addition, there are many
uncertain factors in the production and storage processes, which can lead to fluctuations
in inventory products. Therefore, we add uncertainty process Ct to the original equation to
represent this fluctuation and obtain the final state equation dIt = (Pt − St) dt+σdCt. To
maximize operational efficiency, it is imperative to maximize the residual inventory value
at the terminal time. Moreover, the minimization of production and storage costs over
the entire cycle T is crucial. Specifically, this corresponds to maximizing the reciprocal

5



of the sum of production and storage costs throughout the entire cycle. Assuming that
production and storage costs are quadratic in terms of production and inventory, it can
be understood as the maximum value of ”terminal residual value minus production and
inventory costs assumed to be quadratic”.

If S = Asin(πBt + C) +D, indicating cyclical customer demand. We recognize that
certain products exhibit periodic demand, exemplified by items like ice cream, with dimin-
ished demand in winter and escalated demand in summer, exhibiting seasonal fluctuations.
For the sake of clarity, we denote x as I and derive model(4.1).

J(0, x0) = maxE{LxT −
∫ T

0

(Pt
2 + xt

2)dt}

s.t.
dxt = (Pt − A sin(πBt+ C)−D)dt+ σdCt

(4.1)

Let Hx,P =
∫ T

t
(Ps

2 + xs
2)ds − LxT , and we consider Hx,P has a regular uncertainty

distribution Ψ(x). When t = 0, the model(4.1) can be transformed into model(4.1’).
J(0, x0) = minE{

∫ T

0

(Pt
2 + xt

2)dt− LxT}

s.t.
dxt = (Pt − A sin(πBt+ C)−D)dt+ σdCt

(4.1’)

5 Optimal production policy under cycle customer
demand

In this model, J(t, x) represents the value function in optimal control. Derived the un-
certain optimal equation (3.4), we have

max
[
−
(
P 2 + x2

)
+ Jt + Jx(P − Asin(πBt+ C)−D)

]
= 0, (5.1)

where, Jx and Jt represent the partial derivatives of J with respect to x and t, respectively.
In addition, In addition, we denote xt and Pt as x and P to prevent confusion between
Jx, Jt and xt, Pt. Let F = Jt + Jx(P − S)− (P 2 + x2) and taking the derivative of P and
making it zero, we can obtain that

P ∗ =
Jx
2
. (5.2)

Here we introduce a lemma and a theorem

Lemma 5.1 (Ting-Yang) The value function J(t, x) = minE[Hx,P ] is equivalent to
the value function J̃(t, x) = min{µHx,Psup(η) + (1 − µ)Hx,Pinf

(η)} , where µ ∈ [0, 1], η ∈
(0, 1), Hx,Psup(η) = Ψ−1(1− η), Hx,Pinf

(η) = Ψ−1(η), and Ψ−1(x) is the inverse uncertainty
distribution of Hx,P .
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Theorem 5.1 (Andy-Vivian) J(t, x) = minE[Hx,P ] is strictly convex to ∀t ∈ [0, T ], x ∈
R about x.

We acknowledge that the optimal P defined by equation(5.2) on [0, T ] exists, supported
by the convexity of J(t, x) as stated in the Andy − V ivian theorem. The Ting − Y ang
lemma furnishes theoretical underpinnings for the proof of the Andy − V ivian theorem.
The detailed proofs can be found in the appendix.

Substituting (5.2) into equation(5.1) results in

J2
x

4
− x2 + Jt − (Asin(πBt+ C) +D) · Jx = 0. (5.3)

According to (4.1), we can assume the the following form:

J(t, x) = q(t)x2 + r(t)x+m(t), (5.4)

taking the partial derivative of J yields

Jx = 2qx+ r, Jt = q̇x2 + ṙx+ ṁ. (5.4’)

Substituting into equation(5.3) results in(
q2 + q̇ − 1

)
x2 + [qr + ṙ − 2q(Asin(πBt+ C) +D)]x+

1

4
r2 + ṁ− rS = 0. (5.5)

Given that the above equation holds for any x and satisfies the boundary condition
J(T, x) = Lx, we can obtain the coefficients by comparing them:{

q2 + q̇ − 1 = 0
q(T ) = 0

(5.6)

{
qr + ṙ − 2q(Asin(πBt+ C) +D) = 0
r(T ) = L

(5.7)

{
1
4
r2 + ṁ− r(Asin(πBt+ C) +D) = 0

m(T ) = 0.
(5.8)

Note that P ∗ = Jx
2

= qx + 1
2
r is not related to m, thus, there is no need to solve the

differential equations(5.8).
Next, solve equations(5.6) and(5.7). Equation(5.6) is a simple ordinary differential

equation. By separating variables we can derive the solution as follows:

q =
e2(t−T ) − 1

e2(t−T ) + 1
. (5.9)

Substituting (5.9) into (5.7) results in

ṙ = 2(Asin(πBt+ C) +D) · e
2(t−T ) − 1

e2(t−T ) + 1
− r · e

2(t−T ) − 1

e2(t−T ) + 1
, (5.10)

7



which is a differential equation concerning r. Note that the solution of r varies with the
variation of S, leading to diverse yields for P .

In addition, the requirements S differ among various products. In this article, we
consider the demand function S = Asin(πBt + C) + D that exhibits periodic variations
over time.

Equation (5.10) and (5.7) are transformed into{
dr
dt

= −r · e2(t−T )−1
e2(t−T )+1

+ 2(Asin(πBt+ C) +D) · e2(t−T )−1
e2(t−T )+1

r(T ) = L.
(5.7’)

The ordinary differential equation (5.7’) is solved using the method of constant variation
as outlined below

r = e
∫
− e2(t−T )−1

e2(t−T )+1
dt
(

∫
2(Asin(πBt+ C) +D) · e

2(t−T ) − 1

e2(t−T ) + 1
· e

∫
e2(t−T )−1

e2(t−T )+1
dt
+ C̃). (5.11)

and ∫
e2(t−T ) − 1

e2(t−T ) + 1
dt =

∫
e2(t−T )

e2(t−T ) + 1
dt−

∫
1

e2(t−T ) + 1
dt, (5.12)

Let e2(t−T ) = v, then dt = 1
2v
dv, (v > 0). Solve the equation(5.12) we can obtain∫
v

v + 1
· 1

2v
dv −

∫
1

v + 1
· 1

2v
dv

=
1

2
ln(1 + v)− 1

2
ln

v

v + 1

=
1

2
ln
(
1 + e2(t−T )

)
− 1

2
ln

e2(t−T )

e2(t−T ) + 1

= ln(1 + e2(t−T ))− (t− T ). (5.13)

Substituting equation (5.13) into (5.11) results in

r =
et−T

e2(t−T ) + 1

[∫
2(Asin(πBt+ C) +D) · e

2(t−T ) − 1

et−T
dt+ C̃

]
. (5.14)

while∫
2(Asin(πBt+ C) +D) · e

2(t−T ) − 1

et−T
dt

=

∫
2Asin(πBt+ C) · e

2(t−T ) − 1

et−T
dt+

∫
2D · e

2(t−T ) − 1

et−T
dt (5.15)

=

∫
2Asin(πBt+ C)

(
et−T − eT−t

)
dt+ 2D(

∫
et−Tdt−

∫
eT−tdt)

= 2A(

∫
sin(πBt+ C) · et−Tdt−

∫
sin(πBt+ C) · eT−tdt) + 2D(et−T + e−(t−T )),

8



Utilizing the method of integration by parts, we can obtain that:∫
sin(πBt+ C) · et−Tdt

= sin(πBt+ C) · et−T − πBcos(πBt+ C) · et−T − π2B2

∫
sin(πBt+ C) · et−Tdt (5.16)

Namely∫
sin(πBt+ C) · et−Tdt =

sin(πBt+ C) · et−T − πBcos(πBt+ C) · et−T

1 + π2B2
. (5.17)

Applying the integration by parts method again, we can obtain that:∫
sin(πBt+ C) · eT−tdt = −sin(πBt+ C) · eT−t + πBcos(πBt+ C) · eT−t

1 + π2B2
. (5.18)

Combining the two equations above, we can conclude that:∫
2Asin(πBt+ C) · e

2(t−T ) − 1

et−T
dt

= 2A[
sin(πBt+ C) · et−T − πBcos(πBt+ C) · et−T

1 + π2B2

+
sin(πBt+ C) · eT−t + πBcos(πBt+ C) · eT−t

1 + π2B2
]

= 2A ·
sin(πBt+ C) ·

[
et−T + e−(t−T )

]
+ πBcos(πBt+ C) · (e−(t−T ) − et−T )

]
1 + π2B2

. (5.19)

Substituting Equation (5.19) into Equation (5.15) results in

r =
et−T

e2(t−T ) + 1

[
2A ·

sin(πBt+ C) ·
[
et−T + e−(t−T )

]
+ πBcos(πBt+ C) ·

(
e−(t−T ) − et−T

)
1 + π2B2

+2D
(
et−T + e−(t−T )

)
+ C̃

]
. (5.20)

Substitute r(T ) = L into the calculation to obtain

C̃ = 2L− 4D − 4Asin(πBT + C)

1 + π2B2
. (5.21)

Here, we can determine the solution to the ordinary differential equation (3.8) as

r =
et−T

e2(t−T ) + 1
·

[
2Asin(πBt+ C)

(
et−T + e−(t−T )

)
+ 2ABπcos(πBt+ C)

(
e−(t−T ) − et−T

)
1 + π2B2

+2D
(
et−T + e−(t−T )

)
+ 2L− 4D − 4Asin(πBT + C)

1 + π2B2

]
. (5.22)
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According to equation (5.2), the optimal vaule ofP is obtained as

P =
Jx
2

= qx+
r

2

=
e2(t−T ) − 1

e2(t−T ) + 1
· x+

et−T

e2(t−T ) + 1
·[

Asin(πBt+ C)(et−T + e−(t−T )) + ABπcos(πBt+ C)(e−(t−T ) − et−T )

1 + π2B2

+D
(
et−T + e−(t−T )

)
+ L− 2D − 2Asin(πBT + C)

1 + π2B2

]
=

e2(t−T ) − 1

e2(t−T ) + 1
· x+ (

Asin(πBt+ C)

1 + π2B2
+D)− et−T − e−(t−T )

et−T + e−(t−T )
· ABπcos(πBt+ C)

1 + π2B2

+
et−T

e2(t−T ) + 1
(L− 2D − 2Asin(πBT + C)

1 + π2B2
)

=
e2(t−T ) − 1

e2(t−T ) + 1

[
x− ABπcos(πBt+ C)

1 + π2B2

]
+

et−T

e2(t−T ) + 1
(L− 2D − 2Asin(πBT + C)

1 + π2B2
)

+(
Asin(πBt+ C)

1 + π2B2
+D) . (5.23)

Substituting (5.23) into the constraint conditions of (4.1) results in

dxt = (
e2(t−T ) − 1

e2(t−T ) + 1
xt −

e2(t−T ) − 1

e2(t−T ) + 1
· ABπcos(πBt+ C)

1 + π2B2
+

et−T

e2(t−T ) + 1
(L− 2D − 2Asin(πBT + C)

1 + π2B2
)

− π2B2

1 + π2B2
Asin(πBt+ C))dt+ σdCt. (5.24)

Let G(t) = e2(t−T )−1
e2(t−T )+1

, f(t) = − e2(t−T )−1
e2(t−T )+1

·ABπcos(πBt+C)
1+π2B2 + et−T

e2(t−T )+1
(L−2D− 2Asin(πBT+C)

1+π2B2 )−
π2B2

1+π2B2Asin(πBt+ C), then (5.24) deforms to

dxt = (G(t)xt + f(t))dt+ σdCt. (5.25)

Whose α-path is

dxα
t = (G(t)xα

t + f(t))dt+ |σ|Φ−1(α)dt, (5.26)

namely
dxα

t

dt
= G(t)xα

t + f(t) + |σ|Φ−1(α), (5.26’)

where Φ−1(α) =
√
3

π
ln α

1−α
(α ∈ (0, 1)). Subsequently, if F (t) = f(t) + |σ|Φ−1(α) is set,

then (5.26’) becomes
dxα

t

dt
= G(t)xα

t + F (t). (5.27)

n accordance with Yao’s (2013) research, we are aware that the initial condition for (5.27)
is xα

0 = x0. Next, we proceed to solve the ordinary differential equation (5.28).{
dxα

t

dt
= G(t)xα

t + F (t)
xα
0 = x0.

(5.28)
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Applying the method of constant variation, we can obtain that:

xα
t = e

∫
G(t)dt(

∫
F (t)e−

∫
G(t)dt + C̃1), (5.29)

Further calculations yield:

xα
t =

e2(t−T ) + 1

et−T
(

∫
F (t)

et−T

e2(t−T ) + 1
dt+ C̃1)

=
e2(t−T ) + 1

et−T
(

∫
f(t)

et−T

e2(t−T ) + 1
dt+ |σ|Φ−1(α)arctan(et−T ) + C̃1)

=
e2(t−T ) + 1

et−T
(− ABπ

1 + π2B2

∫
(e2(t−T ) − 1)et−T cos(πBt+ C)

(e2(t−T ) + 1)2
dt−

Aπ2B2

1 + π2B2

∫
sin(πBt+ C)

et−T

e2(t−T ) + 1
dt

− 1

2(e2(t−T ) + 1)
(L− 2D − 2Asin(πBT + C)

1 + π2B2
) + |σ|Φ−1(α)arctan(et−T ) + C̃1). (5.30)

Upon revisiting the constraint conditions of (4.1), we observe that its α-path is:

dxα
t = (Pt − Asin(πBt+ C)−D)dt+ |σ|Φ−1(α)dt, (5.31)

namely,
xα
t =

∫
Ptdt−

∫
[Asin(πBt+ C) +D]dt+ |σ|Φ−1(α)t. (5.32)

Substituting (5.30) into (5.32) results in:

Pt =
dxα

t

dt
+ Asin(πBt+ C) +D − |σ|Φ−1(α), (5.33)

The result of further calculations for the optimal value of P in (5.23) is:

P = G(t)xαt + F (t) +Asin(πBt+ C) +D − |σ|Φ−1(α)

=
e2(t−T ) − 1

et−T
(− ABπ

1 + π2B2

∫
(e2(t−T ) − 1)et−T cos(πBt+ C)

(e2(t−T ) + 1)2
dt− Aπ2B2

1 + π2B2

∫
sin(πBt+ C)

et−T

e2(t−T ) + 1
dt

+C̃1) +
e2(t−T ) − 1

et−T
|σ|Φ−1(α)arctan(et−T ) +

A

1 + π2B2
sin(πBt+ C) +D − e2(t−T ) − 1

e2(t−T ) + 1
· ABπcos(πBt+ C)

1 + π2B2

+
1

2et−T
(L− 2D − 2Asin(πBT + C)

1 + π2B2
). (5.34)

6 Numerical example and management insights
To demonstrate the model’s effectiveness, this section conducts empirical tests using real-world
cases. Taking into account the seasonal variations and periodic shifts in clothing sales, this
study investigates the demand for clothing in China from June 2017 to September 2019.
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Utilizing MATLAB for calculations, we obtain the cyclical customer demand S = 0.8773×
sin(π × 0.4849t − 2.105) + 1.52, i.e. A = 0.8773, B = 0.4849, C = −2.105, D = 1.52. The
corresponding S-t image is as follows.

Figure 1: Cycle customer demand function: S-t image

Next, we use the Runge-Kutta method to solve ordinary differential equations (5.28). The
optimal value of P can be obtained by substituting the formula (5.34) once xαt has been solved.
Let g(t, xαt ) = G(t)xαt +F (t), and consider utilizing the fourth-order Runge-Kutta method, which
offers higher accuracy for solving. Taking a step size of h = 0.01 and substituting g(t, xαt ) =
G(t)xαt + F (t) into the fourth-order Runge-Kutta format, we can obtain that:

xα0 = x0, h = 0.01,

xαi+1 = xαi +
1

6
h(k1 + 2k2 + 2k3 + k4),

k1 = G(ti)x
α
i + F (ti),

k2 = G(ti +
1

2
h)(xαi +

1

2
hk1) + F (ti +

1

2
h),

k3 = G(ti +
1

2
h)(xαi +

1

2
hk2) + F (ti +

1

2
h),

k4 = G(ti + h)(xαi + hk3) + F (ti + h).

(6.1)

Where G(t) = e2(t−T )−1
e2(t−T )+1

, F (t) = − e2(t−T )−1
e2(t−T )+1

· ABπcos(πBt+C)
1+π2B2 + et−T

e2(t−T )+1
(L−2D− 2Asin(πBT+C)

1+π2B2 )−
π2B2

1+π2B2Asin(πBt+C) + |σ|
√
3
π ln α

1−α(α ∈ (0, 1)), and here, we set T = 10, L = 10, σ = 1, x0 = 0.
The values A = 0.8773, B = 0.4849, C = −2.105, D = 1.52 have been fitted. Iterating over α in
the range (0, 1) with a step of 0.1, the x-t image and P -t image obtained through programming
represent the results of numerical solutions, as illustrated in Figure 2 and Figure 3.
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Figure 2: Numerical Solutions 1: x-t image

Figure 3: Numerical Solutions 1: P -t image

Upon observing the x-t image and P -t image, it becomes apparent that there is a specific
moment when both the P -value of production and the x-value of inventory undergo changes.
Before this moment, both P -value and x-value fluctuate up and down with time, but after this
moment, both P -value and x-value consistently increase over time. This suggests that, in the
context of the current study, the company needs to increase production after a certain period to
maximize profits. Additionally, for the same duration, a larger α-value corresponds to a larger
x-value and a smaller P -value. This implies a reciprocal feedback control mechanism between
production and inventory.

Now, we examine the relationship between the terminal time inventory xT and α.
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First, we keep σ unchanged and vary the value of L. Set L to be 5, 10, 15, and 20, respectively,
and present the images of xT -α under different L as shown in the following figure.

Figure 4: Change L: xT -α image

Observing the image, we can discern that when L is larger, the corresponding value of xT
under the same value of α is also larger. This indicates that when the residual value of terminal
inventory per unit of inventory is higher, the company should control the inventory value at
terminal time to be appropriately large in order to maximize profits.

We maintain L at a constant value and vary the parameter σ. Set σ to be 0.8, 1, 1.2, and
1.4 respectively, and present the images of xT -α under different σ as follows.

Figure 5: Change σ: xT -α image
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Upon observing the image, we can deduce that when α = 0.5, the value of terminal time
inventory xT remains constant regardless of the variation in σ. At this point, the company only
needs to control xT to achieve this specific value for maximizing profit. When α < 0.5, the larger
the σ, the smaller the corresponding value of xT . In this scenario, with greater disturbance,
the company should aim to control the terminal inventory value to be appropriately small.
Conversely, when α > 0.5, the greater the σ, the larger the corresponding xT value. Thus, when
facing increased disturbance, the company should aim to control the terminal inventory value
to be appropriately large.

7 Conclusion
Based on the principles of ’optimality’ and the ’optimality equation’ in uncertain optimal control,
this paper investigates the uncertain optimal control of production and inventory in the presence
of periodic changes in customer demand. Taking into consideration the uncertainties inherent
in the production and storage processes, an uncertain Liu process Ct is introduced to represent
fluctuations. The inventory state equation, accounting for these fluctuations, is formulated as a
constraint condition. The production-inventory model under time-varying demand is established
by introducing the residual value of terminal inventory and assuming quadratic production and
storage costs.

The uncertain optimality equation is utilized to calculate and solve for the optimal P . The
Ting-Y ang lemma provides a crucial equivalent characterization of the original objective func-
tion, and the Andy-V ivian theorem is employed to prove the existence of the optimal P . Fol-
lowing the derivation of the optimal analytical solution for P through integration and ordinary
differential equations, the α-path is employed to obtain the numerical solution, enhancing the
visibility of the results.

In our paper, we consider the uncertainties inherent in both the production-inventory system
and customer demand, leading to a more detailed and practical mathematical model. The
established model can be applied to a wide range of sales scenarios in everyday life, providing
valuable insights for merchants to optimize their production and sales plans.

Furthermore, through a meticulous consideration of uncertainties within our mathematical
framework, our model becomes an invaluable asset for real-world sales scenarios encountered in
daily business operations. By adeptly addressing the intricate interplay between uncertainties in
production, inventory, and customer demand, our model serves as a pragmatic tool for merchants
to augment their decision-making processes. This resource enables merchants to proactively
anticipate and navigate through fluctuations in customer demand, facilitating the optimization of
production and sales plans to achieve enhanced efficiency and profitability. The insights derived
from this study provide practical guidance for businesses navigating the complexities of dynamic
markets, empowering them to make well-informed decisions amidst inherent uncertainties.
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Appendix
First and foremost, we give the proof of Lemma 5.1 (Ting-Y ang).

Proof:
Since Hx,P has a regular uncertainty distribution Ψ(x),
we can obtain E[Hx,P ] =

∫ 1
0 Ψ−1(α)dα.

And then from the First mean value theorem for definite integrals,
we can get: ∃ξ ∈ (0, 1), s.t.

∫ 1
0 Ψ−1(α)dα = Ψ−1(ξ).

Let Ψ−1(x) = f(x), x ∈ (0, 1). It follows from the properties of Ψ(x) and the inverse function
that f(x) is strictly monotonically increasing and continuous on (0,1).

Due to

µHx,Psup(η) + (1− µ)Hx,Pinf
(η)

= µΨ−1(1− η) + (1− µ)Ψ−1(η)

= µf(1− η) + (1− µ)f(η),

then we prove(1): ∃ξ, η ∈ (0, 1), ∃µ ∈ [0, 1], s.t. f(ξ) = µf(1− η) + (1− µ)f(η).
(i) When µ = 0, J̃(t, x) = f(η), only let η = ξ ∈ (0, 1), the equation in (1) can be established.
(ii) When µ = 1, J̃(t, x) = f(1− η), only let η = 1− ξ ∈ (0, 1), the equation in (1) can also

be established.
(iii) When 0 < µ < 1, first we determine the value of η from the value of ξ, and require

that the interval (η,1− η)(or (1− η,η)) can contain ξ. We only need to prove: it’s certain that
∃η ∈ (0, 1), s.t. ξ ∈ (η, 1− η)(or ξ ∈ (1− η, η)).

I. If ξ = 1
2 , let η = 1

2 , the equation in (1) can be established. And obviously η takes any
value on (0,1) except 0.5, there is always ξ ∈ (η, 1− η)(or ξ ∈ (1− η, η)).

II. If 0 < ξ < 1
2 , from the Density of real numbers, there must be: ∃η, s.t. 0 < η < ξ < 1.

At the same time, there is: 1− η > 1− 1
2 = 1

2 > ξ. Therefore, ξ ∈ (η, 1− η).
III. If 1

2 < ξ < 1, similarly, we can get: ∃η, s.t. 1
2 < ξ < η < 1. Simultaneously, we have

1− η < 1− 1
2 = 1

2 < ξ. So, ξ ∈ (1− η, η).
Therefore, we are able to determine the value of η from the value of ξ.
Then we determine the value of µ, s.t. the equation in (1) can be established.
(i) When f(η) = f(1 − η), due to f(x) is strictly monotonically increasing, we can obtain

η = 1
2 and µf(1− η) + (1− µ)f(η) = f(12). In this case, no matter what value µ takes on (0,1),

the equation in (1) can be established only let ξ = 1
2 . This is exactly the case where ξ = 1

2 .
(ii) We only study the case of f(η) < f(1−η), and the case of f(η) > f(1−η) can be proved

in the same way.
We can get:

g(µ) = µf(1− η) + (1− µ)f(η)

= [f(1− η)− f(η)]µ+ f(η), µ ∈ (0, 1),
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obviously, g(µ) is strictly monotonically increasing. Due to f(x) is continuous and properties of
continuous functions, we can obtain that g(µ) is strictly monotonically increasing and continuous
on [0,1]. Meanwhile, we have f(η) = g(0) < g(µ) < g(1) = f(1− η).

From Intermediate value theorem, we can obtain: ∃µ ∈ (0, 1), s.t. g(0) < g(µ) < g(1). This
guarantees the existence of µ.

Now let g(µ) = f(ξ), i.e. [f(1− η)− f(η)]µ+ f(η) = f(ξ),
we can obtain µ = f(ξ)−f(η)

f(1−η)−f(η) ∈ (0, 1).
Thus we determine the value of µ. And here we complete the proof of (1).
(1) indicates that E[Hx,P ] and µHx,Psup(η) + (1− µ)Hx,Pinf

(η) can be transformed into each
other. And then, we can obtain that J(t, x) is equivalent to J̃(t, x). □

Next, here is the proof of Theorem 5.1 (Andy-V ivian).

Proof:
By Ting-Y ang lemma, J(t, x) can be converted to J1(x) = min{Hx,Psup(η)}, that is, corre-

sponding to the case of µ = 1, η = 1− ξ ∈ (0, 1).
We first prove Jη{Hx,P } = Hx,Psup(η) is strictly convex to ∀t ∈ [0, T ], x ∈ R about x.
Take ∀x1, x2 ∈ xt, ∀P1, P2 ∈ Pt, and let ω ∈ (0, 1), xω = ωx1+(1−ω)x2, Pω = ωP1+(1−ω)P2.
Solve the constraint equation in the model (4.1’) and write α-Path accordingly:

xα1 (t) = x1(T )−
∫ T
t (P1 − S)ds− σ

∫ T
t Φ−1(α)ds

xα2 (t) = x2(T )−
∫ T
t (P2 − S)ds− σ

∫ T
t Φ−1(α)ds

xαω(t) = xω(T )−
∫ T
t (Pω − S)ds− σ

∫ T
t Φ−1(α)ds.

And then, we can get xαω(t) = ωxα1 (t) + (1− ω)xα2 (t) = [ωx1(t) + (1− ω)x2(t)]
α.

Note that [x2ω(t)]sup(α) = {[ωx1(t) + (1− ω)x2(t)]
2}sup(α),

and

[ωx1(t) + (1− ω)x2(t)]
2 = ω2x21(t) + (1− ω)2x22(t) + 2ω(1− ω)x1(t)x2(t)

< [ω2 + ω(1− ω)]x21(t) + [(1− ω)2 + ω(1− ω)]x22(t)

= ωx21(t) + (1− ω)x22(t).

Similarly we can get P 2
ω < ωP 2

1 + (1− ω)P 2
2 .

Due to x1(t) and x2(t) are independent of each other, we can obtain:

[ωx21(t) + (1− ω)x22(t)]sup(α) = [ωx21(t)]sup(α) + [(1− ω)x22(t)]sup(α)

> {[ωx1(t) + (1− ω)x2(t)]
2}sup(α)

= [x2ω(t)]sup(α).

Use ψ1 and ψ2 to represent the uncertainty distribution of x21(t) and x22(t) respectively,
we can obtain: ψ−1

ω (α) < ωψ−1
1 (α) + (1− ω)ψ−1

2 (α).
Due to {Hxω ,Pω}sup(η) = {

∫ T
t (Pω

2 + xω
2)ds− LxT }sup(η)

and {
∫ T
t (Pω

2 + xω
2)ds− LxT ≤

∫ T
t (Pω

2 + ψ−1
ω (η))ds− LxT } ⊃ {x2ω ≤ ψ−1

ω (η)},
we can get:
M{

∫ T
t (Pω

2 + xω
2)ds− LxT ≤

∫ T
t (Pω

2 + ψ−1
ω (η))ds− LxT } ≥ M{x2ω ≤ ψ−1

ω (η)} = η.
Similarly we can get:
M{

∫ T
t (Pω

2 + xω
2)ds− LxT >

∫ T
t (Pω

2 + ψ−1
ω (η))ds− LxT } ≥ M{x2ω > ψ−1

ω (η)} = 1− η.
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From the Axiom of Self-duality, we have:
M{

∫ T
t (Pω

2 + xω
2)ds− LxT ≤

∫ T
t (Pω

2 + ψ−1
ω (η))ds− LxT } = η.

Thus,
∫ T
t (P 2

ω + x2ω)ds− LxT has an inverse uncertainty distribution:
Ψ̂−1(η) =

∫ T
t (Pω

2 + ψ−1
ω (η))ds− LxT .

And we can also obtain:

{Hxω ,Pω}sup(η) = {
∫ T

t
(Pω

2 + ψ−1
ω (η))ds− LxT }

{Hx1,P1}sup(η) = {
∫ T

t
(P1

2 + ψ−1
1 (η))ds− LxT }

{Hx2,P2}sup(η) = {
∫ T

t
(P2

2 + ψ−1
2 (η))ds− LxT }.

Therefore,

{Hxω ,Pω}sup(η) = {
∫ T

t
(Pω

2 + ψ−1
ω (η))ds− LxT }

< {
∫ T

t
(ωP 2

1 + ωψ−1
1 (η) + (1− ω)P 2

2 + (1− ω)ψ−1
2 (η))ds− LxT }

= ω{
∫ T

t
(P1

2 + ψ−1
1 (η))ds− LxT }+ (1− ω){

∫ T

t
(P2

2 + ψ−1
2 (η))ds− LxT }

= ω{Hx1,P1}sup(η) + (1− ω){Hx2,P2}sup(η).

Here, the strict convexity of Jη{Hx,P } has been proved.
Now we let P ∗

1 and P ∗
2 represent the optimal control of initial states x1 and x2, respectively,

let P ∗
ω = ωP ∗

1 + (1− ω)P ∗
2 , we can obtain:

J1(xω) = J1(ωx1 + (1− ω)x2)

= min{Hxω ,Psup(η)}
≤ Jη{Hxω ,ωP ∗

1 +(1−ω)P ∗
2
}

< ωJη{Hx1,P ∗
1
}+ (1− ω)Jη{Hx2,P ∗

2
}

= ωJ1(x1) + (1− ω)J1(x2).

Therefore, the strict convexity of J(t, x) has also been proved. □
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