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Abstract

This letter introduces an innovative approach for minimizing energy consumption in multi-UAV (Unmanned Aerial Vehicles)

networks using Deep Reinforcement Learning (DRL), with a focus on optimizing the Age of Information (AoI) in disaster

environments. We propose a hierarchical UAV deployment strategy that facilitates cooperative trajectory planning, ensuring

timely data collection and transmission while minimizing energy consumption. By formulating the inter-UAV network path

planning problem as a Markov Decision Process (MDP), we apply a Deep Q-Network (DQN) strategy to enable real-time

decision-making that accounts for dynamic environmental changes, obstacles, and UAV battery constraints. Our extensive

simulation results, conducted in both rural and urban scenarios, demonstrate the effectiveness of employing a memory access

approach within the DQN framework, significantly reducing energy consumption up to 33.25\% in rural settings and 74.20\%

in urban environments compared to non-memory approaches. By integrating AoI considerations with energy-efficient UAV

control, this work offers a robust solution for maintaining fresh data in critical applications, such as disaster response, where

ground-based communication infrastructures are compromised. The use of replay memory approach, particularly the online

history approach, proves crucial in adapting to changing conditions and optimizing UAV operations for both data freshness and

energy consumption.
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Multi-UAV Energy Consumption Minimization
using Deep Reinforcement Learning: An Age
of Information Approach

Jeena Kim, Seunghyun Park, Hyunhee Park

This letter introduces an innovative approach for minimizing energy
consumption in multi-UAV (Unmanned Aerial Vehicles) networks using
Deep Reinforcement Learning (DRL), with a focus on optimizing
the Age of Information (AoI) in disaster environments. We propose
a hierarchical UAV deployment strategy that facilitates cooperative
trajectory planning, ensuring timely data collection and transmission
while minimizing energy consumption. By formulating the inter-UAV
network path planning problem as a Markov Decision Process (MDP),
we apply a Deep Q-Network (DQN) strategy to enable real-time
decision-making that accounts for dynamic environmental changes,
obstacles, and UAV battery constraints. Our extensive simulation
results, conducted in both rural and urban scenarios, demonstrate the
effectiveness of employing a memory access approach within the DQN
framework, significantly reducing energy consumption up to 33.25%
in rural settings and 74.20% in urban environments compared to non-
memory approaches. By integrating AoI considerations with energy-
efficient UAV control, this work offers a robust solution for maintaining
fresh data in critical applications, such as disaster response, where
ground-based communication infrastructures are compromised. The use
of replay memory approach, particularly the online history approach,
proves crucial in adapting to changing conditions and optimizing UAV
operations for both data freshness and energy consumption.

Introduction: In recent years, the use of Unmanned Aerial
Vehicles(UAVs) has expanded extensively across civilian, commercial,
and military domains. [1-4] In particular, in environments where ground-
based stations are unreliable, UAVs can act as aerial base stations to
provide communications during disasters. [5-9] In a disaster environment
that is dynamically changing and requires real-time status updates, it is
important to maintain the freshness of the collected data for immediate
response and action. Age of Information (AoI) [10] is a metric to
measure the freshness of data, which considers the overall temporal
aspect of data from its generation to its delivery to the end user. In
[11], the authors aim to minimize AoI in UAV systems using traditional
dynamic programming (DP) algorithms and ant colonies (AC). In
[12], the authors present an explicit formulation for the average AoI
in Hamiltonian and non-Hamiltonian cycles using a graph-theoretical
approach, and provide a mechanism to improve the AoI on a given flight
path by creating new cycles around specific IoT devices. However, as
the number of constraints increases, optimizing the trajectory design
of UAVs while minimizing AoI becomes more complex and leads to
an NP-hard problem. To alleviate these problems, deep reinforcement
learning has been proposed as an approach to address a variety of
different constraints. In particular, In [13], a deep Q-network is applied
to optimize UAV scouting in an edge computing environment, taking
into account energy efficiency and the Age of Information (AoI) context.
Specifically, in [14] the authors explore the problem of path design
to minimize the AoI through cooperative sensing and transmission
in the cellular Internet of UAVs, introduce a scheduling method, and
propose a composite action actor-critic (CA2C) algorithm based on deep
reinforcement learning to address this. Deep reinforcement learning
algorithms are trained to take the experience gained as episodes increase
and store it in an experience replay memory so that the agent can take
actions that can increase the rewards it can obtain in the future. In this
work, we explore whether these properties of the experiential replay
memory ensure AoI while reducing the energy consumption of UAVs
in disaster environments. The main contributions of this thesis can be
summarized as follows.

• First, we propose a hierarchical UAV deployment structure based on
their respective roles for cooperative trajectory planning in disaster
environments.

• Second, we propose a scheduling method to ensure AoI while
minimizing energy consumption. To this end, we define the inter-UAV
network path planning problem as an Markov Decision Process (MDP)
and apply DQN to support real-time decision making.

• Finally, we conduct extensive experimental analysis to evaluate the
performance of the proposed approach. Using the average AoI

performance metric values, we conduct a simulation analysis to find
the appropriate parameters for the learning model. The results suggest
that the UAV AoI and energy consumption can be optimized.

Fig. 1. Overview of System Model

System Model: In this letter, we address disaster scenarios occurring in
rural and urban areas of size N ×N m2. As illustrated in Fig. 1, our
model incorporates a hierarchical UAV structure consisting of UAV-Base
Station(BS) linked to operational ground base stations and I UAV-User
Equipment(UE) deployed to collect data over dispersed target points. The
locations where data is generated, positioned at sk ∈R2 for 1≤ k≤K,
are expected to initiate data production at t1 ≤ 0. Upon data generation
at the kth Target Point, the UAV-BS identifies the genesis location of
data. Positioned at qb = (xb, yb, hb)∈R3 for b= 1, 2, . . . , B, each UAV-
BS operates at the maximum altitude hmax and acts as a relay node
covering area Rb. Subsequent to data generation, the UAV-BS designates
the nearest UAV-UE to the target point. During any given time slot t, only
a single UAV-UE is allowed to navigate to the target point sklocation. To
determine the UAV-UE positioned at the minimum distance to the target
point, we calculate the Euclidean distance as follows:

d3D(t) =
√

(xi(t)− xk(t))2 + (yi(t)− yk(t))2 + (hi(t)− hk(t))2

(1)
We assume the channel model between the i-th UAV-UE and the UAV-

BS encompasses both large-scale and small-scale fading. Based on a 3D
map simulated in [15], it precisely discerns the presence of a Line-of-
Sight (LoS) or Non-Line-of-Sight (NLoS) connection. To minimize path
loss, the UAV-UE must fly below altitude hi <hmax. If the distance from
the UAV-UE’s location sk does not exceed the safety distance δ, the UAV-
UE can directly transmit the collected data to the UAV-BS. This safety
distance δ, as defined in equation 2, indicates that the data uploading
location falls within the UAV-BS’s coverage area. Otherwise, the UAV-
UE must re-navigate within a safe distance to the area covered by the
UAV-BS Rb.

min
1≤b≤B

{∥sk − qb∥} ≤ δ for 1≤ k≤K (2)

Fig. 2. Scheduling Cycle

Problem Formulation: We introduce AoI-Energy aware Scheduling
to efficiently coordinate UAVs under contextual constraints, namely
trajectory design, AoI, and energy consumption constraints. As depicted
in Fig. 2, it consists of five stages. The duration of each cycle is
represented by τ(t).

1) Information Exchange Cycle: Each cycle begins with the
exchange of information between UAV-BS and UAV-UE. The
information exchanged includes the current position of the i-th UAV-
UE at time slot t, denoted as q(i,t) = (xi, yi, hi), and the energy
consumption during the previous cycle, represented as E

cmp
i,τ(t−1)

. The
energy consumption used for flying the UAV-UE is denoted by pmove(t) =

ELECTRONICS LETTERS Vol. 00 No. 00



√
(∆x+∆y +∆h). The variable oi(t)∈ {0, 1} indicates whether there

is a collision with obstacles. The energy consumption for hovering and
uploading is represented by Ph(t) and P̂(b,i)(t), respectively. The AoI,
calculated as ∆AoIτ

i
τ , is included. The total duration of 5 cycles is

denoted by ∆τ(t), and Ui(t− 1) represents the last upload time. This
information forms the basis for the next cycle decisions.

Ecmp =
1

I

I∑
i=1

(pmove(t) · oi(t) · τe(t)

+Ph(t) · τh + P̂(b,i)(t) · τtx(t)
)

(3)

∆AoIi =∆τi(t)− Uj(t− 1) (4)

2) Decision Cycle: The decision cycle begins when the UAV-
BS identifies the location of the requested target point, sk(t), and,
considering the current position and state of each UAV-UE, selects the
UAV-UE that is closest to the requested target point. The selected UAV-
UE must adhere to the energy constraint equation ϵi(t) =

ecmp
i (t)

emax
i (t)

, where

the current energy ∆e
cmp
i (t) and the maximum energy capacity emax

i (t)

must meet the condition. If the selected UAV-UE does not satisfy the
condition, the UAV-BS must reselect a new UAV-UE that is the closest
within its area Rb.

ϵi(t) =

{
1, if ∆ei

cmp(t)≥ ei
max

0, otherwise
(5)

3) Empty Cycle: An empty cycle represents the state in which the
UAV-UE is en route to the target point sk(t) but has not yet arrived.
During this phase, the UAV-BS continuously monitors the UAV-UE and
considers the estimated flight time τ̃e. If necessary, the path of the UAV-
UE can be adjusted to minimize energy consumption and ensure the AoI.

4) Hovering Cycle: The hovering cycle occurs when the UAV-UE
reaches the designated target point sk(t) and stops for data collection.
At this time, the remaining energy of the i-th UAV-UE must satisfy the
energy constraint condition ϵi(t)

5) Upload Cycle: After the UAV-UE completes the hovering cycle,
it starts the upload cycle. During this cycle, the UAV-UE can upload the
collected data to the UAV-BS. It must transmit the data to a UAV-BS that
covers the area Rb, which is within the transmission range of the UAV-
UE. After the transmission is complete, the UAV-UE can record the time
step Uj indicating the completion of all cycles. Subsequently, the UAV-
UE flies to an area Rb within its transmission range for re-upload.

ζi(t) =

{
τ(t+ 1) = τd, if qi ∈Rb and Uj

τ(t+ 1) = τtx, otherwise (6)

The UAV-UE selects a UAV-BS that covers an area Rb

within the transmission distance.

µi(t) =

{
1, if

∑Uj

j=1 ∆τi(t)≤ ∆̂th
AoI

0, otherwise
(7)

To ensure the AoI for the i-th UAV-UE, the scheduling total duration
τ(T ) must not exceed the threshold ∆̂th

AoI as stipulated in Equation (7). If
the total scheduling duration exceeds ∆̂th

AoI , the data will be discarded.
The variable j represents the time it takes for the UAV to perform the
selected task, and Uj denotes the total time until the task is completed,
which is used in the calculation of AoI.
To solve the problem, we apply the Deep Q-Network (DQN) [16], which
is a combination of deep neural networks and reinforcement learning
algorithms. A DQN can be defined as a MDP represented by a tuple
<S,A,R, St+1 >. An agent decides on an action a in a given state s. The
agent receives a reward R and builds a policy π that takes into account
a discount factor γ for the cumulative future reward. The proposed DQN
approach consists of:

1 A deep neural network to reduce the dimensionality of the state space
used to extract contextual features.

2 An experience replay memory to store the state transitions observed
by the UAV-BS agent and the UAV-UE agent.

3 A reinforcement learning framework to find the optimal trajectory
policy by solving constraints (9-11) to have a unique target area for
each UAV-UE.

State: The state can be represented as Si(t) = [qi(t), e
cmp
i (t), ci(t)],

which represents three key elements at time t. The position of

the UAV-UE, qi(t) = (xi(t), yi(t), hi(t)), accurately tracks the spatial
location of the UAV and is used to plan the next movement.
e

cmp
i (t) represents the current energy level of the UAV-UE, which

can be expressed as the remaining operational energy e
cmp
i (t)∈

R. This directly impacts the sustainable operation and mission
execution capability of the UAV. Lastly, ci(t) indicates the current
cycle in which the UAV-UE is located. The possible states
include {“Decision”, “Empty”, “Hovering”, “Transmission”}, and this
information is used to determine the next action of the UAV.

Action: Action is defined by the following equation (12), which
describes the mobility of the UAV-UE in a given state. If it is hovering, it
does not move.

Ai(t) =

{
qi(t+ 1) =∆x+∆y +∆h,Moving
qi(t+ 1) = (xi, yi, hi),Hovering

(8)

Reward: When the learning agent, namely the UAV-UE, executes
action ai(t), it transitions to a new state si(t+ 1) and receives
an immediate reward ri(t) associated with the state transition
si(t), ai(t), si(t+ 1). The reward can be defined as follows in equation
(13), where ϵi represents the energy constraint, and rcmp(t) signifies the
reward for saving energy. The energy reward rienergy =∆ei(t) is defined
by ∆ei(t) = ei(t)−∆ei(t− 1), which represents the energy consumed
due to action ait. µi(t) indicates the AoI constraint, and rAoI(t) =∆Ui(t)

is expressed as ∆Ui(t) =Ui(t)−∆Ui(t− 1). This provides a higher
reward for the UAV-UE’s continuous upload of fresh data. Lastly, oi(t)
indicates whether there is a collision with obstacles.

Ri(t) = ϵi(t)× rcmp(t) + µi(t)× rAoI(t) + oi(t) (9)

The learning agent, UAV-UE, aims to maximize future rewards over T

time slots as defined in equation (14). γ = [0, 1] reflects the balance
between the importance of immediate and future rewards, allowing
convergence to the optimal policy πopt.

R̂(s, a, t) =

T∑
t0=0

γt0 × ri(t− t0) (10)

Therefore, we can update the Q-function to derive the optimal policyπopt.
as follows.

Qt′ (s, a) =Qt(s, a) + α

[
R+ γmax

a′
q(s′, a′)−Qt(s, a)

]
(11)

Here, α is the learning rate that regulates the speed of the Q-function
update. Additionally, t′ = t+ 1, and a′ represents all actions considered
during the maximization process.

Simulation Results: We propose a Replay Memory-based approach to
find the appropriate AoI ∆th

AoI within the proposed method, ensuring AoI
through the use of replay memory. Initially, Replay Memory represents
the (s, a, r, st+1) obtained by the agent interacting with the environment
during the learning process. It exists in the following types:

• Replay history: Stores all past experiences and randomly selects them
for learning, contributing to the learning process.

• Online history: Stores real-time or the most recent experiences,
contributing to immediate learning.

• Prioritized history: Selects experiences for learning based on their
importance, contributing to the learning process by choosing specific
experiences.

Map Map Size (m2) Obstacle Initial Position
Rural 1600× 1600 4 (800,800)
Urban 800× 800 8 (400,400)

Table 1: Map Characteristics

Map Value
Episode 1000
Learning rate (α) 0.0005
Discount factor (γ) 0.99
Mini-batch size 32
Size of memory (M) 10000

Table 2: Simulation Hyperparameter Values

2



Fig. 3. Age of Information in Rural Scenario

Fig. 4. Age of Information in Urban Scenario

We conducted experiments in a rural scenario characterized by few
obstacles and a relatively large area, and an urban scenario with many
obstacles and a relatively small area, in order to test UAVs in various
environments. The following Fig. 3 and Fig. 4 represents the AoI results
according to each memory access approach, facilitating the search for
the appropriate ∆th

AoI. In the rural scenario of Fig. 3, the lowest average
AoI was observed to be 94.63 seconds when applying the priority history
memory access approach, which was 30.33 seconds shorter than the
approach without memory usage. In the urban scenario of Fig. 4, the
application of the online history memory access approach resulted in the
lowest average AoI of 82.23 seconds, which was a reduction of 43.11
seconds compared to the non-memory approach.

After setting the average AoI to ∆th
AoI in each scenario, we proceeded

with energy consumption experiments. Fig. 5 indicates that, in the
rural scenario with 5 UAVs deployed, the online history memory
access approach shows the lowest energy consumption, which is up
to 33.25% lower compared to the non-memory approach. Similarly,
Fig. 6 shows that in the urban scenario, also with 5 UAVs, the online
history approach results in the lowest energy consumption, showing up
to a 74.20% reduction compared to the non-memory approach. These
results suggest that the online history approach can adapt in real-time
to relatively dynamic environments. On the other hand, both the replay
history memory access method and the non-memory approach show
comparatively higher energy consumption.

Fig. 5. Energy Consumption in Rural Scenario

Fig. 6. Energy Consumption in Urban Scenario

Fig. 7. Trajectory Visualization in Rural Scenario

Fig. 8. Trajectory Visualization in Urban Scenario

To examine the energy consumption of UAVs based on different
memory access approaches, we visualized the trajectories of two UAVs
as shown in Fig. 7 and Fig. 8. Fig. 7 illustrates that in the rural scenario
with the online history memory access approach applied, the UAVs fly
in divided areas, suggesting that they reach the target points and collect
data. In contrast, without the memory access approach, the UAVs overlap
in their flight paths and fail to reach the target points. Therefore, the
results indicate that the absence of a memory access approach leads
to increased energy consumption due to overlapping flight paths and a
failure to occupy distinct flying zones.

Conclusion: In this letter, we propose a hierarchical deployment
structure and an energy consumption minimization scheduling method
centered around the AoI for the efficient operation of UAVs. The results
of applying a memory access approach-based DQN demonstrated that the
online history approach reduces energy consumption by up to 33.25% in
rural scenarios and up to 74.20% in urban scenarios. This shows that
the proposed method is optimized for collecting relatively fresh data and
minimizing energy consumption.
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