
P
os
te
d
on

26
A
p
r
20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
71
41
60
64
.4
97
44
75
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Security Risks in the Encryption of Database Connection Strings

Ross Rannells1 and James Hill1

1Indiana University Bloomington Luddy School of Informatics Computing and Engineering

April 26, 2024

Abstract

This article presents a novel approach to obfuscating database connection strings using Keyword Cipher,

which is based on the Roman Caesar Cipher and Greek Scytale Cipher. This is an important and open prob-

lem because database connection strings typically have long substrings of identical and well-known character

substrings. These known substrings in related database connection strings greatly increase the risk of their

encryption key’s being broken, in addition to having identical initial substrings in their encrypted versions.

Our experience applying these two obfuscation techniques to database connection strings show that the simple

and easily implemented string obfuscation functions effectively solve the problem of common initial substrings.

It also greatly reduces risk of breaking the connections strings encryption keys by hiding the known substrings

and making the number of possible string needed to search for grow geometrically. Lastly, the use of obfuscation

functions completely eliminates all the commonality between related database connection strings.

1

Security Risks in the Encryption of Database
Connection Strings

Ross Rannells and James H. Hill
Luddy School of Informatics, Computing, and Engineering

Indianapolis, IN USA
Email: rrannell@iu.edu, hilljh@iupui.edu

Abstract—This article presents a novel approach to obfuscating
database connection strings using Keyword Cipher, which is
based on the Roman Caesar Cipher and Greek Scytale Cipher.
This is an important and open problem because database
connection strings typically have long substrings of identical
and well-known character substrings. These known substrings
in related database connection strings greatly increase the risk
of their encryption key’s being broken, in addition to having
identical initial substrings in their encrypted versions. Our
experience applying these two obfuscation techniques to database
connection strings show that the simple and easily implemented
string obfuscation functions effectively solve the problem of
common initial substrings. It also greatly reduces risk of breaking
the connections strings encryption keys by hiding the known
substrings and making the number of possible string needed
to search for grow geometrically. Lastly, the use of obfuscation
functions completely eliminates all the commonality between
related database connection strings.

Index Terms—database connection strings, encryption, decryp-
tion, symmetric encryption, Scytale, AES, DES

I. INTRODUCTION

Almost all modern software applications use some form of
a persistent data store, such as a relational database. These
applications connect to the database using a connection string,
which is a value that contains pertinent information like the
database’s location on the network, any runtime connection
parameters, and the database engine. Traditionally, database
connection strings are stored in plain text. For example, you
can search many open-source software projects and find plain-
text database connection strings. The same holds true for
proprietary software applications. In cases where the database
connection string is stored in an environment variable to
“increase” security [16], the database connection is still stored
as plain-text.

Although using plain-text database connection strings is an
acceptable norm, there is a problem with this approach. The
primary problem is it makes it easy for malicious actors to
access the information in database because they have direct
access to all the necessary credentials to make the connection.
To overcome the plain-text problem, it is possible to store
an encrypted version of the database connection string in the
source code, initialization file, or an environment variable. [10]
The database connection string is then decrypted before it is
used to connect with the database.

This approach offers an improved level of security, but it has
one major problem. The problem is not with the encryption

algorithm used, such as the Data Encryption Algorithm [7]
(3DES), Advanced Encryption Standard [1] (AES) or any
other modern encryption algorithm. The problem is database
connection strings being encrypted have common attributes
that appear in all database connection strings regardless of the
application. For example, a Java Database Connection (JDBC)
string will always have the word “java” in the connection
string. [6] Because of this fact, it is possible to eventually learn
the encryption key used to encrypt the database connection
string. Consequently, when the same encryption key is used
to encrypt other data on the system, a malicious actor can gain
access to that data as well.

One solution a developer may use to overcome common
attributes in a database connection string would be to simply
encrypt the encrypted connection string a second time with a
different encryption key. Unfortunately, this will not solve the
problem as you would end up encrypting a different string of
common characters, and you would end up with a new set of
common characters. We therefore propose a solution approach
that introduces randomness into the database connection string
that would enable the cipher algorithm to hide the common
characters in the database connection string. More specifically,
we introduce the randomness using a pair of ancient message
obfuscation functions: the Roman Keyword cipher [4] and the
Greek Scytale cipher [17]. With this understanding, the main
contributions of this paper are as follows:

• It showcases the security limitations of using encrypted
database connection strings in production applications;

• It explores using two different obfuscation functions to
introduce randomness into the database connection string
to reduce a malicious actors ability to learn the encryption
key; and

• It empirically evaluates using the obfuscation functions
in conjunction with the database connection strings.

Lastly, the results of our work show that encrypting database
connections string without applying any obfuscation confirms
that the commonality within the plain text database connection
strings were clearly reflected in the encrypted text strings.
Also, when the keyword obfuscation function was applied
to database connections strings, the commonality between
the database connection strings was no longer visible in the
encrypted strings. We were also able to achieve the same
results with the Scytale obfuscation function. Both obfuscation

functions were therefore able to introduce a sufficient number
of random characters into the connection strings to hide the
commonality between them.

Article organization. The remainder of this article is or-
ganized as follows: Section II introduces a case study related
the database connection string problem; Section ?? presents
our experimental approach to the applying of the Scytale
and Keyword obfuscation function to database connection
string; Section III presents our experimental results; Section IV
discusses the threats to validity; Section V compares our work
to existing related works; and Section VI provides concluding
remarks and lessons learned.

II. BACKGROUND INFORMATION

Java database connections strings have a set format and
contain some easily known string constants. The standard
format begins with the four-character string jdbc, signifying
that it is a Java database connection string. That is followed
by a colon connector and the constant value representing
the database engine being connected to. This is followed
by another colon and possibly a pair of forward-slashes,
depending on the target database engine. The slashes are then
followed by the location of the database, its IP address, URL,
or some other way to locate the database. The database port is
preceded by another colon connector. Finally, a forward-slash
separator is used followed by the name of the database being
connected to. Additional qualifiers and optional name value
pairs may also be included in the database connection string.
Listing 1 gives an illustration of the Java Database Connection
String, and its parts.

j d b c : [e n g i n e] : / / [h o s t : p o r t] / [name]

Listing 1. The format of the Java Database Connection String.

While not strictly part of the connection string format,
many modern database engines have extensions that allow
the target account/username and password to be included in
the connection string. Another non-standard extension that has
become common place is the use of qualifier values to indicate
the application level for a database such as:

• dev – This qualifier is use for the development database;
• tst – This qualifier is use for the test database;
• int – This qualifier is use for the system integration

testing database;
• uat – This qualifier is use for the user acceptance testing

database; and
• prd – This qualifier is use for the production database.
These qualifiers can appear in either the address or name

of the database depending on how the database and network
are set up. Table I provides example of connection strings for
different databases. As shown in this table, each has similar
characteristics to the Java database connection string.

In each example, the database connection string begins with
a preset number of known characters. The exact number differs
with each type of database engine, but if an attacker knows
the type of database being connected to, the number of known
initial characters in the database connection string increases

significantly. Additionally, with some of the more modern
databases, the connection strings contain additional known key
values that increase the number of known initial characters
at the cost of a small increase in the number of possible
initial strings. This therefore raises a security question: how
do the known initial character strings affect the encryption of
a database connection string?

Assuming that a development group has multiple different
databases for the development life cycle. For example, let’s
assume the group uses the following key values to signify the
various levels of databases: development (dev), testing (tst),
integration (int), user acceptance (uat) and production (prd).
This gives five different databases that an application will need
to connect with as it moves through the development process.
This also means that there are five different property files,
each with its own slightly different database connection string
stored in the code repository. To understand the problems
associated with maintaining several different database connec-
tion strings, let’s examine how each connection string gets
encrypted using the symmetric encryption algorithms 3DES
and AES—two of the most widely symmetric encryption
algorithms.

3DES. For each example, we will use the following 3DES
Encryption Key and Initialization Vector (IV) shown in List-
ing 2. The encryption key is 168 bits long and the initialization
vecter is a set of 8, 8 bit integers.

Key : v5JKf8QfzUDWWOOAkmcVTMQlXiPpL / i b
IV : 124 , −30 , −66 , 119 , −102 , 89 , −41 , 74

Listing 2. 3DES Encryption Key and Initialization Vector

Using the aforementioned encryption key and initialization
vector to encrypt the example database connection strings in
table II. The resulting encrypted connection strings all have
the same initial 10 characters.

Based on the encrypted results provided in Table II, we can
see that encrypted strings are not independent of each other.
In each of the examples strings, the first 10 characters are
identical in each of the encrypted strings. This is the result
of the first 64 bits of the encrypted text being identical. Once
those initial bits are Base 64 encoded, the first 10 characters
of the encrypted string end up being identical. The key factor
in this is that each database connection strings start with
more than a dozen identical characters. Unfortunately, this is
larger than the block size of the 3DES encryption algorithm—
meaning each of the encrypted string have the same initial
substring value.

AES. For each example, we will use the following AES
Encryption Key and IV shown in Listing 3. The key is 256
bits in size and the initialization vector is a set of 16, 8 bit
integers.

Key : 98 PG7rAqhrJSD1x03sSKTmzNxr26DnLkeitsjg8NKYk=
IV : 27 , 21 , 28 , 14 , 47 , −71 , −78 , −119 , 65 , −97 ,

−72 , 118 , 122 , −62 , −64 , 65

Listing 3. AES Encryption Key and Initialization Vector

Using 256-bit AES encryption algorithm with the aforemen-
tioned key and initialization vector on the example MYSQL

TABLE I
EXAMPLE DATABASE CONNECTIONS STRINGS

Database Engine Eample Connection String
MySql jdbc:mysql://dev.rolodex.abcd:3505/contacts
SQLite jdbc:sqlite:/dev/apps/rolodex/db/contacts.db
MS SQL Server jdbc:sqlserver://dev.rolodex.abcd:3505/devContacts
Maria jdbc:mariadb:User=DevUser;Password=DevPswrd;Database=contacts;Server=dev.rolodex.abcd;Port=3505
Oracle jdbc:oracle://dev.rolodex.abcd:3505/contacts
Postgres jdbc:postgresql://dev.rolodex.abcd:3505/contacts
Sybase jdbc:sybase:Tds:dev.rolodex.abcd:3505?ServiceName=contacts
DB2 jdbc:db2://dev.rolodex.abcd:3505/contacts;
Cassandra jdbc:cassandra://dev.rolodex.abcd:3505/contacts:User=DevUser:Password:DevPswrd

TABLE II
MYSQL CONNECTIONS STRINGS WITH 3DES ENCRYPTION

Key Plain Text 3DES Encrypted Text
dev jdbc:mysql://dev.rolodex.abcd:3505/contacts 9I7YGlG+YvA7JLp+AYwYVJqcSrCWMhNsFesYvcQ4e2aA+TvXyUQLe9MZiRtu09jD
tst jdbc:mysql://tst.rolodex.abcd:3515/contacts 9I7YGlG+YvCQp0c8HSehntTUfEw8cW5UU7JQ9bQBfNnlL274lTouK1K/3yfhb2xN
int jdbc:mysql://int.rolodex.abcd:3525/contacts 9I7YGlG+YvBnW5u6TE/rgLKbH9l5FWVav9HWfMzgl8+mMheo9WoafNBSj7t/SEyU
uat jdbc:mysql://uat.rolodex.abcd:3535/contacts 9I7YGlG+YvDwqXoxJjnPRxlSMshX7Of2ggADMwEPc4YBhQz/r8EMHzEdwjTLVTvv
prd jdbc:mysql://prd.rolodex.abcd:3545/contacts 9I7YGlG+YvCoaRMHFefrbYqsmPW2bc5gP0lfFHOLpIlRVzmXeNBHHOiaBp3HiHyj

database connection strings results in the encrypted strings
shown in Table III. The results show that the 128 bit block size
of the AES algorithm is sufficient to remove the commonality
seen in the 3DES encryption.

When applying 256-bit AES encryption key to a Microsoft
SQL Server database connection strings, however, exposes the
commonality of the encryption string in the encrypted text as
shown in Table IV.

As shown in Table IV, even AES’s 128 bit block size not
sufficient enough to hide the fact that the initial 17 characters
in a Microsoft SQL Server database connection string are
identical. For example, the initial 128 bits of the encrypted text
are identical, which translates to the first 21 Base 64 encoded
characters being identical in the encrypted text.

While the 256-bit AES algorithm does appear to solve
the problem for the MySQL, the problem still exists for
longer connections stings like SQL Server. In fact, it becomes
apparent that the problem is not in the algorithms themselves
but in the block size that the algorithm uses in its encryption
process. When the number of initial identical characters is
smaller than the block size (128-bits or 16 characters), the AES
algorithm was able to generate what appears to be a string
of random characters. When the number of initial identical
characters is equal to or greater than the algorithm’s block
size, then the encrypted text has identical initial substrings.

A. Prepending a random keyword

An early method for obfuscating text was the Roman Ceasar
Cipher. This obfuscatation function would shift the characters
in the alphabet a given number of characters the right or left. A
shift of three characters to the right would map the letter A to
the letter D, B would map to E, C to F and so on. A common
variation on the Caesar Cipher is the Keyword cipher. Which
takes a keyword and places it at the start of the alphabet. Thus
the First letter of the keyword would be mapped to A, and the
second letter in the keyword would map to B, the tird to C

and so on until the all of the uniques letter in the keyward are
mapped to a letter in the alphbet. The remaining unused letters
of the alphabet are placed after the keyword to map them to
the rest of the alphabet.

Adopting this approach to obfuscate a database connection
string such that similar connection strings (as shown in Ta-
ble V) are no longer similar after being encrypted? Table V
shows the results of prepending a set length random string
(keyword) to each of the example database connection strings
from Table V.

Table VI, uses the aforementioned AES encryption key and
IV to encrypt the Microsoft SQL Server connction shtrings.
Once again prepending each of the database connection strings
with a fixed length string of random characters gives us
improved results. Each encrypted database connection string
appears to be just a collection of random characters. More
importantly, they do not have anything in common with any
of the other similar database connection strings. For example,
each of the strings was prepended with a different random
keyword. If we had prepended the connection strings with the
same random keyword, then the problem of having common
characters would have still existed.1

B. Inserting random characters

Another early message obfuscating methodology used by
the Greeks was the Scytale. It obfuscated a message by
wrapping the message around a rod of a fixed diameter and
writing the message along one side of the rod. Additional
characters were then added to the message along other sides
of the rod. The premise of this approach was the only way
to remove obfuscation from (or decrypt) the message was to
have a rod of the same diameter.

To apply the Scytale approach to encrpyting a database
connection strings, a single random character is prepended to

1The encrypted database connection string was truncated at 70 characters
because its encrypted string length was too long to include in the article.

TABLE III
MYSQL CONNECTIONS STRINGS WITH AES ENCRYPTION

Key Plain Text AES Encrypted Text
dev jdbc:mysql://dev.rolodex.abcd:3505/contacts de88jjyWHinV9143H2sQjCslzYlyf0PcRNQceTCQ7TjspGR8kSTuG1bycKvZglLy
tst jdbc:mysql://tst.rolodex.abcd:3515/contacts 2WaVtXM+wNAtbzLD0OuaHx8iZspSaybehvE9t3ShPNRhx01nRv2kMP0+sffHVHiG
int jdbc:mysql://int.rolodex.abcd:3525/contacts UGif+NvGNz2daQxR9cIgtnE/KbkQOgWYJYPhVqeDUVVeBGtwDoGm5ttUZdm149Dn
uat jdbc:mysql://uat.rolodex.abcd:3535/contacts sDLi1zg2u6usqiFvodJXSi9Aq3ruykO+TezFZYozl8e+ZZCplnpTQyOfKaN1lqQj
prd jdbc:mysql://prd.rolodex.abcd:3545/contacts k7RRxlncgYQtsjATXoc3XeYIXSBJbzBGvKFBBk5sxbbiTa99AwBfrsikZXqCyB1k

TABLE IV
SQL SERVER CONNECTIONS STRINGS WITH AES ENCRYPTION

Key Plain Text AES Encrypted Text
dev jdbc:sqlserver://dev.rolodex.abcd:3505/contacts OzpuFGmb1p0UODW8QfTMr0tnaH1LzUbfoPghSUDWcsJdkY4iatflmOWwfaNDBou4
tst jdbc:sqlserver://tst.rolodex.abcd:3515/contacts OzpuFGmb1p0UODW8QfTMrxPfL44TcvMNsEeUq+f3xawWIvOCawLJTpZe0RnG84pk
int jdbc:sqlserver://int.rolodex.abcd:3525/contacts OzpuFGmb1p0UODW8QfTMr4JHo2NdW5Dc49rkj3ozFPu7K2qIxbnzw6RCI8p0icD6
uat jdbc:sqlserver://uat.rolodex.abcd:3535/contacts OzpuFGmb1p0UODW8QfTMr6QLphclAYDPdNk00LekdpIm5xXGi6FBHQBlRp3jE18q
prd jdbc:sqlserver://prd.rolodex.abcd:3545/contacts OzpuFGmb1p0UODW8QfTMr948BvFEBhC3EEVhWfJqTXizAOj/L8xXjzMriEz8T/Vd

TABLE V
KEYWORD OBFUSCATED MYSQL CONNECTION STRINGS WITH 3DES ENCRYPTION

Plain Text 3DES Encrypted Keyword Text
jdbc:mysql://dev.rolodex.abcd:3505/contacts ukB+uuwS4sDGySZP0/Qd7PHuxK7f/Mtr3vJwXUAC702d/1Afr65X5kfqd5Bn3+ZjFcfggs6WfxE=
jdbc:mysql://tst.rolodex.abcd:3515/contacts ukB+uuwS4sDGySZP0/Qd7PHuxK7f/Mtr3vJwXUAC702d/1Afr65X5kfqd5Bn3+ZjFcfggs6WfxE=
jdbc:mysql://int.rolodex.abcd:3525/contacts RhndRDZOU1Aa6dUNiw65GSiDpLvHXUKN5YQ2m0asktGk2JBqXLEGhSNuHclcHS/xm011kj4qTps=
jdbc:mysql://uat.rolodex.abcd:3535/contacts Bs9ltqNBCjRqg3CuOhtfJcFXoePBaHSgHRbD2TBCdXUP3ngoxm0p7+syD9V5vNsmZwLr6y/hSN4=
jdbc:mysql://prd.rolodex.abcd:3545/contacts DADV/A79y+tabE2zc2CksPKJBJMGuYXdkV6/DQKZ5i7T4x683V4ASFetO7c2h6yRDykSClqqvWY=

TABLE VI
KEYWORD OBFUSCATED MICROSOFT SQL SERVER CONNECTION STRINGS WITH AES ENCRYPTION

Plain Text Aes Encrypted Keyword Text (truncated at 70 chararacters)
jdbc:sqlserver://dev.rolodex.abcd:3505/contacts 5HAOS5P6CvjASJ03mh0mKE6lflcddqPTvg2R7A92J4ow5MXRKOT353Xpf+YyivNJMEjJ3I
jdbc:sqlserver://tst.rolodex.abcd:3515/contacts A3LfiePD7e3o+xxHv1Mwr8+Q9r/l5u+WKII+eA//7TMnOXzxIxRpRuPcffLqIMTiXi6bnr
jdbc:sqlserver://int.rolodex.abcd:3525/contacts h7WDDjSaekTUPik+O47vbVN8hfTcYhg2Zknh/LBW6yymYQVUeFSwEXJpGfiU7uQtDXEtNB
jdbc:sqlserver://uat.rolodex.abcd:3535/contacts VL1Gxhz2pt5xwvl+juAq5it/1RCVWZOSfzBlsz8ITMOKREQA0pCABhkH3Z6nygIEwtw0Hg
jdbc:sqlserver://prd.rolodex.abcd:3545/contacts ZBhNk5OxF/OaocCFuhMjxqNNFEwvvOsQ62Fgj9yurx4gmzreGm7k4mB032H58c7HCXp+jg

the front of the database connection string and then a random
character is inserted after each character in the connection
string. This approach will more than double the length of
the database connection string to be encrypted. It will also
add far more random characters to the connection string than
the keyword obfuscation function does. Table VII shows the
results of applying the Scytale obfuscation function to the
MySQL database connection strings from Table VII.2

Likewise, Table VIII shows the results of applying the
Scytale obfuscation function to the Microsoft SQL Server
database connection strings from Table VIII.3

The use of the Scytale obfuscation function has the same
effect on the resulting encrypted database connection strings
as keyword obfuscation function. The encrypted connection
strings appear to be a string of random characters with no
commonality to any of the other database connections strings.
Since both methodologies produce the desired results, the
question now becomes which of the two methodologies is

2The encrypted database connection string was truncated at 70 characters
because its encrypted string length was too long to include in the article.

3The encrypted database connection string was truncated at 70 characters
because its encrypted string length was too long to include in the article.

superior or are they equivalent? We will answer this question
in the remainder of the article.

III. RESULTS

The Java application used to encrypt the various database
connection strings in Table II through Table VIII used the
Bouncy Castle encryption libraries. The application also al-
lows for a user to enter a known symmetric cipher keys
and initialization vectors that can be used to encrypt and
decrypt the database connection strings. The Java applica-
tion can generate encryption keys for 168-bit 3DES, 128-
bit AES, 192-bit AES, and 256-bit AES cipher functions,
but only the 168-bit 3DES and the 256-bit AES algorithms
were used in the above testing. The application can also
generate random initialization vectors for use with the 3DES
and AES symmetric cipher algorithms. The application can
also apply the two obfuscation functions tested above to the
database connection strings. The first obfuscation function,the
Keyword function, (see Table V and Table VI) prepends from
one to ten random base 64 characters to the beginning of
the connection string. The second obfuscation function, the
Scytale function, (see Table VII and Table VIII), prepends a

TABLE VII
SCYTALE OBFUSCATED MYSQL CONNECTION STRINGS WITH 3DES ENCRYPTION

Plain Text 3DES Encrypted Scytale Text (truncated at 70 chararacters)
jdbc:mysql://dev.rolodex.abcd:3505/contacts 8l4zsIB4XG3K+zehVqZPHLR76h6GGJUncwo7WWvdfzJ3ahteOI7bid/CyDoyBg+JLCjqJT
jdbc:mysql://tst.rolodex.abcd:3515/contacts vYeXtxSVdpvM4gHqwQY6tE+i8OfpTsBqkDn7F1yhAes+tE+KqCi/6FX2nLPzxCtWvKA1ly
jdbc:mysql://int.rolodex.abcd:3525/contacts iZGSyCXkj9qLjfHCLg4kc7eV7fWhB7I7VAdoEmN5pqtZw6yMkRi9+n68mMCdGO7h/vnjHK
jdbc:mysql://uat.rolodex.abcd:3535/contacts zp5fNcpprQ0HaB+M+b8pEqclklpEQ4arMIWt6zN75wKBAv90vT/li6MH6iHMWnG2jlKHxa
jdbc:mysql://prd.rolodex.abcd:3545/contacts k952+Wa+l1inYtQmOfT2uhJ4Ki9lYosBXDOnGDQ67F7w37oCv9ZvT43G4M27QrYsnF2GKe

TABLE VIII
SCYTALE OBFUSCATED MICROSFT SQL SERVER CONNECTION STRINGS WITH AES ENCRYPTION

Plain Text AES Encrypted Scytale Text (truncated at 70 chararacters)
jdbc:sqlserver://dev.rolodex.abcd:3505/contacts ytJ9EpvKAoMrCMuLqiwnPBYIPOMUgadqrQ9PPNqnVr14IPzp+I8uYveNuf5Y4e/2dMitMe
jdbc:sqlserver://tst.rolodex.abcd:3515/contacts F9hWo0XDSuxbKO07nZTuAMsc4+EwbgVKM19+b8qxDo1DbmR8hLAtVIdrYIYT4mxy/CIoHl
jdbc:sqlserver://int.rolodex.abcd:3525/contacts ErEmAgeQ1hBz1SaCRaMffjTZPUeRpl0DEhnZu87osKD8+8T/myHuXLIo1PvbsriY1n7RZ8
jdbc:sqlserver://uat.rolodex.abcd:3535/contacts SPowc8tFmwBCRevzKggi7qYOG/gi7G97Zxou9W6gaiCmRFJ3kIg6944BuLg/FLjJ97+6Tj
jdbc:sqlserver://prd.rolodex.abcd:3545/contacts OZFv5B/EOpba0Ugt78GmDmpb+HkuBR5uzEaemuzWUAN7mjOsxxorWUDhbZtIQIiGzFM54f

single random base 64 character to the front of a connection
string and an addition random base 64 character between each
character in the connection string. A third obfuscation function
is also available, which applies both the Scytale and then the
Keyword obfuscation functions to the connection strings. The
application can also decrypt the encrypted string and undo any
of the applied obfuscation function.

Further testing of the encryption algorithms on the example
connection strings with the available cipher algorithms (168-
bit 3DES, 128-bit AES, 192-bit AES, and 256-bit AES) in the
application yielded the following results: the 128-bit version of
AES did show some improvement over the 3DES results. For
a couple of the database connection strings the commonality
in them was hidden by the AES algorithm while in others the
commonality remained blatantly obvious. Unfortunately, the
results from testing 192-bit AES did not show any improve-
ment over the 128-bit version of the algorithm. The results of
the testing with the 256-bit AES were similar to the results of
128-bit and 192-bit versions of the AES algorithm. In all three
versions of the AES cipher function, the database connection
strings that had their commonality hidden by the encryption
process were the same and the database connections strings
where the commonality remained obvious were also the same.
This led to the preliminary conclusion that it was not the
symmetric algorithm, nor the strength of their encryption that
determined if a database connection string retained its inherent
commonality in the encrypted string but the block size that the
encryption algorithm used.

A. Database Engine Comparisons

From the testing done with the symmetric encryption al-
gorithms (3DES and AES) when applied to various example
plain text database connections strings. It becomes clear that
it was not the algorithm or the strength of the key that is the
deciding factor in determining if resulting encrypted strings
appearance of independence from each other. That it was based
on the bock size of the encryption algorithm and the number
of preset characters in the connection string. Which means that
the index of the first unique character in a database connection

string is quintessential in knowing if a symmetric encryption
algorithm will be able to generate encrypted text that will
appear to be random character string. The second column of
table IX shows the minimum length for of the initial character
sub-string for nine popular database engines, note that due
to SQLite′s dependence on the host operating system′s file
structure there is a difference between Unix and Microsoft
minimum length. The third column of table IX shows how
many different initial connection strings can occur with the
given database engine. While the fourth column of table IX
shows how many known sub-strings can appear within a Java
database connection string for the database engine.

From the previous testing, we know that if the initial
sub-string is equal to or greater than the block size of the
encryption algorithm, then there will be a clear correspondence
in the encrypted versions of the database connection strings. In
five (Postgres, MS SQL Server, Cassandra, Maria, and SQLite
on an MS System) of the above cases not even AES′s 128-
bit block size will be sufficient to hide commonality between
database connections strings for those database engines. Add
to that any even a small commonality in the server name or
IP address and all but DB2 would likely cross the 128-bit
block size boundary of the AES algorithm. Even DB2 can only
handle 4 additional common characters in the initial part of the
database connection string for AES to be able to conceal the
commonality between the various database connection strings.

Once the preliminary conclusion that the cipher algorithm′s
block size was the reason why the commonality within the
database connections strings was being reflected in their en-
crypted strings. It became clear that there needed to be some
way to introduce some easily removable random characters
into the initial part of a database connection strings. This
randomness would allow the symmetric encryption algorithm′s
permutation and substitution functions to properly hide the
commonality within the database connection strings. This is
the reasoning that led to the decision to introduce random
characters into the database connection strings by applying
the Keyword function, Scytale function or both functions to

TABLE IX
DATABASE CONNECTIONS STRING STATISTICS

Database Engine Preset Options Known Text
MySql 13 1 2
Oracle 14 1 2
Postgres 18 1 2
MS SQL Server 17 1 2
Sybase 14 1 2
DB2 11 1 2
SQLite (Unix) 13 1 2
SQLite (MS) 16 24 2
Cassandra 22 3 5
Maria 17 3 7

obfuscate the database connection strings.

B. Applying the Keyword Obfuscation Function

The keyword obfuscation function, as implemented in the
test application, allows for the prepending of from one to
ten random base 64 character to database connection string.
The application allows the user to set the length of the string
prepended, but it defaults to a string of five characters. The
application randomly selects a different character string to be
prepended to each of the database connection strings. This
uniqueness of each of the prepended strings is necessary, since
if the same string was used for all of the connection strings,
then the commonality would still remain in the plain text and
the commonality would be reflected in the encrypted text.
The function only slightly increases the size of the connection
string and does significantly increase the size of the resulting
encrypted string. The keyword obfuscation function is a very
simple to implement and can be easily undone.

From the results of further testing of the Keyword Ob-
fuscation function, it became clear that the addition of five
random characters to the front of any database connection
string was sufficient to remove the commonality that exists in
the plain text connection string from the connection string′s
encrypted text representation. This is due to fact that the
random character string introduces a likely to introduce a
unique character into the part of the database connection string
within the first five characters of the string. In fact, the chance
of two randomly generated five-character base-64 strings being
identical is one in 64 to the fifth, less than 1 in a billion.
This is likely sufficiently secure for most situations but if a
more secure string is needed, then increase the number of
random characters in the prepended string. The only caveat is
that the size of the prepended string cannot be multiple the
cipher algorithm′s block size without losing its effectiveness.
If 3DES is being used to encrypt the connection string, then
the prepended random character string cannot be a multiple of
eight.

Further testing also showed that prepending a single char-
acter to the front of the connection string was insufficient to
safely hide the commonality in the database connection strings.
The 1.5625chance of getting a duplicate character at the start
of the database connection string was simply too high when
encrypting large numbers of connection strings. Even a two

random character string has a roughly 1 on 4000 chance of
getting a duplicate random string value. The author would
recommend using at least a three-character random string to
prepend to the database connection string.

C. Applying the Scytale Obfuscation Function

The Scytale obfuscation function, as implemented in the
test application, prepends a random character to the beginning
of the database connection string and inserts another random
character after each of the characters in the connection string.
The characters that are added to the connection string are
randomly selected. The Scytale function more than doubles
the length of the connection string which greatly increases
the length of the resulting encrypted string also. The Scytale
function is more complex to implement and is more time
consuming to both apply and remove from the database
connection string than the keyword obfuscation function, but
the increases should not significantly affect the run-time of any
application making use of the Scytale obfuscation function.

The results of the testing of the Scytale obfuscation function
above, much like the keyword obfuscation function, showed
that it could easily remove the commonality in the database
connection strings from the encrypted text strings. They were
both able to produce encrypted strings that appeared to be a
string of random characters. The key difference between the
two obfuscation functions is that the Scytale function does
not suffer from the problem of being ineffective when the
number of random characters introduced into the connection
string is a multiple of the cipher algorithm′s block size. The
Scytale obfuscation function as implemented is able to remove
the commonality in a database connection string without
any limitations on the number of characters added to the
connection string.

The key problem with the Scytale obfuscation function is
that it more than doubles the length of the connection string.
If a database connection string is 40 characters long, the
Scytale obfuscated version of the plain text string would be 81
characters long, which would lead to an appreciable increase
in the length of the encrypted string. While the length of the
encrypted string may not be of paramount importance in most
use cases, in those where the length does matter then the
Scytale function may not be an appropriate solution.

D. Shortcomings of AES and 3DES

It is clear from the test results that neither 3DES nor the
AES cipher algorithms are sufficient to safely encrypt most
database connection strings. 3DES′ 64-bit block size is smaller
than all of the connection strings minimum preset character
lengths which means that 3DES cannot hide the commonality
within any of the tested database connection strings. While
the AES cipher algorithm did show some improvements over
the 3DES algorithm. AES was able to hide the commonality
of some of the database connections strings, so long as
the first unique character appeared in the connection string
within the first sixteen characters, the AES block size, of
the connection string. The AES cipher algorithm was able to
hide the commonalities of some database connection strings
including MySql and SQLite. Unfortunately for AES, in the
case of database connection string with longer preset initial
strings like MS SQL Server and Maris, the inability to hide
the commonality in the connection string still exists. In further
testing, the fact that the problems persisted regardless of the
strength of the cipher key showed that the problem is not with
the encryption key or initialization vector but in the block size
used by the cipher algorithm.

The application of both the Keyword and Scytale ob-
fuscation functions before the encrypting of the plain text
database connection string had the same effect on the resulting
encrypted test string regardless of whether the 3DES or AES
cipher algorithm were used to encrypt the obfuscated string.
With both cipher algorithms, the resulting encrypted text
appeared to be a string of random characters. While both
algorithms were able to produce apparent random strings, they
both have some disadvantages. In the case of the keyword
obfuscation function, the end user must be cognizant of the
block size of the cipher algorithm to be used to encrypt
the obfuscated text and the number of random characters
prepended to the database connection strings. On the other
hand, the Scytale obfuscation function will greatly increase
the length of the resulting encrypted text strings.

Additionally, note that one of the easiest ways to break a
cipher key is to know some of the sub-string that produced
the encrypted string. The problem of the known initial values
in database connection strings is just a special case where
not only do we know some of the sub-strings that produced
the encrypted text, but we also know where those strings are
located in the plain text, namely at the start of the plain text.
With more modern databases, like Maria and Cassandra, the
fact that they have embedded in them multiple name value
pairs for information like database names, server addresses,
ports listened on, accounts and passwords should not be over-
looked. Knowing the sub-string such as ”password”, ”server”,
and ”database” are in the plain text, even if they are not at
the beginning, can only make the breaking of the encryption
key easier.

E. Results the Keyword Obfuscation Function

The keyword obfuscation function was very successful at
hiding the commonality that exists in database connection

strings. In testing a single character was sufficient to change
the look of and encrypted connection string to one that looked
like a collection of random characters. Unfortunately, a single
character was not sufficiently safe when groups of connections
strings are encrypted. Testing suggested that it would take a
keyword string of three or more characters to be reasonably
safe. Additionally, when the keyword is a multiple of the
cipher algorithms block size, the keyword has no effect on
the security of the encrypted database connection string.

While the use of the Keyword obfuscation function does
make sure the beginning part of the encrypted strings look
random, it does nothing to hide the known strings that already
exist in the database connection string. The fact that the strings
”dbc” and a designater for the database engine are at the start
of every database connection string is not way changed by
the use of the keyword obfuscation function. The fact that
the keyword function only moves the known string over a few
places in the string and fills in the gaps with random characters
may make it harder to identify the encrypted string, but it does
nothing to protect the encryption key from being broken by
an intelligent attacker.

F. Results the Scytale Obfuscation Function

The Scytale obfuscation function was also successful at
hiding the commonality that exists in database connection
strings. It did just as good a job of obscuring the commonality
of the database connections strings as the Keyword function
but at the cost of greatly increasing the length of the encrypted
text and at a slight increase in system resource use. Its ability
to hide the commonality in the database connection string was
also independent of the block size of the cipher algorithm.

An additional advantage that the Scytale obfuscation func-
tion has over the keyword function is that it not only obfus-
cates the database connection strings, it also obfuscates the
known string within the database connection string. While the
keyword function hides the known string ”jdbc”, the Scytale
function replaces the string jdbc with a seven-character string
that has a random character between each of the known
characters in the string. An attacker who tries to break the
encryption key using the fact that jdbc is somewhere in the
database connection string would now have to check for more
then a quarter of a million possible sub-string to account for all
of the additional three randomly selected base-64 characters
inserted into the four-character jdbc string by the Scytale
obfuscation function.

The insertion of the random characters into every part of
the database connection string rather than just at the start of
the string increases the security of the encryption key. The
Scytale obfuscation function not only hides the commonality
of the connection strings, it also protects the encryption key
use to encrypt the connection string by removing the all know
name flag values from the string and replaces them with longer
strings with random characters in them.

IV. THREATS TO VALIDITY

One threat to the validity for this research is it is completely
based on the generation of random numbers for the creation
of the encryption keys, initialization vectors and the random
characters used in both the Keyword and Scytale obfuscation
functions. The Java random number generation function was
initialized using the system time to minimize the chance of the
random number generator function introducing any bias into
the results observed in the various tests of the obfuscation
functions.

For our analysis to be valid, the software application and
the libraries used to generate the encryption keys, initialization
vector and encrypted text must be accurate. We therefore used
the older Bouncy Castle encryption libraries to mitigate the
chance of errors in the encryption and decryption of the plain
text.

Likewise, our testing was only applied to the Java database
connection strings using the most popular symmetric cipher
algorithms. Other cipher algorithms may show that apply-
ing Keyword or Scytale obfuscation functions to plain text
database connection strings before encrypting the connection
string may not yield similar results. Lastly, known limitations
of both the Keyword and Scytale obfuscation functions, such
as if the length of the keyword prepended to the text is a
multiple of the encryption algorithm’s block size then the
keyword has no effect on the encrypted text. Additionally the
length of the keyword prepended to the text directly effects the
effort needed to break the encrytion key. A keyword of only a
characters or two does not significantly increase the security of
the database connection string, while the longer the keyword
is, the more difficult it is to break the encryption key so long
as it is not a multiple of the algorithms block size. One of the
limitations of the Scytale obfuscation function is that it more
them doubles the size of the text being encryted. Also, in
the case of the Scytale obfuscation function, the length of the
keyword directly effects how much more secure the obfuscated
text is. The shorter the keyword, the fewer characters inserted
inside of it. These limitations may impact the applicability of
our approach in certain use cases.

V. RELATED WORK

Sousi et al. [2] presents an in-dept examination of the AES
symmetric cipher algorithm. Their analysis directly compares
the AES encryption algorithm to DES and shows how AES’s
is a stronger, safer and, thus far, unbreakable encryption algo-
rithm. Sousi discusses both the advantages and disadvantages
of AES and lists several examples of failed attempts to crack
AES encryption. Our work is similar to Sousi work in that we
showed that AES was not as susceptible to vulnerabilities in
database connection string encryption as 3DES was. Addition-
ally, our experiments on encrypting the database connection
strings fully supports Sousi’s conclusion of AES’s is a stronger
encryption algorithm when compared to DES. For example,
our results showed DES was far more susceptible to the
problems with encrypting database connection strings.

Patel et al. [13] did an extensive comparison study of the
DES, 3DES, AES, RSA and Blowfish encrytion algorithms.
They compared and contrasted algorithms for various param-
eters including encryption/decryption time, memory use, its
avalanche effect, and the algorithm’s entropy effect. Our work
is similar to their work because their evaluation of the entropy
effect of the algorithms exemplifies what our experiments are
attempting to affect. By adding random characters to the plain
text before encryption, we increased the entropy effect on the
plain text. Patel et al’s work showed that AES and Blowfish
had the highest entroy effects. Our work showed that the 64
bit (8 byte) block size, which Blowfish uses, was a major
contributing factor to the commonality in encrypted database
connection strings.

Qianru Gong [5] showed how combining both DES/3DES
symmetric encryption algorithm with RSA asymmetric en-
cryption algorithm can improve the overall security of elec-
tronic communications. By encrypting a message using a DES
or 3DES cipher key and then encrypting that cipher key with
the recipients public RSA key, a secure one-time pad can be
created. The problem with Gong’s proposed solution is the use
of DES/3DEs. As our experiments show DES/3DES’s reliance
on a 64-bit block size leaves it vulnerable to long strings of
identical characters. While our work does nothing to bring into
question Gong’s security solution, it does show that AES may
be a better choice of encryption algorithm when encrypting
message/data due to it larger block size.

Raed Abu Zitar and Muhammed J. Al-Muhammed [18] took
a completely different approach to encrypting information by
using a two-layer feed-forward neural net for the encryption
function. Their approach trains the first layer of neural net
to encrypt the plain text. While the second layer decrypts
what the first layer encrypted, to recover the original text.
The methodology also includes a recurrent neural network that
generates a security code that maintains the integrity of the
plain text. Our approach of obfuscating the text with random
characters would not work well with such an encryption
methodology. Due to the fact that the security code for
maintaining the integrity of the encryption would be invalid as
every time the obfuscated text is encrypted, a different integrity
security code would be calculated.

VI. CONCLUSION

This paper presented our work on removal of commonalities
within encrypted database connection by applying simple
obfuscation functions. Based on our experimental results, we
show that, even with the strongest of symmetric encryption
keys, commonalities remain visible in encrypted database
connection strings. Our experimental results also show that
visible commonalities, however, disappear by adding a short
character string to the front of a database connection string.
Lastly, further experimentation with a Scytale obfuscation
function also eliminated the visible commonalities. Based on
our experimental results and research findings, we have learned
following lessons:

• Cipher algorithm block size impacts discernible com-
monalities. Plain text database connection strings with no
obfuscation function applied demonstrate there are easily
discernible commonalities between related database con-
nections strings. This commonality can be traced back
to the block size of the cipher algorithm and the length
of the preset section of the database connections string.
t com In the case of the 3DES cipher algorithm, even
the smallest of preset keyword sections of the connection
strings were longer than the block size of the cipher
algorithm. While AES’s longer block size did solve the
problem for some connection strings, it did not solve it
for all of them. Moreover, failure to produce what appears
to be a random character string after encryption increases
the chance of the encryption key being cracked.

• Simple obfuscation function eliminate the discernible
commonalities. Applying either the Keyword or Scytale
obfuscation functions to the encrypted text causes the
observed commonalities to disappear. Both the Keyword
and Scytale obfuscation function had the effect of making
the encrypted text appear to be random collections of
characters. Only the Scytale obfuscation function man-
ages to remove the known substrings within a database
connection strings. A four-character substring would have
three additional random characters inserted into it, giving
more than a quarter of a million possible strings that
would have to be checked when trying to break the
encryption key used to encrypt the connection string.
Therefore the advantages of the Scytale obfuscation func-
tion is not only that it makes the encrypted string look
like a collection of random characters, it also makes it
harder to use the known strings in a database connection
string to crack the encryption key. The addition of random
characters inserted into the known strings increases the
number or strings that have to be searched for by a
geometric factor. If using the Base 64 characters, each
character inserted into a know string increases the number
of string to search by a factor of 64. The keyword
java would have over 262,000 possible resulting string
after applying the scytale obfuscation function to it. The
primary downside to the Scytale obfuscation function is
that the resulting encryption string is more than double
the length of what the encrypted string would be if the
Scytale obfuscation function had not been applied to plain
text connection string.

• Goals achieved, but questions left unanswered? Both
the Keyword and Scytale obfuscation functions achieved
the goals set forth for them in our experimental tests.
They both removed the obvious commonality in database
connection strings. With the Scytale obuscation function
being viewed as the superior of the two obfuscation
functions. Based on the experimental results we got from
our tests, we believe tht that the following questions can
be answered in future research efforts.
The first of these questions is the obvious one, what
other types of obfuscation functions could be applied

to a database connections string prior to its encryp-
tion that will also hide the commonalities within re-
lated connection strings. Additionally what advantages
and disadvantages might these alternative obfuscation
function have over the Keyword and Scytale functions?
Another question not dealt with in this article is how
other symmetric and asymmetric encryption algorithms
would deal with the commonality inherent in related
database connection strings. Also would other encryption
algorithms benefit from the application of an obfuscation
function to the plain text before encrypting it. Another
question that needs to be answered, but is beyond the
scope of this paper, is just how much the addition of an
obfuscation function such as scytale increases the entropy
effect of an encryption algorithm over encypting text
with no obfuscation function applied. Finally would the
addition of more random charaters within the plain text
characters significantly increase the entropy effect and
would an obfuscation function inserting a small random
sized string within the plain text characters further in-
crease the entropy rating of an encryption algorithm?

REFERENCES

[1] ”Advanced Encryption Standard”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Advanced Encryption Standard.

[2] Ahmad-Loay Sousi, Dalia Yehya, Mohamad
Joud, ”AES Encryption: Study and Evaluation”,
CCEE552: Cryptography and Network Security, 2020,
https://www.researchgate.net/publication/346446212 AES Encryption Study Evaluation.

[3] ”The Legion of the Bouncy Castle”, Accessed = 2023/06/03,
bcpg-jdk15on-156.jar and bcprov-ext-jdk15on-156.jar,
https://www.bouncycastle.org.

[4] ”Caesar Cipher”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Caesar cipherx.

[5] Qianru Gong, ”Application Research of Data Encryption Algorithm in
Computer Security Management”, Wireless Communications and Mobile
Computing, 2022, https://doi.org/10.1155/2022/1463724.

[6] ”Connection String Formats”, Accessed =
2023/06/03, https://docs.oracle.com/en/database/other-
databases/essbase/21/essoa/connection-string-formats.html.

[7] ”DES Encryption Cipher”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Data Encryption Standard.

[8] ”Cipher Disk”, Accessed = 2023/06/03,
https://docs.oracle.com/en/database/other-
databases/essbase/21/essoa/connection-string-formats.html.

[9] ”Enigma Machine”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Enigma machine.

[10] Biplov, Apr 7, 2020, ”Handling Passwords and Secret
Keys using Environment Variables”, Accessed = 2023/07/29,
https://dev.to/biplov/handling-passwords-and-secret-keys-using-
environment-variables-2ei0

[11] ”Initialization Vector”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Initialization vector.

[12] ”Java SE 8 Archive Downloads (JDK 8u211 and later)”, 06/03/2023,
https://www.oracle.com/java/technologies/javase/javase8u211-later-
archive-downloads.html Java SE Runtime Environment - build
1.8.0 221-b11.

[13] Priyadarshini Patil, Prashant Narayankar, Narayan D.G., Meena S.M.,
”A Comprehensive Evaluation of Cryptographic Algorithms: DES,
3DES, AES, RSA and Blowfish”, Procedia Computer Science, 1st
International Conference on Information Security and Privacy 2015,
volume 78, pages 617-624, 2016.

[14] ”Known-Plaintext Attack”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Known-plaintext attack.

[15] ”Type B Cipher Machine”, Accessed = 2023/06/03,
https://en.wikipedia.org/wiki/Type B Cipher Machine.

[16] Mike Huls, ”Towards Data Science”, ”Keep your code secure by
using environment variables and env files”, Nov 1 2021, Accessed
= 2023/07/29, https://towardsdatascience.com/keep-your-code-secure-
by-using-environment-variables-and-env-files-4688a70ea286

[17] ”Scytale”, Accessed = 2023/06/03, https://en.wikipedia.org/wiki/Scytale.
[18] Abu Zitar, Raed and Al-Muhammed, Muhammed J., ”Hybrid encryption

technique: Integrating the neural network with distortion techniques”,
PLOS ONE, Public Library of Science, volume 17, pages 1-27, 09/2022,
https://doi.org/10.1371/journal.pone.0274947.

