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Abstract

Soil moisture influences near-surface air temperature by partitioning downwelling radiation into latent and sensible heat fluxes,

through which dry soils generally lead to higher temperatures. The strength of this coupled soil moisture-temperature (SM-T)

relationship is not spatially uniform, and numerous methods have been developed to assess SM-T coupling strength across the

globe. These methods tend to involve either idealized climate-model experiments or linear statistical methods which cannot fully

capture nonlinear SM-T coupling. In this study, we propose a nonlinear machine learning-based approach for analyzing SM-T

coupling and apply this method to various mid-latitude regions using historical reanalysis datasets. We first train convolutional

neural networks (CNNs) to predict daily maximum near-surface air temperature (TMAX) given daily SM and geopotential

height fields. We then use partial dependence analysis to isolate the average sensitivity of each CNN’s TMAX prediction to

the SM input under daily atmospheric conditions. The resulting SM-T relationships broadly agree with previous assessments

of SM-T coupling strength. Over many regions, we find nonlinear relationships between the CNN’s TMAX prediction and the

SM input map. These nonlinearities suggest that the coupled interactions governing SM-T relationships vary under different

SM conditions, but these variations are regionally dependent. We also apply this method to test the influence of SM memory

on SM-T coupling and find that our results are consistent with previous studies. Although our study focuses specifically on

local SM-T coupling, our machine learning-based method can be extended to investigate other coupled interactions within the

climate system using observed or model-derived datasets.
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Abstract 22 

Soil moisture influences near-surface air temperature by partitioning downwelling 23 
radiation into latent and sensible heat fluxes, through which dry soils generally lead to higher 24 
temperatures. The strength of this coupled soil moisture-temperature (SM-T) relationship is not 25 
spatially uniform, and numerous methods have been developed to assess SM-T coupling strength 26 
across the globe. These methods tend to involve either idealized climate-model experiments or 27 
linear statistical methods which cannot fully capture nonlinear SM-T coupling. In this study, we 28 
propose a nonlinear machine learning-based approach for analyzing SM-T coupling and apply 29 
this method to various mid-latitude regions using historical reanalysis datasets. We first train 30 
convolutional neural networks (CNNs) to predict daily maximum near-surface air temperature 31 
(TMAX) given daily SM and geopotential height fields. We then use partial dependence analysis 32 
to isolate the average sensitivity of each CNN’s TMAX prediction to the SM input under daily 33 
atmospheric conditions. The resulting SM-T relationships broadly agree with previous 34 
assessments of SM-T coupling strength. Over many regions, we find nonlinear relationships 35 
between the CNN’s TMAX prediction and the SM input map. These nonlinearities suggest that 36 
the coupled interactions governing SM-T relationships vary under different SM conditions, but 37 
these variations are regionally dependent. We also apply this method to test the influence of SM 38 
memory on SM-T coupling and find that our results are consistent with previous studies. 39 
Although our study focuses specifically on local SM-T coupling, our machine learning-based 40 
method can be extended to investigate other coupled interactions within the climate system using 41 
observed or model-derived datasets.  42 

 43 

Plain Language Summary 44 

Soil moisture content influences air temperature by controlling evaporation at the soil 45 
surface. Dry soils reduce evaporation which warms the surface and leads to higher air 46 
temperatures. Conversely, wet soils generally lead to cooler temperatures. This process results in 47 
a coupled relationship between soil moisture and temperature. Soil moisture-temperature (SM-T) 48 
coupling occurs everywhere but is especially strong in certain areas of the world. Over recent 49 
decades, numerous methods have been developed to measure regional differences in SM-T 50 
coupling strength. These studies agree on certain “hot spots” where this coupling relationship is 51 
particularly strong. However, these previous studies rely on idealized climate model experiments 52 
or linear statistics which cannot fully capture nonlinear SM-T coupling. To address this, we 53 
apply nonlinear machine learning techniques to investigate SM-T coupling. Our results show that 54 
this method captures the nonlinear characteristics of SM-T coupling and agrees well with 55 
previously documented coupling hot spots. Our method also provides a framework for using 56 
machine learning to investigate other coupled processes in the Earth system.  57 

 58 

1 Introduction 59 

Since the early 1980’s, climate model experiments have confirmed that soil moisture 60 
content (SM) influences near-surface air temperature by modulating the surface energy budget 61 
(Shukla & Mintz, 1982). This coupled relationship between soil moisture and temperature 62 
(hereafter, “SM-T coupling”) results from complex interactions between the land surface and the 63 
atmosphere. In regions with strong SM-T coupling, SM content controls the partitioning of 64 
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downwelling radiation into latent and sensible heat fluxes, resulting in a positive feedback 65 
mechanism through which dry soils lead to higher temperatures and further soil drying, while 66 
wet soils generally lead to cooler temperatures (Seneviratne et al., 2010). Second-order positive 67 
feedback mechanisms have also been observed between soil moisture, boundary layer growth, 68 
1000–500-hPa thickness, and near-surface temperature (Fischer et al., 2007; Miralles et al., 69 
2014; Quesada et al., 2012; Seneviratne et al., 2010). These SM-T coupling mechanisms tend to 70 
be strongest in transitional regimes between wet and dry climates, which is consistent with the 71 
theoretical framework of Seneviratne et al., (2010). In wet and dry climate regimes, near-surface 72 
temperature is less sensitive to SM (i.e., decoupled) since evapotranspiration is limited by 73 
radiation and soil properties, respectively (Seneviratne et al., 2010). However, in transitional 74 
climate regimes, near-surface temperature is highly sensitive to SM content because small 75 
changes in SM influence evapotranspiration, which directly affects latent and sensible heat 76 
fluxes (Seneviratne et al., 2010). Together with SM content, differences in soil characteristics 77 
(e.g., albedo, porosity, texture) and land cover type also drive regional differences in SM-T 78 
coupling strength (Dennis and Berbery 2021; Hirsch et al. 2014). 79 

SM-T coupling has both local (Durre et al., 2000; J. Liu & Pu, 2019) and non-local (i.e., 80 
downwind) effects (Schwingshackl et al., 2018; Seneviratne et al., 2013; Vautard et al., 2007) 81 
that occur on daily, monthly, and seasonal time scales (Durre et al., 2000; Fischer et al., 2007; 82 
Koster et al., 2006a; J. Liu & Pu, 2019; Vautard et al., 2007). Deep soil layers (10-200 cm) have 83 
longer SM memory (Wu & Dickinson, 2004), which makes these layers more important for 84 
monthly- and seasonal-scale SM-T coupling (Koster et al., 2006a). In contrast, the uppermost 85 
soil layer (< 10 cm) has the greatest influence on daily-scale SM-T coupling (J. Liu & Pu, 2019). 86 
Further, the potential for SM-T coupling is highest during daylight hours in the summer months 87 
(due in large part to the maximum of downwelling solar radiation; Durre et al., 2000; Koster et 88 
al., 2006a; J. Liu & Pu, 2019), which makes daily-scale SM-T coupling especially relevant for 89 
producing extreme daily maximum summer temperatures (Diffenbaugh et al., 2007; Miralles et 90 
al., 2014; Schwingshackl et al., 2017; Seneviratne et al., 2010; Vogel et al. 2017). As a result, we 91 
focus our analysis primarily on daily-scale coupling between top-layer SM and daily maximum 92 
2-meter temperature in the summer months.  93 

Over the past two decades, many studies have quantified regional differences in SM-T 94 
coupling strength using observational (Chen et al., 2019; Dirmeyer, 2011; Koster et al., 2009; 95 
Mei & Wang, 2012; Miralles et al., 2012; Spennemann et al., 2018; Teuling et al., 2009) and 96 
model-derived datasets (Fischer et al., 2007; Jaeger et al., 2009; Koster et al., 2006a, 2009; Mei 97 
& Wang, 2012; Ruscica et al., 2014; Schwingshackl et al., 2017; Seneviratne, Lüthi, et al., 98 
2006). Global assessments of SM-T coupling strength typically involve comparing climate 99 
model simulations under different soil moisture scenarios (e.g., Fischer et al., 2007; Koster et al., 100 
2006a; Seneviratne, Lüthi, et al., 2006) or analyzing linear statistics (e.g., correlation 101 
coefficients) between land-surface and/or atmospheric variables (e.g., Diffenbaugh & Ashfaq, 102 
2010; Dirmeyer, 2011; Jaeger et al., 2009; Seneviratne, Lüthi, et al., 2006; Teuling et al., 2009). 103 
Regardless of the methodology, previous assessments broadly agree on certain transitional 104 
climate regimes as “hot spots” of SM-T coupling (e.g., the US Southern Great Plains, the Sahel 105 
region in Africa, areas of the Indian subcontinent). However, these studies consistently disagree 106 
on the relative magnitudes of SM-T coupling strength within certain regions. Inconsistencies 107 
between SM-T coupling studies can result from numerous sources, including climate model 108 
disagreement (Gevaert et al., 2018), model initializations (Fischer et al., 2007), experimental 109 
design (e.g., potential sea surface temperature effects; Koster et al., 2006a), and differences 110 
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between climate model and reanalysis datasets (e.g., stronger SM-evaporative fraction coupling 111 
in reanalysis compared to climate models; Mei & Wang, 2012). In climate model-based 112 
assessments of SM-T coupling, additional inconsistencies can be caused by differences in model 113 
parameterization of soil hydraulic properties, plant hydraulic properties, vegetation type, and 114 
land use (Dennis and Berbery 2021; Hirsch et al. 2014). 115 

Importantly, analyses of SM-T coupling strength (e.g., Dirmeyer, 2011; Fischer et al., 116 
2007; Jaeger et al., 2009; Koster et al., 2006a; Menendez et al., 2019; Miralles et al., 2012; 117 
Ruscica et al., 2014; Seneviratne, Lüthi, et al., 2006; Teuling et al., 2009) have tended to use 118 
idealized climate model experiments and/or linear statistical methods to explain SM-T coupling. 119 
However, evidence suggests that the sensitivity of temperature to SM changes for different 120 
values of SM (Benson & Dirmeyer, 2021; Jaeger & Seneviratne, 2011; Seneviratne et al., 2010). 121 
This nonlinear relationship between temperature and SM is difficult to estimate using climate 122 
model experiments, requiring a large number of sensitivity experiments with slightly perturbed 123 
SM conditions repeated over numerous different atmospheric initializations (Fischer et al., 2007; 124 
Seneviratne et al., 2010). There is thus an opening for nonlinear statistical methods that can 125 
comprehensively assess SM-T coupling relationships without requiring extensive climate model 126 
simulations. 127 

Deep neural networks have recently surged in popularity for their ability to learn complex 128 
nonlinear interactions between input and output variables (LeCun et al., 2015). Convolutional 129 
neural networks (CNNs) are one particular form of deep learning architecture that are designed 130 
to analyze gridded input data such as images and geospatial data (LeCun et al., 1989). To date, 131 
CNNs have been used extensively in the geosciences for image classification (Chilson et al., 132 
2019; Davenport & Diffenbaugh, 2021; Jergensen et al., 2019; Lagerquist et al., 2019; Y. Liu et 133 
al., 2016; Wang et al., 2016; Wimmers et al., 2019), model parameterization (Bolton & Zanna, 134 
2019; Han et al., 2020; Larraondo et al., 2019; Pan et al., 2019), and forecasting (Ham et al., 135 
2019; Jacques-Dumas et al., 2021) applications. CNN models contain thousands (or millions) of 136 
trainable weights which are optimized during the training process to ensure that the CNN’s 137 
output predictions closely resemble the target data. In addition, these CNN models utilize 138 
nonlinear mathematical functions to represent the complex nonlinear relationships between the 139 
geospatial input maps and output predictions. After the training process is complete, machine-140 
learning (ML) model interpretation and visualization methods can be used to aid in interpreting 141 
the predictions of trained CNNs (e.g., layer-wise relevance propagation, S. Bach et al., 2015; 142 
backward optimization, Olah et al., 2017; etc.).  These ML interpretation methods have been 143 
used in the geosciences to confirm that a model’s predictions are based on the inputs in a 144 
physically meaningful way (Davenport & Diffenbaugh, 2021; Diffenbaugh & Barnes, 2023; 145 
Gagne et al., 2019; McGovern et al., 2019). More recently, studies have also begun to use ML 146 
interpretation methods to gain new insights into physical processes (Barnes, Mayer, et al., 2020; 147 
Barnes, Toms, et al., 2020; Toms et al., 2020; Zhang et al., 2021).  148 

Although applications of ML interpretation techniques are increasingly commonplace in 149 
the geosciences, these techniques have the potential to give non-physical and/or misleading 150 
results (Mamalakis et al. 2022; Ebert-Uphoff and Hilburn 2020). Typically, the results of ML 151 
interpretation methods are deemed trustworthy by visually comparing results against prior 152 
knowledge. This works well in cases where the processes are well understood and a ground-truth 153 
comparison is available (Davenport & Diffenbaugh, 2021; Gagne et al., 2019; McGovern et al., 154 
2019). However, it remains difficult to validate ML interpretation results when investigating new 155 
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or poorly understood processes. Recently, the construction of synthetic benchmark datasets 156 
where the discoverable relationships are known a priori have been proposed as a way to assess 157 
the fidelity of ML interpretation results (Ebert-Uphoff & Hilburn, 2020; Mamalakis et al., 2022). 158 
Here, we show that by applying ML interpretation techniques to modified versions of our 159 
training dataset we can validate our results and gain additional insights into physical processes. 160 

Partial dependence plots (PDPs; Friedman, 2001) are a common ML interpretation 161 
technique which can be used to visualize the nonlinear relationships that a model has learned 162 
between the input and output variables (Goldstein et al., 2015; Jergensen et al., 2019; McGovern 163 
et al., 2019). However, PDPs are rarely used to analyze deep-learning architectures (such as 164 
CNNs) for geoscience applications (Zhang et al., 2021). PDPs are infeasible for most deep-165 
learning applications (especially those with a large number of inputs) because they require an 166 
assumption of independence between all input variables (McGovern et al., 2019). If variables are 167 
strongly correlated, certain combinations of input variables will not likely occur in nature, and 168 
the CNN will be forced to extrapolate beyond the training dataset in order to calculate the PDP 169 
(which can yield non-physical results). Additionally, in order to apply PDPs to CNNs we must 170 
have a physically meaningful way to sort geospatial input maps along a continuous axis (which 171 
can be difficult depending on the application). In spite of these limitations, PDPs show promise 172 
as a tool for analyzing CNNs to better understand complex nonlinear relationships within 173 
geospatial datasets, provided that the input variables are not too strongly correlated, and that the 174 
application is focused on quantifying the relationship between the output prediction and some 175 
quantity calculated from the input maps. 176 

 177 

 
Figure 1. Schematic of the convolutional neural networks used in this analysis. (a) Model is given the following inputs: 
500 millibar geopotential height (GPH) anomaly map, 0-7 cm volumetric soil moisture (SM) fraction anomaly map, and 
an integer input corresponding to the calendar day (normalized to fall between 0 and 1). Pink box shows the temperature 
prediction region. (b) The spatial input maps undergo feature learning as they are passed through a convolutional layer 
with 8 3x3 filters using sigmoid activation, followed by an L2 regularization layer (to reduce overfitting), and a 2x2 max 
pooling layer. These three feature learning layers repeat twice. The output from the feature learning layers is then 
flattened, and the normalized calendar day input is concatenated onto the end. The flattened vector is passed through a 
fully-connected dense layer with 32 neurons, L2 regularization, and sigmoid activation. Lastly, we use a linear activation 
function which outputs (c) the predicted TMAX. (d) The input and output size of each layer in the convolutional neural 
network. (e) Several hyperparameters used to construct and train each model. 
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 178 

In this study, we apply partial dependence analysis to investigate daily-scale nonlinear 179 
SM-T coupling relationships over sixteen midlatitude regions in the Northern and Southern 180 
Hemispheres. Over each prediction region, we train a CNN to predict daily maximum 181 
temperature using several input variables, including atmospheric pressure patterns and soil 182 
moisture (Figure 1). Next, we use partial dependence plots (PDPs) to visualize how the CNN’s 183 
temperature prediction changes as we vary the SM input (while holding all other inputs constant; 184 

 
Figure 2. Schematic showing how partial dependence analysis is used to derive the nonlinear soil moisture-temperature 
coupling relationship that the convolutional neural network has learned through the training process. Shown is an example 
from a region in southcentral North America. (1) We take a single 500 millibar geopotential height map and the calendar 
day on which that map occurs. (2) We then pair this single GPH/calendar-day combination with every possible soil 
moisture anomaly input map (in the testing dataset) sorted from driest-wettest (f) according to local SM anomaly (area-
weighted average of all non-ocean grid cells inside the pink box). (3) We then pass these new input combinations through a 
trained convolutional neural network to obtain daily maximum temperature (TMAX) predictions for a single 
GPH/calendar-day combination over the entire range of SM anomaly maps. (4) We repeat steps (1)-(3) and average the 
behavior across all summertime GPH/calendar-day combinations (in the 8-year testing dataset) to obtain the nonlinear soil 
moisture-temperature coupling relationship (l) that the convolutional neural network has learned through the training 
process. The 5 GPH/calendar-day examples (a-e) are chosen for lowest GPH anomaly, median GPH anomaly, highest GPH 
anomaly, model best-hit, and model worst-miss, respectively. The corresponding temperature predictions for these 5 
examples are given in (g)-(k). The pink marker in (g)-(k) indicates the actual ERA5-Land temperature that occurred on that 
particular day. The green marker in (g)-(k) shows the model predicted temperature. The black marker in (g)-(k) shows the 
average model prediction for SM anomalies near zero, or TMAX(SM=0). Model predictions for each GPH/calendar-day 
combination in the testing dataset are shifted by TMAX(SM=0), then averaged to obtain the SM-T relationship in (l). We 
also include a rug plot showing the distribution of SM anomalies in the training dataset. Soil moisture anomalies are 
calculated as standard deviations (S.D.) from the calendar-day mean.  
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Figure 2). The resulting SM-T PDP shows the average sensitivity of the CNN’s daily 185 
temperature prediction to the SM input. To ensure that these SM-T relationships are robust, we 186 
confirm that each CNN meets minimum performance criteria and compare our SM-T PDPs 187 
against those obtained from modified versions of our training datasets where we systematically 188 
reduce and/or eliminate the potential for SM-T coupling. 189 

 190 

2 Data and Methods 191 

2.1 Datasets 192 

We construct two neural network training datasets which use daily mean 500-hPa 193 
geopotential height (GPH) anomalies and daily mean surface-layer volumetric soil moisture 194 
fraction (SM) anomalies as predictors of regional average daily maximum 2-meter air 195 
temperature (TMAX) over the 1979-2021 period. We focus on daily TMAX (as opposed to daily 196 
minimum or daily mean temperature) because the coupling between surface-layer SM and 2-197 
meter temperature is most relevant during daylight hours (when SM controls the partitioning of 198 
downwelling solar radiation into sensible and latent heat fluxes). 199 

Our primary dataset consists of GPH, SM, and TMAX from the ERA5/ERA5-Land 200 
historical reanalysis (ERA5, Hersbach et al., 2018; ERA5-Land, Muñoz-Sabater et al., 2021) 201 
provided by the European Centre for Medium-Range Weather Forecasts and downloaded from 202 
the Copernicus Climate Change Service Climate Data Store. We use ERA5 hourly 500-hPa 203 
geopotential provided globally at 0.25°×0.25° horizontal resolution. We then divide the 204 
geopotential by Earth’s gravitational acceleration (9.80665 m s-2) to obtain hourly 500-hPa GPH 205 
fields in meters above mean sea level. We use ERA5-Land hourly 0-7 cm SM fraction and 206 
hourly 2-meter air temperature provided globally at 0.1°×0.1° horizontal resolution. We then 207 
aggregate the ERA5/ERA5-Land hourly fields to obtain daily mean GPH, daily mean SM, and 208 
daily TMAX. Lastly, we convert the ERA5 GPH and SM fields to a T62 gaussian grid at 209 
1.875°×1.875° horizontal resolution to match the resolution of our comparison dataset, and to 210 
reduce computational expense.  211 

Our comparison dataset (used in supplemental analysis) consists of GPH, SM, and 212 
TMAX from the NCEP/DOE Reanalysis II (NCEP; Kanamitsu et al., 2002) historical reanalysis 213 
downloaded from the NOAA Physical Science Laboratory data archive at https://psl.noaa.gov. 214 
Daily mean 0-10 cm SM fraction and daily 2-meter TMAX are available globally on a T62 215 
gaussian grid at 1.875°×1.875° horizontal resolution. Using bilinear interpolation, we convert the 216 
NCEP daily mean 500-hPa GPH fields from a 2.5°×2.5° rectangular grid to the T62 gaussian 217 
grid to match the SM and TMAX fields (regridding performed using NetCDF Operators; Zender, 218 
2008). 219 

Since this analysis focuses on land-atmosphere interactions at daily timescales, we first 220 
subtract the 1979-2021 area-weighted regional-mean linear trends from the GPH, SM, and 221 
TMAX fields in both datasets (Cattiaux et al., 2013). By subtracting spatially averaged trends, 222 
we avoid the impacts of uniform tropospheric thermal expansion and near-surface warming on 223 
our training datasets, while still preserving the non-uniform spatial trends in GPH and SM that 224 
are important drivers of regional TMAX (Horton et al., 2015; Swain et al., 2016). For both 225 
ERA5 and NCEP, we then use the daily mean GPH and SM maps to calculate daily standardized 226 
anomalies (i.e., z-scores) by subtracting grid-cell calendar-day means and dividing by grid-cell 227 
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calendar-day standard deviations. All missing SM values (non-land grid cells) are assigned a 228 
zero anomaly to avoid numerical issues with missing values during neural network training. 229 

 230 

2.2 Regions  231 

We define sixteen prediction regions chosen to encompass a wide range of mid-latitude 232 
climate regimes, including known land-atmosphere coupling “hot spots” (as proposed by, e.g., 233 
Fischer et al., 2007; Koster et al., 2006b; Mei & Wang, 2012; Seneviratne, Lüthi, et al., 2006). 234 
The sixteen midlatitude regions (Figure 3) are: northcentral North America (38°N-49°N, 86°W-235 
104°W), southcentral North America (21°N-37°N,  92°W-106°W), southeastern North America 236 
(25°N-37°N, 75°W-92°W), southwestern Europe (36°N-43°N, 10°W-1°E), western Europe 237 
(43°N-50°N, 5°W-6°E), central Europe (48°N-55°N, 6°E-19°E), eastern Europe (41°N-48°N, 238 
17°E-29°E), northeastern Europe (51°N-59°N, 37°E-53°E), northeastern Asia (36°N-48°N, 239 
99°E-121°E), southeastern Asia (22°N-33°N, 100°E-122°E), north-southern South America 240 
(30°S-41°S, 51°W-73°W), south-southern South America (41°S-55°S, 63°W-76°W), 241 
southwestern Africa (20°S-35°S, 12°E-25°E), southeastern Africa (20°S-35°S, 25°E-36°E), 242 
southwestern Australia (25°S-36°S, 112°E-133°E), and southeastern Australia (27°S-39°S, 243 

 
 
Figure 3. (a) Northern Hemisphere regions included in this analysis alongside 1979-2021 regional climatologies of (b) 
daily maximum 2-meter temperature (TMAX), and (c) volumetric soil moisture fraction (SM). (d, e, f) Same as (a, b, c) but 
for Southern Hemisphere regions. Red shading indicates summer months in each hemisphere over which this study 
analyzes soil moisture-temperature coupling. Gray shading indicates winter months removed from all subsequent analyses. 
Thin colored lines show +/- 1 standard deviation. TMAX and SM climatologies derived from ERA5-Land dataset. 
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135°E-154°E). The extent of the prediction regions (roughly 800-1100 km across) is determined 244 
based on the approximate size of mid-latitude weather patterns. 245 

Over each of these prediction regions (Figure 3), we construct neural network training 246 
datasets (as detailed in Section 2.1). Each regional CNN uses standardized GPH and SM 247 
anomaly maps as predictors of regional average TMAX. We calculate regional average TMAX 248 
by taking an area-weighted mean over all non-ocean grid cells that fall within the region bounds. 249 
In order to provide sufficient spatial context for each regional TMAX prediction, we use broad 250 
GPH and SM anomaly input maps of 45 longitude points × 18 latitude points (at 1.875°×1.875° 251 
horizontal resolution), centered around the prediction region (see Figure 1 for an example of 252 
these input maps). Our choice of CNN input size (i.e., 45 longitude points × 18 latitude points) is 253 
based on the approach of Davenport and Diffenbaugh (2021), who showed that a CNN input map 254 
extending 35 degrees latitudinally and 85 degrees longitudinally provides sufficient spatial 255 
context for classifying GPH patterns associated with extreme precipitation over a similarly sized 256 
mid-latitude prediction region in the US Midwest. 257 

 258 

2.3 Convolutional Neural Network (CNN) Architecture  259 

We train a separate CNN regression model (Figure 1) to predict average daily TMAX 260 
over each prediction region using daily 500-hPa GPH anomalies, daily surface-layer SM 261 
anomalies, and calendar-day inputs. For each day in the training set, the neural network receives 262 
the calendar day (normalized to fall between 0 and 1) and a 3-dimensional spatial input matrix 263 
(18×45×2; lat×lon×inputs) containing the GPH map from the day of the prediction and the SM 264 
anomaly map from 1 day prior to prediction. We use SM inputs from 1 day prior to the 265 
prediction in order to avoid potential impacts of daily TMAX on daily SM. The spatial inputs 266 
then undergo feature learning as they are passed through two convolutional layers (8 3×3 filters 267 
with sigmoid activation) each followed by a 2×2 max pooling layer. After feature learning, the 268 
resulting feature maps are flattened into a 1-dimensional vector and the normalized calendar-day 269 
input is concatenated to the end. This vector is then passed through a fully-connected (dense) 270 
layer (32 neurons with sigmoid activations) followed by a final dense layer with linear 271 
activations which output a single TMAX prediction. The TMAX predictions are then compared 272 
to the target TMAX values from the training dataset, and CNN layer weights (initialized with He 273 
uniform; He et al., 2015) are adjusted using RMSprop (Hinton, Srivastava, & Swersky, 2012) in 274 
order to minimize the loss function (mean squared error; MSE). To reduce overfitting during the 275 
training process, we use L2 activity regularization on both convolutional layers and the dense 276 
layer. We also use early stopping with a patience threshold of 100 epochs which halts the 277 
training process and returns the optimal weights when validation loss stops improving. After the 278 
training process is complete, we save the model weights and use the trained model to predict 279 
TMAX over all days. 280 

Prior to neural network training, we randomly split the 43-year datasets into training (27-281 
year), validation (8-year), and testing (8-year) subsets while keeping calendar years intact. By 282 
keeping calendar years intact, we further reduce the potential for overfitting between 283 
chronologically adjacent days in different subsets which may look nearly identical due to slow 284 
day-to-day variations in SM, GPH, and TMAX. Each subset consists of randomly selected years 285 
(instead of a consecutive N-year period) to avoid potential impacts of interdecadal climate 286 
variability, land use change, anthropogenic climate forcing, and trends in land-atmosphere 287 
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interactions which could otherwise prevent a fair evaluation of our model. We use different 288 
training/validation/testing subsets for each region in order to ensure that the target TMAX 289 
distributions are roughly equivalent between each subset. To avoid potential impacts of snow 290 
cover on land-atmosphere coupling (Dutra et al., 2011; Henderson et al., 2018), we remove the 291 
three canonical winter months in each hemisphere (December-January-February in the Northern 292 
Hemisphere and June-July-August in the Southern Hemisphere). This yields a total of 7425 293 
training samples, 2200 validation samples, and 2200 testing samples for each Northern 294 
Hemisphere region; and 7378 training samples, 2186 validation samples, and 2186 testing 295 
samples for each Southern Hemisphere region. During training, model parameters are fit to the 296 
training data and hyperparameters are adjusted to minimize loss on the validation data. Once the 297 
training is complete, we predict TMAX on the unseen testing subset. 298 

We optimize CNN architecture and hyperparameters using scikit-learn’s GridSearchCV 299 
(Pedregosa et al., 2011), including: layer number/organization, filter number/size, loss function, 300 
optimizer, activation functions, weight initializers, and batch size. Additional hyperparameters 301 
such as initial learning rate, learning rate decay, and L2 activity regularization factor are 302 
optimized separately for each regional model in order to minimize loss on the validation subset. 303 
Due to the non-uniform nature of TMAX distributions, we use the DenseWeight/DenseLoss 304 
algorithm (Steininger et al., 2021) to perform imbalanced regression by weighting the loss 305 
function for each sample using weights inversely proportional to sample frequencies (calculated 306 
via kernel density estimation). The DenseWeight hyperparameter (which controls the degree of 307 
weighting) is optimized separately for each regional CNN and substantially improves model 308 
performance on extreme TMAX days. Although sinusoidal-based positional encoding is 309 
commonly used to encode temporal cycles as a CNN input variable, this method forces a 310 
seasonal symmetry in the input data. Given that a region’s seasonal cycle of TMAX and SM are 311 
not symmetric (e.g., Figure 3), we instead use a normalized calendar-day integer input for this 312 
prediction task. We use Tensorflow with Keras 2.7.0 (Tensorflow Developers, 2021) to construct 313 
and train each model. 314 

 315 

2.4 Evaluating CNN Performance 316 

Prior to using the regional CNNs to quantify SM-T coupling strength, we must first 317 
evaluate whether the CNNs are sufficiently accurate to represent SM-T coupling at daily 318 
timescales over the respective regions. To that end, we first ensure that each CNN meets two 319 
criteria: (1) the CNN accurately predicts TMAX at daily timescales, and (2) the SM input 320 
contributes substantially to overall CNN performance at daily timescales. 321 

To determine if a CNN meets these criteria for a given region, we compare the 322 
performance of our CNN against two model performance baselines:  323 

a. Seasonal climatology: comparison between the calendar-day mean TMAX and 324 
the actual daily TMAX on individual calendar days; 325 

b. CNN without SM input: performance of a CNN model trained with GPH and 326 
calendar-day inputs but no SM input maps. 327 

We first compare the performance metrics (e.g., R2, MAE, MSE) of our CNNs with those 328 
of the seasonal-climatology baseline. Any model which outperforms the seasonal-climatology 329 
baseline should, to some degree, be able to predict daily TMAX anomalies from the seasonal 330 
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cycle. Then, to justify whether the SM input contributes to overall model skill at daily 331 
timescales, we compare the performance of our CNNs with all input variables against the CNN-332 
without-SM baseline. The difference in skill between these models helps to quantify how much 333 
the SM input contributes to overall model skill at daily timescales. If the CNN with all input 334 
variables outperforms the CNN-without-SM baseline, and both of these CNN models outperform 335 
the seasonal-climatology baseline, then we can more confidently use the full CNN to assess SM-336 
T coupling at daily timescales.  337 

 338 

2.5 Evaluating Coupling Strength Using Partial Dependence 339 

After training and evaluating our CNNs, we apply partial dependence analysis (Figure 2; 340 
Friedman, 2001) to visualize the nonlinear relationships between each CNN’s summertime 341 
TMAX predictions and the average local SM anomaly calculated from the SM input maps. 342 
Although the training datasets include data from all nine non-winter months in each hemisphere, 343 
we only assess SM-T coupling over the three canonical summer months (when the potential for 344 
SM-T coupling is highest; Koster et al., 2006b). First, we select a single GPH anomaly map and 345 
the corresponding calendar-day input from a summer day in the testing dataset (Figure 2a-e). 346 
Holding this GPH and calendar-day input constant, we pair these fixed inputs with every daily 347 
SM map (in the testing dataset) sorted from driest to wettest according to the prediction region’s 348 
average SM anomaly (area-weighted mean over all non-ocean grid cells; Figure 2f). Then, we 349 
use each trained CNN to predict TMAX from these newly constructed input combinations and 350 
visualize the results to assess how the CNN’s TMAX prediction depends on the average local 351 
SM anomaly under daily GPH conditions (Figure 2g-k). We repeat this process for all summer 352 
days in the testing dataset (8 years) and compute the two-sided moving average (200 points on 353 
either side) to obtain the smoothed regional summertime SM-T partial dependence plot (PDP) 354 
that the CNN has learned through the training process (Figure 2l). Our two-sided moving 355 
average is calculated using smaller window sizes near the extreme SM anomalies to ensure an 356 
equal number of points on each side. We also remove the 10 driest and 10 wettest SM anomaly 357 
maps (in the testing dataset) from the PDP calculation in order to avoid biasing the results at 358 
extreme SM anomalies that are underrepresented in the training dataset. Areas of the PDP plot 359 
with non-zero SM-T PDP slope indicate where the CNN’s TMAX prediction is sensitive to the 360 
local SM anomaly calculated from the SM input map (McGovern et al., 2019). We also use the 361 
vertical extent (range) of our SM-T PDPs as a relative indicator of SM-T coupling strength. 362 

In order to compare the effects of SM anomalies across different days, we compute PDPs 363 
using centered TMAX predictions (Goldstein et al., 2015). For each day, we calculate the change 364 
in TMAX relative to the model’s average prediction near climatological SM conditions (i.e., 365 
TMAX(SM=0)). We estimate TMAX(SM=0) each day by averaging the closest 200 daily 366 
predictions that fall on either side of the calendar-day mean SM anomaly (i.e., SM=0). 367 
Estimation of TMAX(SM=0) is largely insensitive to the choice of window size (i.e., 200 368 
predictions on either side). 369 

Because partial dependence analysis also relies on the assumption that all input variables 370 
are independent from one another (Friedman, 2001), we use SM and GPH calendar-day 371 
anomalies to remove seasonal variability. However, there still remains the potential for 372 
interaction effects between SM and GPH which may cause the CNN to learn different SM-T 373 
relationships for different GPH inputs. In this case, SM-T PDP curves can be misleading since 374 
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they would average out these divergent SM-T relationships. We address this issue by including 375 
density plots of daily TMAX predictions alongside the PDPs. From these density plots, we can 376 
confirm that the PDPs are not averaging out divergent SM-T relationships caused by a violation 377 
of the independence assumption between SM and GPH inputs (Goldstein et al., 2015). 378 

To assess the fidelity of our PDP-based approach, we apply the PDP method (Figure 2) to 379 
modified versions of our training datasets (i.e., baseline datasets) in which we have eliminated 380 
the potential for SM-T coupling. We construct a single baseline dataset by randomly shuffling 381 
the 1979-2021 daily SM input maps while leaving the GPH and calendar-day inputs untouched. 382 
Then, we train a new CNN using this baseline dataset, save the model weights, and apply the 383 
PDP method to obtain a baseline SM-T relationship. We repeat this process for numerous 384 
baseline datasets, each created with a different random seed. Randomizing the SM maps removes 385 
any statistical link between SM inputs and TMAX outputs within these baseline datasets. 386 
Therefore, we expect each baseline SM-T relationship to have zero slope. Using an approach 387 
similar to Buja et al., (2009) and Wickham et al. (2010), we then compare the true PDPs against 388 
100 baseline PDPs (each obtained from a different baseline dataset) to determine whether the 389 
true PDP exhibits a relationship with SM beyond that of random noise. 390 

 391 

3 Results 392 

We show TMAX and SM climatologies calculated from the ERA5-Land dataset (1979-393 
2021) for each of the sixteen mid-latitude regions (Figure 3). All sixteen regions experience their 394 
highest temperatures during the summer months and lowest temperatures during the winter 395 
months (Figures 3b and 3e). However, there are large regional differences in the magnitude of 396 
the TMAX seasonal cycle, ranging from ±10℃ in southwestern Africa and southeastern Africa 397 
to ±35℃ in northeastern Europe and northeastern Asia. Although SM seasonal cycles differ 398 
substantially between regions, nearly all regions experience their driest SM conditions in the 399 
summer months (with the exception of northeastern Asia, southeastern Asia, southwestern 400 
Africa, and southeastern Africa; Figures 3c and 3f). For most regions, we find that the TMAX 401 
and SM climatologies also show these patterns in the NCEP/DOE Reanalysis II dataset (Figure 402 
S5). (See Methods for additional information about region selection.) 403 

 404 

3.1 CNN Model Evaluation 405 

For each region, we compare the performance of our CNN regression models against two 406 
model performance baselines (detailed in Section 2.4; Figures 4-6). Across all regions, the CNN-407 
without-SM baselines outperform the seasonal-climatology baseline (i.e., Figures 4-6(b) vs. 408 
Figures 4-6(c)), ranging from a minimum RMSE reduction of 10.4% in southeastern Asia to a 409 
maximum RMSE reduction of 50.7% in southwestern Europe. We also find that our CNN 410 
models with all input variables (including SM inputs) outperform the CNN-without-SM 411 
baselines (i.e., Figures 4-6(a) vs. Figures 4-6(b)), ranging from a minimum RMSE reduction of 412 
8.1% in northcentral North America to a maximum RMSE reduction of 24.8% in southwestern 413 
Africa. These improvements in CNN model skill indicate that both GPH inputs and SM inputs 414 
each provide unique information that is useful for predicting TMAX at daily timescales. 415 
Therefore, we find that all regional CNNs satisfy the necessary criteria (detailed in Section 2.4) 416 
to confidently use partial dependence analysis to assess daily-scale SM-T coupling. (We further 417 
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analyze each CNN’s ability to predict daily TMAX anomalies (0.38 ≤ R2 ≤ 0.80) as opposed to 418 
absolute values, and the TMAX seasonal cycle (0.92 ≤ R2 ≤ 0.99, 0.58⁰C ≤ RMSE ≤ 1.16⁰C); 419 
Figures S1 and S2.) 420 

 421 

We also find large differences in model performance between regions (Figures 4-6). 422 
These differences are most obvious between seasonal-climatology baselines, where RMSE 423 
ranges from 2.40⁰C – 3.86⁰C (southeastern Asia-northeastern Europe) and R2 ranges from 0.34-424 
0.88 (southeastern Africa-northeastern Asia; Figures 4-6(a)). These regional differences in model 425 
performance can be explained by the statistics of the underlying TMAX target data. In general,  426 

 
Figure 4. CNN model skill comparison for North and South American regions. (a) Comparison between ERA5-Land 
TMAX and predicted TMAX from convolutional neural networks (CNNs) trained with daily geopotential height 
anomaly maps, soil moisture anomaly maps (SM), and normalized calendar day inputs. Model performance is shown 
separately for the 27-year training subset (used to fit CNN weights), the 8-year validation subset (used to optimize 
hyperparameters), and the 8-year testing subset (unseen data left out of the training process). See Methods for more 
details on the training, validation, and testing subsets. (b) Same as (a) but for CNNs trained without the SM inputs. 
Model performance is shown for the 8-year testing subset. (c) The seasonal climatology of TMAX as shown by 
comparing the ERA5-Land daily TMAX and the calendar-day mean TMAX each day (averaged over 1979-2021). Each 
subplot shows the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). 
Correct predictions fall along the 1-1 line (red). Gray dotted lines show +/- 3 degrees C prediction errors. 
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 427 

the skill metrics (R2, MAE, and RMSE) of the seasonal-climatology baseline are determined by 428 
the magnitude of the region’s seasonal cycle and the standard deviation of the daily anomalies 429 
about the seasonal cycle. For example, regions with strong TMAX seasonal cycles (northcentral 430 
North America, northeastern Europe, and northeastern Asia; Figure 3) exhibit higher R2 values 431 
relative to regions with weak TMAX seasonal cycles (southeastern Africa and southwestern 432 
Africa). Meanwhile, regions with low TMAX standard deviations about the seasonal cycle 433 
(southeastern Asia, north-southern South America, southeastern Africa, and southcentral North 434 

 
Figure 5. Same as Figure 4, but for regions in Europe and Africa. 
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America; Figure 3) tend to have lower RMSE than regions with high TMAX standard deviations 435 
about the seasonal cycle (northeastern Europe, northcentral North America, central Europe, and 436 
eastern Europe).  437 

 438 

 439 

3.2 Using Partial Dependence to Investigate SM-T Coupling 440 

After evaluating the performance of each regional CNN (Figure 4-6), we apply the partial 441 
dependence analysis method (Figure 2) to obtain the ERA5 summertime SM-T relationships for 442 
each region (Figure 7). The resulting nonlinear SM-T partial dependence plots (PDPs) quantify 443 
how the CNN’s average TMAX prediction depends on the average SM input, with areas of 444 
nonzero PDP slope indicating that the prediction is sensitive to the local SM anomaly calculated 445 
from the SM input map. Across all sixteen regions, we find that the SM-T PDPs are negatively 446 
sloped across the entire SM domain (aside from a positive slope in northcentral North America 447 
for wet SM anomalies; Figure 7). This pattern indicates that the CNNs tend to predict higher 448 
TMAX values when SM conditions are drier, and lower TMAX values when SM conditions are 449 
wetter.  450 

Despite these overall similarities in the PDP shapes, there are also distinct regional 451 
differences in the ERA5 SM-T relationship (Figure 7). For some regions (e.g., eastern Europe, 452 
southeastern North America), we find that the slope of the SM-T relationship is relatively 453 

 

 
Figure 6. Same as Figure 4, but for regions in Eastern Asia and Australia. 
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constant across the entire range of SM anomalies. Other regions exhibit nonlinear SM-T 454 
relationships indicating that the CNN has learned a different relationship between the SM input 455 
map and the TMAX output under different magnitudes of SM anomaly. In many regions, this 456 
nonlinear behavior is observed over a large portion of the SM range (e.g., southwestern 457 
Australia, northcentral North America), while other regions experience nonlinear SM-T behavior 458 
only during the most extreme SM conditions (e.g., the relatively flat PDP slope in southeastern 459 
Australia during extreme wet conditions). To assess the uncertainty associated with each regional 460 
SM-T relationship, we visualize the distribution of local SM anomalies in the training dataset to 461 
identify particular ranges of SM conditions where SM-T relationships may have higher 462 
uncertainty due to underrepresentation in the training dataset (Figure 7). Additionally, we find 463 
that the 5th-95th percentile ranges are narrowest near the origin (SM=0) and become wider near 464 
the tails of the SM distribution indicating that the SM-T relationships are more uncertain during 465 
extreme SM conditions where there are fewer testing samples available.  466 

 467 

The vertical extent (range) of these SM-T relationships can be used as a relative measure 468 
of regional SM-T coupling strength by estimating the overall potential for SM to influence the 469 

 

 
Figure 7. Soil moisture-temperature (SM-T) relationships obtained through partial dependence analysis of convolutional 
neural networks (method detailed in Figure 2). The smoothed moving average (thick red line) shows the average behavior 
of the neural network's prediction as the SM input varies from dry (negative) to wet (positive) anomalies. Also shown are 
the moving 5th and 95th percentiles of the temperature predictions (thin red lines). The SM-T relationships shown are 
calculated from the testing dataset. We also include a rug plot showing the distribution of SM anomalies in the training 
dataset. For each subplot, we calculate the range (vertical extent) of the mean SM-T relationship. Soil moisture anomalies 
are calculated as standard deviations (S.D.) from the calendar-day mean. 
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CNN’s TMAX prediction on a typical summer day. In North America, we find that southcentral 470 
North America has an SM-T coupling strength of approximately 3.4℃, much higher than both 471 
northcentral North America (1.4℃) and southeastern North America (2.7℃). In Europe, we find 472 
the strongest coupling in eastern Europe (4.0℃) and northeastern Europe (2.8℃), and weaker 473 
coupling in central Europe (2.5℃) and western Europe (2.6℃), and southwestern Europe 474 
(2.5℃). Additionally, we find that southeastern Asia (4.4℃) has stronger coupling than 475 
northeastern Asia (2.3℃), and north-southern South America (3.6℃) has stronger coupling than 476 
south-southern South America (1.7℃), whereas southeastern Africa (4.2℃) and southwestern 477 
Africa (4.4℃) have approximately equal coupling. Finally, southeastern Australia (5.1℃) and 478 
southwestern Australia (6.7℃) have the strongest overall coupling. (We also show sub-regional 479 
variations in SM-T coupling for southcentral North America; Figure S3.) 480 

 481 

To determine whether each PDP exhibits an SM-T relationship beyond that of random 482 
noise, we compare the true ERA5 SM-T PDPs (Figure 7) against 100 baseline PDPs calculated 483 
from 100 different CNNs trained with randomly shuffled SM input maps–each with a different 484 
random seed (Figure 8). (For illustration, we show a separate example of one of these baseline 485 
PDPs along with a density plot of TMAX predictions in Figure S4.) Across the regions, all 100 486 

 
Figure 8. Regional soil moisture-temperature (SM-T) relationships obtained through partial dependence analysis (method 
detailed in Figure 2) of convolutional neural networks (CNNs) trained to predict regional daily maximum temperature 
(TMAX) given geopotential height, calendar-day, and soil moisture inputs. Each regional subplot shows 101 SM-T partial 
dependence plots (PDPs), consisting of the true SM-T PDP (red; Figure 7) and 100 baseline SM-T PDPs (black) derived 
from CNNs trained with shuffled soil moisture inputs (each shuffled using a different random seed). Also shown are the 
moving 5th and 95th percentiles of the true SM-T PDP (thin red lines). Soil moisture anomalies are calculated as standard 
deviations (S.D.) from the calendar-day mean. 
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baseline SM-T PDPs have approximately zero slope over the entire SM domain, with no single 487 
baseline PDP exhibiting a coupling strength greater than 1.2℃ (northeastern Europe). We also 488 
find that the vast majority of points along the true regional SM-T PDPs lie far outside the range 489 
of the baselines. Wet SM anomalies (0.5-1.0 standard deviations) in northcentral North America 490 
are the only notable exceptions for which a substantial portion of the regional PDP falls within 491 
the range of the baselines (Figure 8). 492 

 493 

We also analyze the sensitivity of regional SM-T relationships to the choice of SM input 494 
lag (Figure 9). Specifically, we show SM-T PDPs derived from seven different CNNs each 495 
trained with different levels of SM input lag. (For example, lag = 3 implies that the CNN is 496 
trained to predict TMAX using the calendar day and GPH input from the prediction day, and the 497 
SM anomaly map from 3 days prior to the prediction day.) In general, although the PDP shape is 498 
similar across input lags, almost all regions experience a monotonic attenuation of SM-T 499 
coupling strength (amplitude) as SM input lag increases from 0 to 30 days. This attenuation is 500 
expected, based on the autocorrelation timescales of top-layer SM. However, the rate of 501 
attenuation varies between the regions. For example, over many regions (south-southern South 502 
America, northcentral North America, northeastern Europe), this attenuation is quite strong and 503 

 
Figure 9. Regional soil moisture-temperature (SM-T) partial dependence relationships obtained using the method detailed in 
Figure 2 (but for CNNs trained with various levels of soil moisture input lag). Each regional subplot shows SM-T relationships 
derived from 7 different CNNs trained to predict daily TMAX given the following inputs: calendar day, daily GPH anomaly 
map, and a single day’s SM anomaly map lagged by 0-30 days prior to the prediction day. After the training process, CNN 
weights are saved and used to calculate the SM-T PDPs as in Figure 2. Colors show SM-T relationships for CNNs trained with 
SM input lags of 0, 1, 2, 3, 7, 14, and 30 days. Hatching shows the range of 100 baseline PDPs trained with shuffled SM maps 
(Figure 8). Soil moisture anomalies are calculated as standard deviations (S.D.) from the calendar-day mean. 
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SM-T relationships fall within the range of baseline PDPs for SM lags greater than 3 days. For 504 
other regions, this attenuation is much weaker, and we find SM-T coupling relationships that fall 505 
outside the range of baseline PDPs at 7-day SM lags (central Europe, northeastern Asia, 506 
southwestern Africa), and 14-day SM lags (southcentral North America, southeastern North 507 
America, eastern Europe, western Europe, southwestern Europe, southeastern Asia, southeastern 508 
Africa, north-southern South America, southwestern Australia, southeastern Australia). Indeed, 509 
for extremely dry SM anomalies, some regions exhibit SM-T relationships beyond random noise 510 
for SM lags up to 30 days (southwestern Australia, southeastern Australia, southeastern Africa, 511 
north-southern South America).  512 

We repeat our analysis for all sixteen regions using the NCEP/DOE Reanalysis II dataset 513 
over the same time period (1979-2021) at the same 1.875°×1.875° horizontal resolution (Figures 514 
S5-S11). Despite some notable differences in northcentral North America, the resulting NCEP 515 
SM-T relationships are consistent with the ERA5 analysis for regional PDP shape (Figure 7 vs. 516 
S9), SM-T coupling strengths, comparison with baseline PDPs (Figure 8 vs. S10), and the 517 
attenuation of coupling strength with input lag (Figure 9 vs. S11). 518 

 519 

4 Discussion 520 

 We use CNNs (Figure 1) to predict daily average TMAX over 16 mid-latitude regions, 521 
and apply partial dependence analysis (Friedman, 2001; Figure 2) to investigate regional SM-T 522 
coupling relationships using the ERA5 and NCEP reanalysis datasets. Prior to conducting the 523 
partial dependence analysis, we first determine whether the CNN is sufficiently accurate to 524 
represent SM-T coupling at daily timescales. This is especially important since CNN model skill 525 
metrics vary widely between regions (Figures 4-6). As described in the Methods, our two criteria 526 
are that the CNN predicts daily TMAX anomalies from the seasonal cycle, and that the SM input 527 
contributes to overall CNN performance at daily timescales. After careful model evaluation, we 528 
find that all regional CNNs satisfy these criteria (Figures 4-6).  529 

We also find that overall model performance is closely tied to the statistics of the 530 
underlying TMAX target data. For instance, a simple model which predicts the calendar-day 531 
mean TMAX each day has high R2 and low MSE when asked to predict over a region 532 
characterized by a strong TMAX seasonal cycle with low variance about the seasonal cycle (e.g., 533 
southeastern Asia seasonal-climatology baseline model; Figure 6). Despite good performance 534 
metrics, this same model is not suitable for partial dependence analysis of daily-scale SM-T 535 
coupling because it fails to predict daily TMAX anomalies from the seasonal cycle. As a result, 536 
we stress the importance of thoroughly evaluating the CNN model skill (as suggested in Section 537 
2.3) to assess performance at various timescales (Figures S1 and S2). Furthermore, we suggest 538 
the use of multiple CNNs with different input combinations to verify that each input variable 539 
contributes to overall model performance at the desired timescale (Figures 4-6). The results of 540 
these verification tests provide confidence in using the regional CNNs to quantify daily-scale 541 
SM-T coupling using partial dependence analysis (Figure 2).  542 

Our SM-T PDPs show that the CNN TMAX predictions are sensitive to the local SM 543 
anomaly over the prediction region (Figure 7 and S9). Additionally, the SM-T PDPs are 544 
negatively sloped and roughly monotonic (aside from wet SM anomalies in northcentral North 545 
America), with each CNN predicting warmer temperatures associated with dry SM anomalies 546 
and cooler temperatures associated with wet SM anomalies. The general shapes of these SM-T 547 
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PDPs (Figure 7 and S9) are consistent with the well-understood land-atmosphere interactions 548 
through which SM conditions modulate the local surface energy budget and influence near-549 
surface temperatures (Alfaro et al., 2006; Dirmeyer, 2011; J. Liu & Pu, 2019; Seneviratne et al., 550 
2010). Previous studies rely on linear statistical methods (such as the correlation between 551 
evapotranspiration and temperature) to assess regional differences in land-atmosphere coupling 552 
strength (Dirmeyer, 2011; Jaeger et al., 2009; Koster et al., 2004, 2006a, 2009; Miralles et al., 553 
2012; Seneviratne, Lüthi, et al., 2006; Teuling et al., 2009). While these linear methods are well-554 
suited for quantifying regional differences in coupling strength, evidence from climate models 555 
and observations suggest that the actual influence of SM on temperature is nonlinear (Benson & 556 
Dirmeyer, 2021; Fischer et al., 2007; Jaeger & Seneviratne, 2011; Schwingshackl et al., 2017; 557 
Seneviratne et al., 2010).  558 

To allow for the potential of these nonlinear SM-T relationships, our method uses CNN 559 
machine learning models to quantify the sensitivity of TMAX to SM across a range of different 560 
SM values. We find that the SM-T relationships derived from partial dependence analysis 561 
(Figure 2) are approximately linear for some regions (e.g., eastern Europe, southeastern North 562 
America) and nonlinear for other regions (e.g., southwestern Australia, northcentral North 563 
America, southeastern Australia) (Figure 7). These results suggest that the land-atmosphere 564 
interactions that couple daily SM conditions and near-surface TMAX vary under different ranges 565 
of SM anomaly, but these variations are regionally dependent. When evaluating these SM-T 566 
relationships, it is important to consider that the PDP behavior is most uncertain at the tails of the 567 
SM distribution where the 5th-95th percentile ranges are widest and where the 568 
underrepresentation of extreme SM anomalies in the training dataset limits the CNNs ability to 569 
learn the relationship between SM and TMAX.   570 

In order to compare our results more directly with previous assessments of SM-T 571 
coupling, we use the vertical extent (range) of our SM-T PDPs (Figure 7) as a relative indicator 572 
of SM-T coupling strength. Using this metric, we find much stronger JJA SM-T coupling in 573 
southcentral North America compared to northcentral North America and southeastern North 574 
America. This agrees with previous assessments of land-atmosphere coupling strength using 575 
climate models (Koster et al., 2006a, 2009; Seneviratne, Lüthi, et al., 2006) and observational 576 
datasets (Dirmeyer, 2011; Miralles et al., 2012). These results are also consistent with Teuling et 577 
al., (2009) and Schwingshackl et al., (2017), who used observational and reanalysis datasets, 578 
respectively, to classify southcentral North America and northcentral North America as regions 579 
with a high potential for strong SM-T coupling and southeastern North America as a region with 580 
little potential for SM-T coupling. 581 

In Europe, we find that our northeastern Europe and eastern Europe regions have the 582 
strongest PDP-based SM-T coupling strength, while our central Europe, western Europe, and 583 
southwestern Europe regions have the weakest (Figure 7). This hierarchy of coupling strength in 584 
Europe is consistent with Fischer et al., (2007), whose regional climate model experiments 585 
identified the strongest 2003 JJA SM-T coupling in eastern Europe (followed by central Europe 586 
and western Europe), and the weakest coupling in southwestern Europe (with northeastern 587 
Europe not considered in their domain). Seneviratne, Lüthi, et al., (2006) and Jaeger et al., 588 
(2009) also found strong JJA SM-T coupling in eastern Europe and northeastern Europe, with 589 
weaker coupling in western Europe and central Europe. Our results are also consistent with 590 
Teuling et al., (2009) who found the potential for strong SM-T coupling in eastern Europe and 591 
northeastern Europe. However, numerous previous studies (Dirmeyer, 2011; Jaeger et al., 2009; 592 
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Miralles et al., 2012; Seneviratne, Lüthi, et al., 2006; Teuling et al., 2009) all identified strong 593 
SM-T coupling over southwestern Europe, in contrast to our PDP-based results (although 594 
Seneviratne, Lüthi, et al., 2006, warn that certain coupling metrics, like the correlation of 595 
evapotranspiration and 2-meter temperature, may not be meaningful in regions with small 596 
evapotranspiration like southwestern Europe).  597 

In the Southern Hemisphere, our PDP-based SM-T coupling strengths show weak 598 
coupling in south-southern South America, and strong coupling in north-southern South 599 
America, southwestern Africa, southeastern Africa, southwestern Australia, and southeastern 600 
Australia (Figure 7). These PDP-based coupling strengths are remarkably consistent with 601 
Dirmeyer, (2011), who analyzed coupling between latent heat flux and SM to identify regions 602 
with strong SM-T coupling potential. Our results are also consistent with Schwingshackl et al., 603 
(2017), who identified south-southern South America as a wet SM regime during DJF, and all 604 
other regions (north-southern South America, southwestern Africa, southeastern Africa, 605 
southwestern Australia, and southeastern Australia) as transitional SM regimes. In South 606 
America, Miralles et al., (2012) found approximately equal coupling across central and south-607 
southern South America, although numerous other studies (e.g., Baker et al., 2021; Dirmeyer, 608 
2011; Menendez et al., 2019; Ruscica et al., 2014; Spennemann et al., 2018) report that land-609 
atmosphere coupling is much stronger in north-southern South America compared to south-610 
southern South America. The results of Miralles et al., (2012) also support our conclusion that 611 
SM-T coupling is much stronger in Africa and Australia compared to South America.  612 

The most notable differences between our results and previous assessments of regional 613 
SM-T coupling strengths occur in eastern Asia. Using both the ERA5 and NCEP datasets, we 614 
find substantially stronger PDP-based SM-T coupling in our southeastern Asia region compared 615 
to our northeastern Asia region (Figures 7 and S9, respectively). Previous studies report roughly 616 
equal (Koster et al., 2006a) or substantially stronger coupling in northeastern Asia (Dirmeyer, 617 
2011; Koster et al., 2009; Miralles et al., 2012; Schwingshackl et al., 2017; Seneviratne, Lüthi, et 618 
al., 2006; Teuling et al., 2009), which conflicts with our ERA5 and NCEP results. 619 

We extend our partial dependence analysis to modified versions of our training dataset, 620 
which yields additional insights into the timescale of SM memory within the SM-T relationship. 621 
We find a monotonic attenuation of PDP-based coupling strength with increasing SM input lag 622 
(Figure 9). The overall reduction in SM-T coupling strength is likely a consequence of limited 623 
SM memory as the SM input becomes less physically relevant to actual conditions on the 624 
prediction day. Our results also agree with previous studies which suggest that wet SM 625 
anomalies decay faster than dry SM anomalies (Orth & Seneviratne, 2012; Song et al., 2019), 626 
resulting in longer SM memory for extreme dry conditions (Orth & Seneviratne, 2012). 627 
Specifically, we find that in 12 of the 16 regions, the SM-T relationship remains outside the 628 
range of random noise at longer lags for dry anomalies than for wet anomalies (Figure 9). In 629 
addition, we find regional differences in the timescale of decay in PDP-based coupling strength 630 
as SM input lag increases (Figure 9). For example, southeastern Africa (among other regions) 631 
exhibits an SM-T relationship beyond random noise at lags up to 14 days. However, SM-T 632 
relationships in south-southern South America, northcentral North America, and northeastern 633 
Europe fall within the range of random noise beyond 3-day SM lags. These regional differences 634 
in PDP attenuation agree reasonably well with Seneviratne, Koster, et al., (2006), who found 635 
long SM memories across southern Africa, Australia, Europe, North America, and north-636 
southern South America, but substantially shorter SM memory in northeastern Asia and south-637 
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southern South America. Seneviratne, Koster, et al., (2006) also found long SM memory in 638 
southeastern Asia which conflicts with our ERA5 and NCEP results. Overall, these results 639 
suggest that incorporating additional temporal SM information from 7-, 14-, or even 30-days 640 
prior to the TMAX prediction could improve the CNN’s ability to predict TMAX. 641 

Our analysis focuses specifically on SM-T coupling over midlatitude regions; however, 642 
the physical processes that regulate SM-T interactions may be different in tropical and high-643 
latitude regions. Therefore, though the flexibility of our machine learning-based framework 644 
makes it deployable to other regions, we do not claim that our results can be applied to other 645 
areas of the globe (such as in the tropics or high latitudes) without further investigation. We also 646 
acknowledge that there may exist different configurations of machine learning model (e.g., long 647 
short-term memory network), hyperparameters, and input variables that are able to achieve better 648 
performance than the CNNs used in this study. Regardless, our results show that these CNNs 649 
capture SM-T relationships that broadly agree with previous assessments of SM-T coupling. We 650 
also recognize that our regional assessment of SM-T coupling fails to capture fine-scale spatial 651 
differences in coupling found in previous studies (e.g., Koster et al., 2006b; Miralles et al., 652 
2012). However, our framework could be readily extended to assess coupling at finer spatial 653 
resolutions by calculating SM-T relationships over smaller subregions (Figure S3) and/or using 654 
input data with finer spatial resolution. Though we focus specifically on the relationship between 655 
surface-layer SM and TMAX (which is most relevant for daily-scale SM-T coupling), our 656 
analysis could also be modified to assess coupling between numerous other land-surface and 657 
atmospheric variables (e.g., coupling between latent heat flux and daily mean temperature, 658 
coupling between evapotranspiration and precipitation). 659 

Although our PDPs quantify the average impact of local SM conditions on the CNN’s 660 
TMAX prediction, there may be other processes correlated with SM conditions whose effect on 661 
temperature is incorrectly attributed to SM. One way to address this would be to repeat this 662 
analysis using a different land-surface variable in place of SM (e.g., latent heat flux or 663 
evapotranspiration) and compare the corresponding coupling relationships with temperature. 664 
Another approach would be to include additional atmospheric and land-surface variables as CNN 665 
inputs and hold them constant during the PDP calculation to isolate the effect of SM alone on 666 
temperature. However, adding additional variables would run the risk of violating the 667 
independence assumption between input variables. Indeed, although we use standardized 668 
calendar-day anomalies for SM and GPH inputs to avoid seasonal dependencies with the 669 
calendar-day inputs, a side effect is that our PDPs are calculated in terms of standardized SM 670 
anomalies instead of the raw SM fraction values. Since each SM grid cell’s calendar-day mean 671 
and standard deviation fluctuates throughout the summer, we cannot convert SM anomalies 672 
directly back to SM fraction values, which prevents us from being able to compare the 673 
magnitude of the PDP slope directly between regions.  674 

Finally, like all SM-T coupling assessments, our results are also dataset-dependent. 675 
Although it represents an improvement over the land component of previous reanalyses, the 676 
ERA5-Land surface-layer soil moisture dataset used in this analysis has a known wet-bias and 677 
exhibits regional differences in agreement (i.e., correlation) when compared to 5-cm in situ 678 
observations of SM across Europe, North America, and Australia (Muñoz-Sabater et al. 2021). 679 
As a result, the SM-T relationships presented here may be more representative of the real world 680 
in regions where the ERA5-Land SM closely matches observations, and less representative in 681 
regions where the ERA5-Land SM has higher uncertainty. Regardless, while the results 682 
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presented here are limited to the datasets that were analyzed, our framework could easily be 683 
extended to quantify SM-T relationships using a wide range of datasets from climate models, 684 
reanalyses, remote sensing, and/or gridded observations. 685 

 686 

5 Conclusions  687 

We present a new approach for quantifying soil moisture-temperature (SM-T) coupling 688 
which uses convolutional neural network (CNN) machine learning models and partial 689 
dependence plots (PDPs) to visualize nonlinear SM-T relationships over 16 mid-latitude regions 690 
in the Northern and Southern Hemispheres. From these regional SM-T relationships, we find that 691 
the CNNs predict warmer temperatures when the soils are dry and cooler temperatures when the 692 
soils are wet, which is consistent with well-understood land-atmosphere interactions in the mid-693 
latitudes. We also find that our relative measure of SM-T coupling strength broadly agrees with 694 
previous assessments of regional SM-T coupling. Though our approach is designed to allow for 695 
the potential of nonlinear SM-T relationships, we find that the SM-T PDPs are approximately 696 
linear over several regions, such as eastern Europe and southeastern North America. That said, 697 
other regions exhibit pronounced nonlinear behavior across a large portion of the SM range (e.g., 698 
southwestern Australia, northcentral North America). This nonlinearity suggests that the coupled 699 
interactions governing the SM-T relationship vary under different SM conditions, but these 700 
variations are regionally dependent. Taken together, our results show that PDPs can be combined 701 
with CNNs to create a powerful tool for quantifying nonlinear SM-T coupling relationships. 702 

In particular, we find that applying machine-learning interpretation and visualization 703 
techniques (i.e., PDPs) to modified versions of our training datasets can yield new insights into 704 
physical processes, such as the nonlinear characteristics of SM memory, which is a vital 705 
component of long-term SM-T coupling. For example, in accordance with previous studies, we 706 
find that SM memory fades monotonically over time, and that wet SM anomalies fade faster than 707 
dry anomalies. More research is required to understand the full potential for PDPs to reveal 708 
regional differences in the nonlinear properties of SM memory, with implications for seasonal 709 
forecasting of temperature and precipitation. 710 

Partial dependence analysis has only recently been applied to CNNs for geoscience 711 
applications. However, we suggest that many complex climate processes have the potential to be 712 
studied by analyzing CNNs with PDPs as long as enough high-quality training data are available. 713 
For example, given sufficient training data, our analysis could be extended to investigate 714 
climate-driven changes in SM-temperature and SM-precipitation coupling at daily and seasonal 715 
timescales using climate model simulations under historic and future climate change scenarios. 716 
Likewise, PDPs with CNNs could be used to explore non-local coupling relationships between 717 
land, ocean, and atmospheric conditions which can improve our understanding of complex 718 
climate processes such as the El Nino Southern Oscillation. More generally, our results show that 719 
PDPs can be an effective tool for quantifying nonlinear coupling relationships between the 720 
CNN’s output prediction and quantities calculated from the input maps. We emphasize that, for 721 
each of these potential applications, even if the training data appears to be adequate, each CNN 722 
model must be thoroughly evaluated to ensure that the model is trustworthy and is representative 723 
of physical processes in the real world. 724 

Coupled interactions in the Earth system are important drivers of climate variability and 725 
extreme weather events, but many of these coupled processes are still not fully understood. 726 
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Based on our results, partial dependence analysis is a promising pathway for using CNNs to 727 
investigate these nonlinear coupled interactions, with important implications for model 728 
development, model parameterization, and seasonal forecasting. 729 

 730 

Open Research 731 

 732 

The hourly ERA5 (Hersbach, H., et al., 2018) and ERA5-Land (Muñoz Sabater, J., 2021) 733 
data are available from the Copernicus Climate Change Service Climate Data Store and can be 734 
accessed from their website at  https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-735 
era5-pressure-levels and https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land, 736 
respectively. The daily mean NCEP/DOE Reanalysis II data (Kanamitsu et al. 2002) provided by 737 
the NOAA PSL, Boulder, Colorado, USA, is available from their website at 738 
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. Analysis code will be available on 739 
Zenodo via DOI (set at time of publication). 740 
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Figures S1 to S11 

 

Introduction  

The following document consists of four figures (S1-S4) supporting our primary analysis 
(using the 1979-2021 ERA5 and ERA5-Land historical reanalysis datasets), and seven 
figures (S5-S11) showing the results of our secondary analysis (using the 1979-2021 
NCEP/DOE R2 historical reanalysis dataset). Figure S1 compares the mean seasonal cycle 
of daily maximum 2-meter temperature (TMAX) between the ERA5 dataset and 
convolutional neural network (CNN) predictions. Figure S2 shows each CNN’s ability to 
predict daily TMAX anomalies from the seasonal cycle. Figure S3 shows subregional 
variability in soil moisture-temperature relationships obtained through partial 
dependence analysis (using southcentral North America as an example). Figure S4 
provides examples of regional soil moisture-temperature relationships obtained through 
partial dependence analysis of CNNs trained using datasets with randomly shuffled soil 
moisture input maps. Figures S5 through S11 present the results of our analysis when 
applied to the NCEP/DOE R2 historical reanalysis dataset (1979-2021).
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Figure S1. Comparison of the annual temperature cycle between (black) ERA5-Land daily 
maximum 2-meter temperatures (TMAX) and (red) convolutional neural network TMAX 
predictions. Each subplot shows the mean seasonal cycle of TMAX over snow-free 
months averaged across all 8 years in the testing subset. The coefficient of determination 
(R2), mean absolute error (MAE), and mean squared error (MSE) is shown for each 
region. Snow-free months are defined as March-November (Mar-Nov) in the Northern 
Hemisphere and September-May (Sep-May) in the Southern Hemisphere.
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Figure S2. Comparison between model predicted temperature anomaly and ERA5-Land 
temperature anomaly for each convolutional neural network trained to predict daily 
maximum 2-meter temperature (TMAX) over a region. Each regional subplot shows the 
coefficient of determination (R2), mean absolute error (MAE), and mean squared error 
(MSE) for both the training dataset (left) and the testing dataset (right). Daily TMAX 
anomalies calculated as deviations from the ERA5 seasonal cycle (see Figure S1). Correct 
predictions fall along the 1-1 line (red). Gray dotted lines show +/- 3 degrees C 
prediction errors. 
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Figure S3. Subregional variability in soil moisture-temperature (SM-T) relationships 
obtained through partial dependence analysis (method detailed in Figure 2) of 
convolutional neural networks. (a) Average summertime (June-August) SM content over 
southcentral North America and two subregions which exhibit dry (subregion 1) and wet 
(subregion 2) summertime SM conditions, respectively. (b, c, d) SM-T relationships 
calculated from CNNs trained to predict TMAX over (b) southcentral North America 
(reproduced from Figure 7), (c) subregion 1, and (d) subregion 2. The smoothed moving 
average (thick red line) shows the average behavior of the neural network's TMAX 
prediction as the SM input varies from dry (negative) to wet (positive) local SM 
anomalies. Also shown are the moving 5th and 95th percentiles of the temperature 
predictions (thin red lines). The SM-T relationships shown are calculated from the testing 
dataset. We also include a rug plot showing the distribution of SM anomalies in the 
training dataset. For each region and subregion, we calculate the range (vertical extent) 
of the mean SM-T relationship. The local soil moisture anomalies (x-axis) are calculated 
as standard deviations (S.D.) from the calendar-day mean and averaged over all non-
ocean grid cells within the region bounds. 
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Figure S4. Soil moisture-temperature (SM-T) relationships obtained through partial 
dependence analysis (method detailed in Figure 2) of convolutional neural networks 
trained with randomly shuffled soil moisture input maps. The smoothed moving average 
(thick red line) shows the average behavior of the neural network's prediction as the SM 
input varies from dry (negative) to wet (positive) local SM anomalies. Also shown are the 
moving 5th and 95th percentiles of the temperature predictions (thin red lines). The SM-
T relationships shown are calculated from the testing dataset. We also include a rug plot 
showing the distribution of SM anomalies in the training dataset. For each subplot, we 
calculate the range (vertical extent) of the mean SM-T relationship. Soil moisture 
anomalies are calculated as standard deviations (S.D.) from the calendar-day mean. 
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Figure S5. Same as Figure 3, except climatologies are calculated using the 1979-2021 
NCEP/DOE R2 (NCEP) reanalysis dataset. (a) Northern Hemisphere regions included in 
this analysis alongside 1979-2021 regional climatologies of (b) daily maximum 2-meter 
temperature (TMAX), and (c) volumetric soil moisture fraction (SM). Thin lines show +/- 1 
standard deviation from climatological mean. (d, e, f) Same as (a, b, c) but for Southern 
Hemisphere regions. Red shading indicates summer months in each hemisphere over 
which this study analyzes soil moisture-temperature coupling. Gray shading indicates 
winter months removed from all subsequent analyses.
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Figure S6. Same as Figure 4, but for convolutional neural networks trained using the 
1979-2021 NCEP/DOE R2 (NCEP) reanalysis dataset. CNN model skill comparison 
for North and South American regions. (a) Comparison between ERA5-Land 
TMAX and predicted TMAX from convolutional neural networks (CNNs) trained 
with daily geopotential height anomaly maps, soil moisture anomaly maps (SM), 
and normalized calendar day inputs. Model performance is shown separately for 
the 27-year training subset (used to fit CNN weights), the 8-year validation subset 
(used to optimize hyperparameters), and the 8-year testing subset (unseen data 
left out of the training process). See Methods for more details on the training, 
validation, and testing subsets. (b) Same as (a) but for CNNs trained without the 
SM inputs. Model performance is shown for the 8-year testing subset. (c) The 
seasonal climatology of TMAX as shown by comparing the ERA5-Land daily 
TMAX and the calendar-day mean TMAX each day (averaged over 1979-2021). 
Each subplot shows the coefficient of determination (R2), mean absolute error 
(MAE), and mean squared error (MSE). Correct predictions fall along the 1-1 line 
(red). Gray dotted lines show +/- 3 degrees C prediction errors.  
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Figure S7. Same as Figure 5, but for convolutional neural networks trained using the 
1979-2021 NCEP/DOE R2 (NCEP) reanalysis dataset. CNN model skill comparison for 
regions in Europe and Africa. 
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Figure S8. Same as Figure 6, but for convolutional neural networks trained using the 
1979-2021 NCEP/DOE R2 (NCEP) reanalysis dataset. CNN model skill comparison for 
regions in Eastern Asia and Australia. 
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Figure S9. Same as Figure 7, but for convolutional neural networks trained using the 
1979-2021 NCEP/DOE R2 (NCEP) reanalysis dataset. Soil moisture-temperature (SM-T) 
relationships obtained through partial dependence analysis of convolutional neural 
networks (method detailed in Figure 2). The smoothed moving average (thick red line) 
shows the average behavior of the neural network's prediction as the SM input varies 
from dry (negative) to wet (positive) anomalies. Also shown are the moving 5th and 95th 
percentiles of the temperature predictions (thin red lines). The SM-T relationships shown 
are calculated from the testing dataset. We also include a rug plot showing the 
distribution of SM anomalies in the training dataset. For each subplot, we calculate the 
range (vertical extent) of the mean SM-T relationship. Soil moisture anomalies are 
calculated as standard deviations (S.D.) from the calendar-day mean. 
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Figure S10. Same as Figure 8, but for convolutional neural networks trained using the 
1979-2021 NCEP/DOE R2 (NCEP) reanalysis dataset. Regional soil moisture-temperature 
(SM-T) relationships obtained through partial dependence analysis (method detailed in 
Figure 2) of convolutional neural networks (CNNs) trained to predict regional daily 
maximum temperature (TMAX) given geopotential height, calendar-day, and soil 
moisture inputs. Each regional subplot shows 101 SM-T partial dependence plots (PDPs), 
consisting of the true SM-T PDP (red; Figure 7) and 100 baseline SM-T PDPs (black) 
derived from CNNs trained with shuffled soil moisture inputs (each shuffled using a 
different random seed). Also shown are the moving 5th and 95th percentiles of the true 
SM-T PDP (thin red lines). Soil moisture anomalies are calculated as standard deviations 
(S.D.) from the calendar-day mean.  
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Figure S11. Same as Figure 9, but for convolutional neural networks trained using the 
1979-2021 NCEP/DOE R2 (NCEP) reanalysis dataset. Regional soil moisture-temperature 
(SM-T) partial dependence relationships obtained using the method detailed in Figure 2 
(but for CNNs trained with various levels of soil moisture input lag). Each regional 
subplot shows SM-T relationships derived from 7 different CNNs trained to predict daily 
TMAX given the following inputs: calendar day, daily GPH anomaly map, and a single 
day’s SM anomaly map lagged by 0-30 days prior to the prediction day. After the 
training process, CNN weights are saved and used to calculate the SM-T PDPs as in 
Figure 2. Colors show SM-T relationships for CNNs trained with SM input lags of 0, 1, 2, 
3, 7, 14, and 30 days. Hatching shows the range of the 100 baseline PDPs (Figure 8). Soil 
moisture anomalies are calculated as standard deviations (S.D.) from the calendar-day 
mean. 
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