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Abstract

This study demonstrates the advantages of scale- and variable-dependent localization (SDL and VDL) on three-dimensional

ensemble variational data assimilation of the hourly-updated high-resolution regional forecast system, the Rapid Refresh Forecast

System (RRFS). SDL and VDL apply different localization radii for each spatial scale and variable, respectively, by extended

control vectors. Single-observation assimilation tests and cycling experiments with RRFS indicated that SDL can enlarge the

localization radius without increasing the sampling error caused by the small ensemble size and decreased associated imbalance

of the analysis field, which was effective at decreasing the bias of temperature and humidity forecasts. Moreover, simultaneous

assimilation of conventional and radar reflectivity data with VDL, where a smaller localization radius was applied only for

hydrometeors and vertical wind, improved precipitation forecasts without introducing noisy analysis increments. Statistical

verification showed that these impacts contributed to forecast error reduction, especially for low-level temperature and heavy

precipitation.
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Key Points: 16 

 This study implements scale- and variable-dependent localization (SDL and VDL) for 17 

data assimilation of the Rapid Refresh Forecast System. 18 

 SDL decreases the imbalance of the analysis field and the bias of temperature and 19 

humidity forecasts by the larger localization radius. 20 

 VDL enables simultaneous assimilation of conventional and radar reflectivity data 21 

without introducing noisy analysis increments. 22 

  23 
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Abstract 24 

This study demonstrates the advantages of scale- and variable-dependent localization (SDL 25 

and VDL) on three-dimensional ensemble variational data assimilation of the hourly-updated 26 

high-resolution regional forecast system, the Rapid Refresh Forecast System (RRFS). SDL and 27 

VDL apply different localization radii for each spatial scale and variable, respectively, by 28 

extended control vectors. Single-observation assimilation tests and cycling experiments with 29 

RRFS indicated that SDL can enlarge the localization radius without increasing the sampling 30 

error caused by the small ensemble size and decreased associated imbalance of the analysis 31 

field, which was effective at decreasing the bias of temperature and humidity forecasts. 32 

Moreover, simultaneous assimilation of conventional and radar reflectivity data with VDL, 33 

where a smaller localization radius was applied only for hydrometeors and vertical wind, 34 

improved precipitation forecasts without introducing noisy analysis increments. Statistical 35 

verification showed that these impacts contributed to forecast error reduction, especially for 36 

low-level temperature and heavy precipitation. 37 

  38 
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Plain Language Summary 39 

In atmospheric data assimilation based on ensemble forecasts, the analysis increment is 40 

limited to the vicinity of each observation by spatial localization to prevent spurious analysis 41 

increments due to sampling error caused by the small ensemble size. Scale- and variable-42 

dependent localization (SDL and VDL) make it possible to set optimal localization radii 43 

separately for each spatial scale and variable. Sensitivity experiments in this study with a high-44 

resolution forecast system showed that SDL could decrease the bias of temperature and 45 

humidity forecasts and that VDL could improve precipitation forecasts without introducing 46 

noisy analysis increments. 47 

  48 
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1. Introduction 49 

To improve short-term high-resolution forecasts of severe weather, it is important to develop 50 

high-frequency ensemble-based atmospheric data assimilation (DA) methods (e.g., Dong and 51 

Xue 2013; Johnson and Wang 2017). Such methods utilize a high-resolution ensemble to 52 

estimate and evolve background error covariance (BEC), providing flow dependent covariances 53 

for the data assimilation algorithm. Two of the more common ensemble-based DA methods to 54 

assimilate high-resolution observations, such as radar data, are the ensemble Kalman filter 55 

(EnKF, Evensen 1994) and the ensemble-variational (EnVar, Hamill and Snyder 2000; Lorenc 56 

2003). 57 

In ensemble-based DA such as with EnKF and EnVar methods, the impact of assimilating 58 

observations is generally limited to the local vicinity of each observation utilizing spatial 59 

localization (Hamill et al. 2001; Houtekamer and Mitchell 2001). This spatial localization is 60 

required to mitigate the sampling error caused by the small ensemble sizes ~O(102). However, 61 

the small spatial localization limits the spatial extent of synoptic-scale analysis increments and 62 

introduces the dynamical imbalance of the analysis (e.g., Greybush et al. 2011). 63 

To account for the disadvantage of small spatial localization, several multiscale localization 64 

methods were proposed. Zhang et al. (2009) suggested the successive covariance localization 65 

(SCL), which involves running the EnKF algorithm twice; the first pass uses a larger 66 

localization radius for so-called large-scale observations (e.g. rawinsondes) and a second pass 67 
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uses a shorter localization radius to assimilate dense convective-scale observations, such as 68 

those from Doppler radars. Miyoshi and Kondo (2013) suggested another two-step EnKF, 69 

which combines two independent EnKF analysis increments in the assimilation of the same 70 

observations with different localization radii. For EnVar, Buehner (2012) suggested a similar 71 

multiscale localization method, scale-dependent localization (SDL). SDL separates ensemble 72 

perturbations into multiple wavebands and different localization radii are simultaneously 73 

applied for each perturbation via extended control vectors. Buehner and Shlyaeva (2015) 74 

extended this SDL to include cross-scale BECs: this SDL has been tested with several 75 

operational global and regional EnVar systems (e.g., Caron and Buehner 2018, 2022; Caron et 76 

al. 2019; Huang et al. 2021). Although the simultaneous multiscale localization approach such 77 

as SDL is generally not applied in the EnKF with observation-space localization, it is also 78 

possible in an EnKF framework with model-space localization such as the multiscale local gain 79 

form ensemble transform Kalman filter (Wang et al. 2021). 80 

Although the multiscale localization, such as SDL, attempts to mitigate sampling error 81 

without eliminating large-scale analysis increments by setting localization radii separately for 82 

synoptic- and convective-scales, the optimal localization radius also may depend on the control 83 

variables. In particular, the optimal localization radii of hydrometeors are smaller than other 84 

atmospheric variables, such as horizontal wind, temperature, and humidity (e.g., Michel et al. 85 

2011). Furthermore, a smaller localization radius is generally optimal for variables associated 86 
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with dense spatial distributions, such as radar data (Perianez et al. 2014). These previous studies 87 

indicate the potential necessity of variable-dependent localization (VDL), which uses different 88 

localization radii for several variable groups. This facilitates the small-scale update of 89 

hydrometeors and the large-scale update of atmospheric variables simultaneously. Wang and 90 

Wang (2023a, hereafter WW23) proposed and implemented SDL and VDL simultaneously in a 91 

regional EnVar system including radar DA and showed its advantage in a supercell case. Wang 92 

and Wang (2023b) further applied this EnVar system to a CONUS case study of squall lines and 93 

demonstrated the benefits of SDL and VDL over the single-scale localization method in 94 

extracting information from the assimilated conventional in-situ and radar reflectivity 95 

observations. 96 

As shown in WW23, SDL and VDL are beneficial in the regional EnVar framework, 97 

especially for radar DA. On the other hand, it has not been clear what kind of forecast indicators 98 

are statistically improved by application of SDL and VDL in an operational high-frequency DA 99 

system, or how much they are improved. This study implements SDL and VDL in the EnVar 100 

algorithm of the Rapid Refresh Forecast System (RRFS, Carley et al. 2023), which is the 101 

hourly-updated high-resolution (3 km grid spacing) regional forecast system being developed 102 

as the next operational regional forecast system for the National Weather Service. Further, we 103 

demonstrate which aspects of the forecast are improved when applying SDL and VDL by 104 

examining impacts on near surface sensible weather, upper air forecast scores, and precipitation 105 
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via a series of sensitivity experiments. In particular, we focus on the impact of SDL and VDL 106 

on decreasing the imbalance of the analysis. 107 

The remainder of this paper is organized as follows. Section 2 explains the formulation of 108 

SDL and VDL. Section 3 describes the experimental design of the SDL and VDL sensitivity 109 

experiments. Section 4 describes the results of the experiments and discusses the impact of SDL 110 

and VDL on the analysis and the forecast in the case of Hurricane Ian in 2022. Section 5 presents 111 

the conclusions. 112 

 113 

2. Formulation 114 

a. Hybrid 3DEnVar 115 

This study implements SDL and VDL in the Gridpoint Statistical Interpolation (GSI)-based 116 

hybrid three-dimensional EnVar (3DEnVar) system (Wang et al. 2013). In this hybrid 3DEnVar, 117 

the analysis increment 𝛿𝐱 is obtained by minimization of the cost function: 118 

 𝐽(𝛿𝐱𝑠𝑡 , 𝐚1, … , 𝐚𝐾) =
1

2
𝛽𝑠𝑡(𝛿𝐱𝑠𝑡)

𝑇B𝑠𝑡
−1(𝛿𝐱𝑠𝑡) +

1

2
𝛽𝑒𝑛∑(𝐚𝑘)

𝑇L
−1(𝐚𝑘)

𝐾

𝑘=1

+
1

2
(H𝛿𝐱 − 𝐝)𝑇R−1(H𝛿𝐱 − 𝐝), (1) 

 𝛿𝐱 = 𝛿𝐱𝑠𝑡 +∑[
𝐚𝑘 ∘ 𝐱𝑘

𝑒𝑛(1)

⋮

𝐚𝑘 ∘ 𝐱𝑘
𝑒𝑛(𝐼)

]

𝐾

𝑘=1

, (2) 

where 𝛿𝐱𝑠𝑡  and 𝐚𝑘  (𝑘 = 1,… , 𝐾 ; 𝐾  is the ensemble size) are 𝑁𝐼 - and 𝑁 -dimension 119 

control vectors, respectively (𝑁 and 𝐼 are the number of analysis grid points and the number 120 

of variables, respectively), B𝑠𝑡 in the first term of the right-hand side of Eq. (1) denotes the 121 

static BEC (𝑁𝐼 × 𝑁𝐼 matrix), L in the second term denotes the localization (𝑁 × 𝑁 matrix), 122 
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and R, H, and 𝐝 in the third term denote the observation error covariance (𝑀 ×𝑀 matrix), 123 

the linearized observation operator (𝑀 ×𝑁𝐼  matrix), and the 𝑀 -dimension observation 124 

innovation vector, respectively (𝑀 is the number of assimilated observations). 𝛽𝑠𝑡 and 𝛽𝑒𝑛 125 

(1/𝛽𝑠𝑡 + 1/𝛽𝑒𝑛 = 1) are the weights of the static and ensemble BECs, respectively. 𝐱𝑘
𝑒𝑛(𝑖)

 in 126 

Eq. (2) is the 𝑁 -dimension 𝑘 -th ensemble perturbation vector (𝑘 -th ensemble member 127 

subtracted by ensemble mean and normalized by √𝐾 − 1) of the 𝑖-th kind of variable (𝑖 =128 

1, … , 𝐼) and “∘” denotes the Schur product. 129 

 130 

b. Scale- and variable-dependent localization 131 

Earlier studies (Buehner and Shlyaeva 2015; Caron and Buehner 2018; Huang et al. 2021) 132 

have implemented and explored SDL in the EnVar context. WW23 further proposed and 133 

implemented both SDL and VDL within the GSI-based EnVar system. This subsection explains 134 

how to implement SDL and VDL, mainly mirroring the notations of WW23. The scale 135 

separation method for SDL realized by the recursive filter (Purser et al. 2003) is also shown 136 

here. 137 

In the formulation for SDL and VDL, the control vector 𝐚𝑘 in Eq. (1) is extended to 𝑁𝑆𝑉-138 

dimension (𝑆 and 𝑉 denote the total numbers of scales in SDL and variable groups in VDL, 139 

respectively) as 140 



 8 

 𝐚𝑘 =

[
 
 
 
 
 
 (

𝐚𝑘,1,1
⋮

𝐚𝑘,1,𝑉
)

⋮

(

𝐚𝑘,𝑆,1
⋮

𝐚𝑘,𝑆,𝑉
)
]
 
 
 
 
 
 

, (3) 

and the analysis increment is written as 141 

 𝛿𝐱 = 𝛿𝐱𝑠𝑡 +∑∑[

𝐚𝑘,𝑠,𝑣(1) ∘ 𝐱𝑘,𝑠
𝑒𝑛(1)

⋮

𝐚𝑘,𝑠,𝑣(𝐼) ∘ 𝐱𝑘,𝑠
𝑒𝑛(𝐼)

]

𝑆

𝑠=1

𝐾

𝑘=1

, (4) 

where 𝑣(𝑖) [1 ≤ 𝑣(𝑖) ≤ 𝑉] denotes the variable group number including the 𝑖-th variable. 142 

Compared to Eq. (2), 𝛿𝐱 is created by the summation of each scale analysis increment and 143 

𝐚𝑘,𝑠,𝑣(𝑖)  is multiplied to the ensemble perturbations 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

  separately for each scale 𝑠  and 144 

variable group 𝑣(𝑖). 145 

In this formulation, the localization L is also extended to 𝑁𝑆𝑉 × 𝑁𝑆𝑉 matrix as 146 

 L =

[
 
 
 
 
 
 
 
𝑐1,1
𝑠 (

𝑐1,1
𝑣 L1,1

1/2
L1,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L1,1

1/2
L1,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L1,𝑉

1/2
L1,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L1,𝑉

1/2
L1,𝑉
𝑇/2
) ⋯ 𝑐1,𝑆

𝑠 (

𝑐1,1
𝑣 L1,1

1/2
L𝑆,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L1,1

1/2
L𝑆,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L1,𝑉

1/2
L𝑆,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L1,𝑉

1/2
L𝑆,𝑉
𝑇/2
)

⋮ ⋱ ⋮

𝑐𝑆,1
𝑠 (

𝑐1,1
𝑣 L𝑆,1

1/2
L1,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L𝑆,1

1/2
L1,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L𝑆,𝑉

1/2
L1,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L𝑆,𝑉

1/2
L1,𝑉
𝑇/2
) ⋯ 𝑐𝑆,𝑆

𝑠 (

𝑐1,1
𝑣 L𝑆,1

1/2
L𝑆,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L𝑆,1

1/2
L𝑆,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L𝑆,𝑉

1/2
L𝑆,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L𝑆,𝑉

1/2
L𝑆,𝑉
𝑇/2
)

]
 
 
 
 
 
 
 

, (5) 

where L𝑠,𝑣
1/2

  denotes square root of the localization matrix L𝑠,𝑣  (𝑁 × 𝑁  matrix) and is 147 

realized by the recursive filter for the 𝑠-th scale in SDL and for the 𝑣-th variable group in VDL. 148 

𝑐𝑠1,𝑠2
𝑠  (𝑠1, 𝑠2 = 1,… , 𝑆) and 𝑐𝑣1,𝑣2

𝑣  (𝑣1, 𝑣2 = 1,… , 𝑉) are factors multiplying cross-scale and 149 

cross-variable correlations, respectively. If 𝑐𝑠1,𝑠2
𝑠 = 1  (“Cross” in Huang et al. 2021) and 150 

𝑐𝑣1,𝑣2
𝑣 = 1 in all scales and variables, L is represented simply as 151 
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 L =

[
 
 
 
 
 
 
 
(

L1,1
1/2

⋮

L1,𝑉
1/2
)

⋮

(

L𝑆,1
1/2

⋮

L𝑆,𝑉
1/2
)

]
 
 
 
 
 
 
 

[(L1,1
𝑇/2

⋯ L1,𝑉
𝑇/2) ⋯ (L𝑆,1

𝑇/2
⋯ L𝑆,𝑉

𝑇/2)]. (6) 

On contrary, if 𝑐𝑠1,𝑠2
𝑠 = 𝛿𝑠1𝑠2 (“NoCross” in Huang et al. 2021) and 𝑐𝑣1,𝑣2

𝑣 = 𝛿𝑣1𝑣2, all cross-152 

scale and cross-variable correlations are ignored as 153 

 L =

[
 
 
 
 
 
 
 
 
(

L1,1
1/2

𝟎

⋱

𝟎 L1,𝑉
1/2

) 𝟎

⋱

𝟎 (

L𝑆,1
1/2

𝟎

⋱

𝟎 L𝑆,𝑉
1/2

)

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
(

L1,1
𝑇/2

𝟎

⋱

𝟎 L1,𝑉
𝑇/2

) 𝟎

⋱

𝟎 (

L𝑆,1
𝑇/2

𝟎

⋱

𝟎 L𝑆,𝑉
𝑇/2

)

]
 
 
 
 
 
 
 
 

. (7) 

In this study, the scale separation to obtain 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

 from the original ensemble perturbation 154 

𝐱𝑘
𝑒𝑛(𝑖)

 is achieved as 155 

 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

=

{
 
 

 
 F𝑠,𝑣(𝑖)𝐱𝑘

𝑒𝑛(𝑖)
 (𝑠 = 1)

F𝑠,𝑣(𝑖) [𝐱𝑘
𝑒𝑛(𝑖)

− 𝐱𝑘,𝑠−1
𝑒𝑛(𝑖)

] (1 < 𝑠 < 𝑆)

𝐱𝑘
𝑒𝑛(𝑖)

− 𝐱𝑘,𝑆−1
𝑒𝑛(𝑖) (𝑠 = 𝑆),

 (8) 

where F𝑠,𝑣 is the low-pass filter realized by the recursive filter for the 𝑠-th scale in SDL and 156 

the 𝑣-th variable group in VDL. The recursive filter in calculating F𝑠,𝑣 should be normalized 157 

to make the spatially-integrated value one while that in calculating L𝑠,𝑣 is normalized to make 158 

the peak value one. The resulting power spectra of 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

 are quasi-Gaussian in the wave space 159 

(see Appendix A). The scale separation based on Eq. (8) obtains each scale in order from the 160 

largest scale with the recursive filter, which is not strictly the same as the approach used in 161 

WW23 applying the diffusion operator in order from the smallest scale. However, the resulting 162 

power spectra was almost the same (not shown) and the computational expense of Eq. (8) is 163 
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less than that of WW23 because the computationally-efficient recursive filter is used instead of 164 

the diffusion operator. 165 

 166 

3. Experimental design 167 

In this study, we implemented SDL and VDL in hybrid 3DEnVar of a prototype RRFS 168 

(Carley et al. 2023). First, we conducted the control experiment of single scale localization 169 

(SSL) without radar reflectivity DA and compared it to the experiment with SDL. After that, 170 

we additionally assimilated radar reflectivity in the experiment with VDL and compared it to 171 

the control experiment. As a reference, the experiment with the early operational multiscale 172 

approach, which runs 3DEnVar twice with different localization radii for large- and convective-173 

scale observations (SCL), was conducted. We also include comparisons with experiments using 174 

both SDL and SCL as well as with both SDL and VDL. These experiments will be explained in 175 

more detail later in this section. 176 

The RRFS is the high-resolution forecast system based on the limited area model capability 177 

for the non-hydrostatic finite-volume cubed-sphere dynamical core (FV3LAM, Lin 2004; 178 

Putman and Lin 2007; Black et al. 2021), which is being developed as the next-generation 179 

operational regional forecast systems in National Centers for Environmental Prediction (NCEP) 180 

and may replace several existing regional systems [e.g., the North American Mesoscale (NAM; 181 

Janjic 2003; Janjic and Gall 2012) 3-km nests and High-Resolution Ensemble Forecast system 182 
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(HREF; Roberts et al. 2019, 2020)]. The horizontal grid interval is 3 km. The number of vertical 183 

layers is 65 and the lowest level thickness and the top of the model are 8 m and 2 hPa, 184 

respectively. Although the operational RRFS will cover a North American domain, this study 185 

applies it only for the CONUS (contiguous United States) domain and the number of grid cells 186 

is 1820 x 1092 horizontally. Physics schemes used in the FV3LAM for this study are listed in 187 

Table 1. 188 

The schematics of the procedure of the experiments for this study are shown in Fig. 1. Here, 189 

hourly analysis-forecast cycles with GSI-based 3DEnVar and FV3LAM (initiated at 03 and 15 190 

UTC) and 36-hour forecasts (from the 3DEnVar analysis at 12 and 00 UTC) were repeated 191 

every 12 hours. The BEC in 3DEnVar was purely ensemble-based and created by 1-hour 192 

FV3LAM ensemble forecasts from the 30-member serial ensemble square root filter (EnSRF; 193 

Whitaker and Hamill 2002). The EnSRF analysis mean was replaced with the 3DEnVar analysis 194 

(recentering in Fig. 1) and the ensemble spread was inflated by the relaxation-to-prior spread 195 

method (RTPS; Whitaker and Hamill, 2012) with the factor of 0.85. Only for the analyses at 03 196 

and 15 UTC, the BEC was created using a 9-hour global ensemble forecast subset from the 80-197 

member local gain form ensemble transform Kalman filter (LGETKF; Hunt et al. 2007; Lei et 198 

al. 2018) run as a part of the Global DA System (GDAS) operated by NCEP. The initial 199 

conditions (ICs), namely the first guesses of the 3DEnVar and the initial states of 30-member 200 

ensemble forecasts, were created by 3-hour deterministic forecasts in the Global Forecast 201 
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System (GFS) in NCEP and by 9-hour global ensemble forecasts in GDAS (30 of 80 members), 202 

respectively, under constraints of operational availability. The deterministic forecasts of GFS 203 

were also used for the lateral boundary conditions (LBCs) of all FV3LAM forecasts in the 204 

experiments for this study, meaning also that lateral boundary perturbations were not introduced 205 

for the ensemble. 206 

To verify the impacts of SDL for synoptic-scale analysis and VDL for radar reflectivity DA, 207 

five sensitivity experiments were conducted in this study along with the control simulation. The 208 

control experiment (hereafter CNTL) assimilated a similar set of observations associated with 209 

the Rapid Refresh (RAP; Benjamin et al. 2004, 2016) and High Resolution Rapid Refresh 210 

(HRRR; Dowell et al. 2022), which includes observations from METAR, rawinsondes, aircraft, 211 

and radial winds of Weather Surveillance Radar-1988 Doppler (WSR-88D; Crum and Alberty 212 

1993, Liu et al. 2016), in both 3DEnVar and EnSRF. Satellite radiance data was not assimilated. 213 

The localization radii are prescribed somewhat differently between their respective 214 

implementations in EnSRF and 3DEnVar algorithms. The former defines the radii as the cutoff 215 

scale of the Gaspari-Cohn localization function (Gaspari and Cohn 1999) while the latter uses 216 

the Gaussian localization function (𝑒−20/3-folding scale). Therefore, the localization radii were 217 

set to 300 km horizontally and 1.1 scale heights vertically, while the corresponding 𝑒−1/2-218 

folding scale in 3DEnVar was 82.158 km horizontally and 0.30125 scale heights vertically. 219 

After 3DEnVar only, the lowest-level and soil temperature and specific humidity were adjusted 220 
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by land-snow DA with satellite-based soil temperature and specific humidity data (Benjamin et 221 

al. 2022), and hydrometeors were adjusted by non-variational cloud-hydrometeor assimilation 222 

with radar reflectivity and lightning data (Benjamin et al. 2021). 223 

The difference in the settings of the sensitivity experiments are summarized in Table 2. 224 

Neither SDL nor VDL was applied in CNTL (𝐿 = 1 and 𝐽 = 1). In the experiment with SDL 225 

(hereafter EXPSDL), only the horizontal localization radii in 3DEnVar were different from 226 

CNTL and set to 1200 and 300 km for larger and smaller-scale ensemble perturbations with 2-227 

scale SDL (𝐿 = 2 and 𝐽 = 1) including cross-scale covariance (𝑐1,1
𝑠 = 𝑐1,2

𝑠 = 𝑐2,1
𝑠 = 𝑐2,2

𝑠 = 1). 228 

These 2 scales were separated by the horizontal recursive filter with 300-km 𝑒−20/3-folding 229 

scale as shown in Fig. 2. The other four experiments directly assimilated radar reflectivity with 230 

the method of Wang and Wang (2017) only in 3DEnVar, where the non-variational cloud-231 

hydrometeor assimilation (Benjamin et al. 2021) done in CNTL and EXPSDL was limited to 232 

just clearing out rain, snow, and graupel without radar reflectivity observations. Here, only 10 233 

dBZ and larger reflectivity data interpolated to the analysis grids were assimilated directly, and 234 

5 dBZ and less reflectivity data, thinned at every other horizontal and vertical grid point, were 235 

also assimilated as 0 dBZ observations. The observation error standard deviation was set to 5 236 

dBZ. In EXP2DA, radar reflectivity was assimilated in the second pass of 3DEnVar with the 237 

smaller horizontal localization radius (15-km 𝑒−20/3 -folding scale) just after the other 238 

observations were assimilated in the first 3DEnVar pass (SCL in Zhang et al. 2009). In 239 
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EXPVDL, on the other hand, radar reflectivity was assimilated simultaneously with the other 240 

observations in a single 3DEnVar instance using VDL (𝐿 = 1  and 𝐽 = 2 ): the horizontal 241 

localization radii were set to 300 km for the conventional analysis variables (i.e., horizontal 242 

wind, temperature, specific humidity, and surface pressure), and 15 km for the other analysis 243 

variables added for the radar reflectivity DA (i.e., vertical wind, reflectivity, and mixing ratios 244 

of cloud water, cloud ice, rain, snow, and graupel). The cross-variable covariance between these 245 

two variable groups was decreased by multiplying the factor 0.05 (=15/300) to prevent too large 246 

impacts of radar reflectivity DA (𝑐1,1
𝑣 = 𝑐2,2

𝑣 = 1  and 𝑐1,2
𝑣 = 𝑐2,1

𝑣 = 0.05 , see Appendix B). 247 

EXPSDL2DA was the same as EXP2DA except applying SDL (𝐿 = 2 and 𝐽 = 1) only for the 248 

first 3DEnVar like EXPSDL. EXPSDLVDL was the same as EXPVDL except applying SDL 249 

for atmospheric variables in addition to VDL (𝐿 = 2 and 𝐽 = 2). In all experiments, the other 250 

settings including the vertical localization radius were the same as CNTL. In all applications of 251 

the EnSRF, radar reflectivity was not assimilated and neither SDL nor VDL was used. 252 

We set the experimental period of the analysis-forecast cycles from 03 UTC, May 11 to 12 253 

UTC, May 19, 2021 and from 15 UTC, September 29 to 00 UTC, September 30, 2022. These 254 

periods were chosen to examine the impact of SDL and VDL in cases of severe local storms 255 

(the former period) and a tropical cyclone (the latter). In May 2021, 287 tornadoes, the largest 256 

in 2021, were reported in the U.S. For the May 11–19 period, most tornadoes were generated 257 

in the south-central U.S. The strongest tornado in this period was generated in Texas at 0011 258 
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UTC on May 18 and ranked as EF2 (NCEI 2023). In September 2022, Hurricane Ian produced 259 

catastrophic storm surge, winds, and floods. Ian reached its peak intensity of 72.0 m s–1 (a 260 

category 5 hurricane) at 1200 UTC, 28 September, and made landfall in southwestern Florida 261 

with winds of 66.9 m s–1 at 1905 UTC, September 28, and in South Carolina with winds of 36.0 262 

m s–1 at 1805 UTC, September 30 (Bucci et al. 2023). 263 

  264 
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Table 1. List of physics schemes used in FV3-LAM. 265 

Physics schemes Specification 
 

Cloud microphysics Thompson-Eidhammer Aerosol Aware Microphysics 
(Thompson and Eidhammer 2014) 
 

Planetary boundary layer Mellor-Yamada-Nakanishi-Niino Eddy Diffusivity/Mass 
Flux (MYNN-EDMF; Nakanishi and Niino 2009; Olson 
et al. 2019; Angevine et al. 2020) 
 

Surface layer Mellor-Yamada-Nakanishi-Niino surface layer (Olson et 
al. 2021) 
 

Gravity wave Small Scale Gravity Wave Drag (SSGWD; Tsiringakis 
et al. 2017) and Turbulent Orographic Form Drag 
(TOFD; Beljaars et al. 2004) 
 

Land Rapid Update Cycle Land Surface Model (RUC LSM; 
Smirnova et al. 1997, 2000, 2016) 
 

Long and short-wave radiation Rapid Radiative Transfer Model for Global Circulation 
Models (RRTMG; Mlawer 1997; Iacono et al. 2008) 
 

 266 

 267 

Fig. 1. Schematics of analysis-forecast cycling experiments. 268 

  269 
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Table 2. List of settings of EnVar in sensitivity experiments. 270 

Name Radar reflectivity DA Horizontal localization radius (𝑒−20/3 scale) 
 

CNTL 
 

Not assimilated 
 

300 km 
 

EXPSDL 
 

Not assimilated 
 

1200 km (large-scale) 
300 km (small-scale) 
 

EXP2DA 
 

Assimilated separately 
after conventional DA 
 

300 km (conventional DA) 
15 km (radar reflectivity DA) 
 

EXPSDL2DA 
 

Assimilated separately 
after conventional DA 
 

1200 km (large-scale in conventional DA) 
300 km (small-scale in conventional DA) 
15 km (radar reflectivity DA) 
 

EXPVDL 
 

Assimilated 
simultaneously with 
conventional DA 
 

300 km (atmosphere) 
15 km (hydrometeors) 
 

EXPSDLVDL 
 

Assimilated 
simultaneously with 
conventional DA 
 

1200 km (large-scale atmosphere) 
300 km (small-scale atmosphere) 
15 km (large-scale hydrometeors) 
15 km (small-scale hydrometeors) 
 

 271 

 272 

Fig. 2. The power spectrum density ratio of ensemble perturbations in SDL (black: original 273 

perturbation; orange: filtered perturbation by recursive filter; green: difference between original 274 

and filtered perturbations). Gray solid line indicates characteristic wavelength in scale 275 

separation (recursive filter 𝑒−1/2-folding scale). 276 

  277 
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4. Results and discussion 278 

a. Single observation experiments 279 

In this subsection, we examine the impact of SDL and VDL first via a single observation 280 

experiment with pseudo surface pressure observation using the settings of CNTL, EXPSDL, 281 

and EXPVDL. We also include two additional experiments that are configured in the same 282 

manner as CNTL except use a single-scale horizontal localization radii (𝑒−20/3 scale) of 1200 283 

km and 15 km (hereafter EXPSSL1200 and EXPSSL15, respectively). The horizontal 284 

localization function in each experiment is shown in Fig. 3. Each single observation experiment 285 

uses the same first guess field. The pseudo surface pressure observation having a first guess 286 

departure of –10 hPa and an observation error standard deviation of 1 hPa was assimilated in 287 

the northern region of Hurricane Ian at 80W and 31N at 16 UTC on September 29, 2022. 288 

Figure 4 shows the analysis increments of the lowest-level temperature and sea level 289 

pressure (SLP) analysis in CNTL, EXPSSL1200, and EXPSDL. In CNTL, the analysis 290 

increments were limited within the northern part of the hurricane and the resulting surface 291 

pressure analysis was inconsistent with the expected axisymmetric hurricane structure (Fig. 4a). 292 

In EXPSSL1200, such unrealistic structure was not seen, and the hurricane was reasonably 293 

intensified because of the larger localization radius (Fig. 4b). However, the analysis increment 294 

was noisy north of the hurricane into South Carolina, likely due to sampling error. In EXPSDL 295 

(Fig. 4c), which includes both localization radii of CNTL and EXPSSL1200, the analysis 296 
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increments cover approximately the same area as EXPSSL1200 but are smoother overall. 297 

Further, the analysis increment near the observation location remains similar to that noted in 298 

the CNTL. The increments in the EXPSDL single observation experiment suggest that a large-299 

scale impact can be achieved in a way that reduces apparent sampling error. 300 

The analysis increments of radar reflectivity at the lowest model level and SLP analysis for 301 

CNTL, EXPSSL15, and EXPVDL are also shown in Fig. 5. In CNTL, the horizontal scale of 302 

the analysis increment for radar reflectivity was as large as that for temperature (Figs. 4a and 303 

5a) based on the localization function shown in the solid gray line in Fig. 3b. In EXPSSL15, on 304 

the other hand, the smaller localization radius (dashed gray line in Fig. 3b) severely limits the 305 

spatial extent of the analysis increment (Fig. 5b). Such small-scale analysis increments can 306 

cause large dynamical imbalance of atmospheric variables. In EXPVDL with both localization 307 

radii of CNTL (for horizontal wind, temperature, specific humidity, and surface pressure) and 308 

EXPSSL15 (for vertical wind, reflectivity, and hydrometeors), the analysis of atmospheric 309 

variables was identical to that in CNTL (compare SLP analyses in Figs. 5a and c). However, 310 

the analysis increment of radar reflectivity in EXPVDL was smaller than that in CNTL and its 311 

horizontal scale was between those in CNTL and EXPSSL15 (color in Fig. 5c) because the peak 312 

value and the 𝑒−20/3-folding scale of the localization function for cross-variable covariances 313 

were approximately 0.005 and 212 km, respectively (see magenta line in Fig. 3b and Appendix 314 

B). 315 
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 316 

Fig. 3. Horizontal localization functions [a: CNTL (solid gray), EXPSSL1200 (dashed gray), 317 

and EXPSDL for the cross-scale covariance (orange); b: CNTL (solid gray), EXPSSL15 318 

(dashed gray), and EXPVDL for the cross-variable covariance (magenta)]. Horizontal axis is 319 

the horizontal distance from the analysis point. 320 

  321 
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 322 

Fig. 4. Analysis increment of lowest-level temperature (color, K) and SLP analysis (gray 323 

contours, every 4 hPa) at 16 UTC on September 29, 2022 in the single surface pressure DA 324 

experiments (a: CNTL; b: EXPSSL1200; c: EXPSDL). Yellow dot is the position of the 325 

assimilated observation. 326 

 327 

 328 

Fig. 5. Analysis increment of lowest-level radar reflectivity (color, dBZ) and SLP analysis (gray 329 

contours, every 4 hPa) at 16 UTC on September 29, 2022 in the single surface pressure DA 330 

experiments (a: CNTL; b: EXPSSL15; c: EXPVDL). 331 
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b. Statistical verification in cycling experiments 333 

In this subsection, the impact of SDL and VDL is statistically verified in cycling 334 

experiments for May 11–19, 2021. For the verification of atmospheric variables, SDL had more 335 

impact than VDL as a whole. The relative impact of radar reflectivity DA to CNTL was almost 336 

the same between in two-step EnVar with SCL (EXP2DA and EXPSDL2DA) and in 337 

simultaneous EnVar with VDL (EXPVDL and EXPSDLVDL). 338 

Figure 6 shows the first guess departure of assimilated in-situ temperature, relative humidity, 339 

and horizontal wind observations. Compared to CNTL, the RMSE was significantly 340 

(confidence level ≥ 95%) smaller for temperature (Fig. 6a) and near-surface (> 950hPa) relative 341 

humidity (Fig. 6b) in the experiments with SDL (EXPSDL, EXPSDL2DA, and EXPSDLVDL). 342 

These RMSE reductions were associated with SDL making the horizontally averaged 343 

temperature warmer (Fig. 6d) and relative humidity dryer (Fig. 6e), respectively, in the 344 

corresponding vertical layers. The RMSE for low-level wind and its strong bias also tended to 345 

be smaller in the experiments with SDL (Figs. 6c and f) 346 

The impact of SDL shown above was also seen in the 12-hour upper-air forecast verified 347 

against radiosonde data for May 11–19, 2021 (Fig. 7): the cold bias of low-level (> 650hPa) 348 

temperature and the moist bias of low-level (> 850 hPa) relative humidity were clearly 349 

decreased by SDL. These bias reductions were also clear in the surface verification. Both for 350 

temperature (Fig. 8a) and for dew point temperature (Fig. 8b), the cold and moist biases were 351 
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decreased until the end of the forecast (36 hours). The cause of these bias reductions is discussed 352 

in the next section. As for the near surface wind, the impact was neutral (not shown). 353 

The radar reflectivity DA slightly increased and decreased the cold bias of low-level and 354 

mid-level temperature, respectively (see the differences between the experiments with 355 

(EXP2DA, EXPSDL2DA, EXPVDL, and EXPSDLVDL) and without (CNTL and EXPSDL) 356 

radar reflectivity DA in Fig. 6d), and their associated RMSEs (Fig. 6a); this impact was 357 

associated with increasing near-surface evaporation cooling and midlevel condensation heating. 358 

In fact, near-surface and midlevel first guesses of temperature were clearly lower and higher, 359 

respectively, in the precipitation region in EXP2DA and EXPVDL than those in CNTL (Fig. 9). 360 

Please note that the impact of the radar reflectivity DA was smaller and only seen in the shorter-361 

range forecast than that of SDL (Figs. 6–8) since it was limited to the precipitation region. 362 

As for radar reflectivity forecasts, the impacts of both SDL and VDL were clear. Figure 10 363 

is the performance diagram (Roebber 2009) of 3-hour and 12-hour composite reflectivity 364 

forecasts, which shows success ratio (SR) and probability of detection (POD) verified against 365 

the Multi-Radar Multi-Sensor (MRMS, Smith et al. 2016) as horizontal and vertical axes, 366 

respectively. In this diagram, points in the upper right indicate the higher critical success index 367 

(CSI). Points in the upper left and in the lower right indicate the higher and lower bias, 368 

respectively, of the reflectivity forecast. It shows that radar reflectivity DA made both CSI and 369 

positive bias larger especially in the short-term forecasts of low reflectivity. This impact was 370 
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larger in EXP2DA than in EXPVDL (Fig. 10a) and also seen in 12-hour forecasts except for the 371 

high reflectivity (Fig. 10b). This positive bias of reflectivity forecasts was decreased by both 372 

SDL and VDL. This SDL-induced bias reduction was larger than its increase by radar 373 

reflectivity DA in 12-hour forecasts (Fig. 10b), and retained until the end of (36-hour) forecasts 374 

(not shown). Although SDL did not necessarily improve CSI in the 3-hour forecasts (Fig. 10a), 375 

it was clearly improved by SDL especially in 12-hour forecasts for high reflectivity (Fig. 10b). 376 

 377 

Fig. 6. Vertical profiles of first guess departure (a–c) standard deviations (difference from 378 

CNTL) and (d–f) biases verified against assimilated in-situ observations [a and d: temperature 379 

(K); b and e: relative humidity (%); c and f: horizontal wind (m s–1)] in each cycling experiment 380 

for May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; blue: EXPSDL2DA; 381 

magenta: EXPVDL; red: EXPSDLVDL). Square marks indicate significantly different from 382 

CNTL (confidence level ≥ 95%). 383 
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 385 

Fig. 7. Vertical profiles of 12-hour forecast RMSE (solid lines) and bias (dotted lines) verified 386 

against radiosonde (a) temperature (K) and (b) relative humidity (%) observations in each 387 

cycling experiment for May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; 388 

blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). The relative humidity forecast 389 

was computed with observed temperature. The error bars show 95% confidence in CNTL. 390 
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 392 

Fig. 8. Forecast RMSE (solid lines) and bias (dotted lines) verified against (a) temperature (K) 393 

and (b) dew point temperature (K) observations at 2-m AGL in each cycling experiment for 394 

May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; blue: EXPSDL2DA; 395 

magenta: EXPVDL; red: EXPSDLVDL). The error bars show 95% confidence in CNTL. 396 
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 398 

Fig. 9. Difference of 1-hour temperature forecasts in (a,b) 300 hPa and (c,d) 950 hPa at 399 

00UTC, September 30, 2022 (a,c; EXP2DA-CNTL; b,d: EXPVDL-CNTL). Black contours 400 

are composited radar reflectivity forecasts (10 dBZ) in (a,c) EXP2DA and (b,d) EXPVDL. 401 
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 403 

Fig. 10. Performance diagram of (a) 3-hour and (b) 12-hour radar reflectivity forecasts in each 404 

cycling experiment for May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; 405 

blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). Horizontal and vertical axes are 406 

SR and POD, respectively, verified against the MRMS composite reflectivity (thresholds: 15, 407 

20, 25, 30, 35, 40, and 45 dBZ from higher SR and POD to lower). Bold numbers indicate CSI 408 

(gray) and bias (black). 409 
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c. Impacts on the hurricane analysis and forecast 411 

In this section, the impacts of SDL and VDL shown in the previous section are discussed in 412 

more detail based on the case of Hurricane Ian in September 2022. The cold bias of low-level 413 

temperature seen in the period for May 11–19, 2021 was similarly decreased by SDL also in 414 

the period for September 29–30, 2022 (not shown). 415 

Figure 11 depicts the analysis increments of surface pressure in each experiment at 16 UTC, 416 

September 29. In the experiments with SDL (Figs. 11b, d, and f), the analysis increment was 417 

horizontally smoother than those without SDL (Figs. 11a, c, and e) because the larger 418 

localization radius was applied for the larger-scale (smoothed) ensemble covariances in SDL. 419 

As a result, SDL reduced the horizontally-averaged first guess departure more than the 420 

experiments without SDL, which is why the bias of temperature and humidity was smaller in 421 

the experiments with SDL for the May cycling period of experiments (Figs. 6–8). 422 

The relative smoothness of the analysis increment is dependent on the power spectra of the 423 

ensemble perturbations. For example, SDL also made the analysis increment of lowest-level 424 

temperature smoother horizontally (not shown). However, it was not as smooth as surface 425 

pressure because the power spectrum of large wavelength of lowest-level temperature was not 426 

larger relatively than that of surface pressure. Figure 12 shows the power spectra of one-427 

member’s ensemble perturbations of surface pressure and temperature used for ensemble-based 428 

BEC in the EnVar analysis at 16 UTC, September 29, which indicates the contribution ratio of 429 
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power spectrum of larger wavelength to the whole was larger in surface pressure (Fig. 12a) than 430 

that in lowest-level temperature (Fig. 12b). Note that the power spectrum density ratio of 431 

ensemble perturbations separated by SDL (Fig. 2) did not depend on variables. 432 

The smoother analysis increment caused by SDL does not necessarily decrease RMSE of 433 

the short-term forecast because the resulting analysis is not as close to the assimilated 434 

observations in the finer scale. However, it may be beneficial for the long-term forecast due to 435 

the smaller dynamical imbalance of the analysis. In fact, the mean surface pressure tendencies 436 

of the forecasts from the analyses at 00 UTC, September 30 were smaller in the experiments 437 

with SDL (Fig. 13). 438 

Figure 13 also shows that radar reflectivity DA enlarged the imbalance. This tendency was 439 

seen especially in the experiments with SCL (EXP2DA and EXPSDL2DA) because the smaller 440 

horizontal localization in the second pass of 3DEnVar limited the analysis increments of 441 

atmospheric variables only near assimilated observations (dashed gray line in Fig. 3b) and made 442 

them noisy (northeast coast of Florida in Figs. 11c and d). In the experiments with VDL 443 

(EXPVDL and EXPSDLVDL), the analysis increment was less noisy even with radar 444 

reflectivity DA than that in the experiments with SCL (Figs. 11e and f) because the localization 445 

function of atmospheric variables was smaller and wider (magenta line in Fig. 3b). As a result, 446 

VDL kept the imbalance smaller even while assimilating radar reflectivity and the imbalance 447 

reduction by SDL was clearer than the experiments with SCL. 448 
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The imbalance reduction by SDL and VDL also affected the track forecast of Hurricane Ian 449 

(Figs. 14 and 15). In the experiments with radar reflectivity DA (Figs. 14c–f), the composite 450 

reflectivity analyses were closer to the MRMS observation than that in CNTL near the center 451 

of Ian. However, the analyses of SLP were less axisymmetric, and the resulting track forecast 452 

had larger cross-track error in the experiments with SCL (Figs. 14c and d) than those in the 453 

other experiments (Fig. 15a). In the experiments with VDL (Figs. 14e and f), the cross-track 454 

errors were as small as that in CNTL, and the composite reflectivity analyses were similar to 455 

the experiments with SCL. On the other hand, the intensification forecast of Ian (Fig. 15c) was 456 

a little overestimated in EXPVDL probably because the smaller imbalance was more suitable 457 

for the hurricane intensification than EXP2DA. This overestimation was not seen in comparison 458 

between EXPSDLVDL and EXPSDL2DA. The larger-scale, smoother analysis increment in 459 

EXPSDLVDL might affect the intensification forecast. Note that these impacts were seen in the 460 

specific forecast, and SDL and VDL do not necessarily improve the track and intensification 461 

forecasts. More cases would need to be evaluated to assess the overall impact on tropical 462 

cyclone forecasts. 463 

 464 
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 465 

Fig. 11. Analysis increment of surface pressure (hPa) at 16UTC, September 29, 2022, in each 466 

experiment (a: CNTL; b: EXPSDL; c: EXP2DA; d: EXPSDL2DA; e: EXPVDL; f: 467 

EXPSDLVDL). 468 

  469 
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 470 

Fig. 12. The power spectra of (a) surface pressure (Pa2 m) and (b) the lowest-level temperature 471 

(K2 m), in the analysis at 16UTC on September 29, 2022, in EXPSDLVDL (black: original 472 

perturbation: orange: filtered perturbation by recursive filter; green: difference between original 473 

and filtered perturbations). Gray solid line indicates characteristic wavelength in scale 474 

separation (recursive filter 𝑒−1/2-folding scale). Black dotted line indicates (wavenumber)–5/3. 475 

 476 

 477 

Fig. 13. Mean absolute pressure tendency (hPa hr–1) of the first 6-hour forecasts from the 478 

analysis at 00 UTC, September 30, 2022 in each experiment (gray: CNTL; orange: EXPSDL; 479 

cyan: EXP2DA; blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). 480 
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 482 

Fig. 14. Composited radar reflectivity (color, dBZ) and SLP (blue contours, every 4 hPa) 483 

analyses at 00UTC, September 30, 2022, and Hurricane Ian track forecasts (black lines) in each 484 

experiment (a: CNTL; b: EXPSDL; c: EXP2DA; d: EXPSDL2DA; e: EXPVDL; f: 485 

EXPSDLVDL) and (g) MRMS observations and HRRR SLP analysis. White lines are Ian’s 486 

best track. 487 

  488 



 35 

 489 

Fig. 15. (a) Cross-track error (positive: right of track) and (b) along-track error (positive: faster) 490 

verified against the best track (km) and (c) minimum sea level pressure (hPa) of Hurricane Ian 491 

forecasts initialized at 00UTC, September 30, 2022, in each experiment (gray: CNTL; orange: 492 

EXPSDL; cyan: EXP2DA; blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). 493 

Black dotted line in (c) indicates the best track. 494 
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5. Conclusions 496 

In this study, both scale- and variable-dependent localization (SDL and VDL) were 497 

implemented in a prototype RRFS. Through sensitivity tests we have shown several advantages 498 

of adopting SDL and VDL techniques for convective-scale DA based upon a week-long cycling 499 

test and a brief case study with Hurricane Ian. 500 

The advantage of SDL is that the localization radius can be larger while keeping the effect 501 

of the sampling error small. It made the analysis increments smoother and was effective in 502 

improving the bias of the forecast of low-level temperature and relative humidity (Figs. 6–8) 503 

and at decreasing the dynamical imbalance of the analysis (Fig. 13). Although the smoother 504 

analysis increment does not necessarily decrease the RMSE of the short-term forecast, it may 505 

improve the long-term forecast. In particular, low-level temperature and precipitation were 506 

improved for 12-hour forecasts (Figs. 6–8). 507 

On the other hand, the main advantage of VDL is to make the simultaneous conventional 508 

and radar reflectivity DA possible. In the conventional localization, the localization radii for all 509 

variables including hydrometeors cannot be optimized simultaneously. However, SCL 510 

generated a large imbalance due to too small localization radius for atmospheric variables in 511 

radar reflectivity DA (Fig. 13). In assimilating radar reflectivity by VDL, the imbalance became 512 

smaller than SCL (Fig. 13) because of the larger localization radius and the smaller analysis 513 

increment of atmospheric variables (Fig. 3b). 514 
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In both SDL and VDL, the imbalance reduction is important in considering 515 

implementation of them in the operational DA system. These methods are beneficial especially 516 

in the following situations: (i) the ensemble size is limited, (ii) the imbalance of the analysis 517 

largely affects the targeted forecast, and (iii) dense hydrometeor observations are assimilated 518 

simultaneously with the other sparse atmospheric observations. In operational regional DA 519 

systems, these limitations generally should be considered to assimilate many observations in a 520 

tight time limit. 521 

SDL and VDL increase the memory usage and the computation time for the localization. 522 

However, the computational cost in VDL is smaller than that in SCL since the number of times 523 

of inputting files required to run EnVar (once) is less than that required in SCL (twice). In this 524 

study, the total computation time for EnVar was comparable between CNTL and EXPSDLVDL. 525 

Since the weight of each scale in SDL is automatically determined depending on the power 526 

spectra of the variables, the sensitivity of the localization radius to the forecast is less than the 527 

case without SDL (not shown). However, tuning localization radii are still required even with 528 

SDL, and the optimal radii depend on variables, vertical levels, seasons, and so on. Adapting 529 

different localization radii separately for these components with techniques such as VDL may 530 

optimize the localization radii more strictly. However, it makes tuning them more complicated. 531 

To prevent manual tuning, new techniques such as the adaptive localization (e.g., Menetrier and 532 

Auligne 2015) should be developed also for SDL and VDL.  533 
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APPENDIX A 548 

Characteristic wavelength in scale separation with the 549 

recursive filter in SDL 550 

The recursive filter F𝑠,𝑣 used for scale separation in Eq. (8) is working as a low-pass filter 551 

and the resulting power spectra of ensemble perturbations are quasi-Gaussian in wave space. 552 

This characteristic of scale separation is explained as follows. 553 

Since the recursive filter is regarded as a quasi-Gaussian filter (Purser et al. 2003), the 554 

filtering kernel of F𝑠,𝑣 in the 𝑥-direction is approximated as Gaussian 555 

 𝐹𝜎(𝑥) =
1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2 , (A1) 

where 𝜎 is the 𝑒−1/2-folding length of the recursive filter and ∫ 𝐹𝜎(𝑥)𝑑𝑥
∞

−∞
= 1. Using this 556 

Eq. (A1), Fourier response of this 𝐹𝜎(𝑥) is obtained as 557 

 𝐺𝜎(𝑘) ≡ ∫ 𝐹𝜎(𝑥)𝑒
−𝑖𝑘𝑥𝑑𝑥

∞

−∞

= 𝑒−
𝑘2𝜎2

2 ∫
1

√2𝜋𝜎
𝑒
−
(𝑥+𝑖𝑘𝜎2)

2

2𝜎2 𝑑𝑥
∞

−∞

= 𝑒−
𝑘2𝜎2

2 . (A2) 

Eq. (A2) indicates that 𝐺𝜎(𝑘)  is also Gaussian in wave space and its characteristic 558 

wavenumber 𝑘𝑐  defined by 𝐺𝜎(𝑘𝑐) ≡ 𝑒−1/2  is 𝑘𝑐 = 1/𝜎 . As a result, the characteristic 559 

wavelength of 𝐺𝜎(𝑘)  is 𝜆𝑐 ≡ 2𝜋/𝑘𝑐 = 2𝜋𝜎 . Since the power spectrum density ratio of 560 

filtered ensemble perturbations (e.g., Fig. 2) is proportional to 𝐺𝜎(𝑘)
2, the ratio is about 𝑒−1 561 

in wavenumber of 𝜆𝑐 = 2𝜋𝜎. 562 

  563 
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APPENDIX B 564 

Localization of cross-variable covariance in VDL 565 

In EXPVDL and EXPSDLVDL, the parameter making the cross-variable correlation 566 

smaller was applied to mitigate overestimation of analysis increments. This overestimation is 567 

caused by the horizontally-integrated localization function in VDL, which is larger than that 568 

applied for radar reflectivity in general. Details are explained as follows. 569 

When the filtering kernels of L𝑠,𝑣  and L𝑠,𝑣
1/2

  in 𝑥 -direction are written as 𝐿𝜎(𝑥)  and 570 

𝐶𝜎(𝑥), respectively, their relationship should be written as: 571 

 𝐿𝜎(𝑥) = ∫ 𝐶𝜎(𝑥 − 𝑥
′)𝐶𝜎(𝑥

′)𝑑𝑥′
∞

−∞

= 𝑒
−
𝑥2

2𝜎2 . (B1) 

Note that the normalization factor is different between 𝐿𝜎(𝑥) in Eq. (B1) and 𝐹𝜎(𝑥) in Eq. 572 

(A1) because the peak value of L𝑠,𝑣 should be one. From this Eq. (B1), 𝐶𝜎(𝑥) is obtained as: 573 

 𝐶𝜎(𝑥) = (
2

𝜋𝜎2
)
1/4

𝑒
−
𝑥2

𝜎2 . (B2) 

Using this Eq. (B2), the localization applied for cross-variable covariances in VDL is based on 574 

the following kernel: 575 

 𝐿𝜎1,𝜎2(𝑥) = ∫ 𝐶𝜎1(𝑥 − 𝑥
′)𝐶𝜎2(𝑥

′)𝑑𝑥′
∞

−∞

= √
2𝜎1𝜎2

𝜎1
2 + 𝜎2

2 𝑒
−

𝑥2

𝜎1
2+𝜎2

2
, (B3) 

where 𝜎1 ≫ 𝜎2. According to Eq. (B3), the peak value of 𝐿𝜎1,𝜎2(𝑥) is less than one, and the 576 

ratio of horizontally-integrated 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) and 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦) is calculated as: 577 

 
∫ 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∫ 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦)𝑑𝑥𝑑𝑦
∞

−∞

=
𝜎1
𝜎2
≫ 1. (B4) 
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Eq. (B4) means that the total assimilation effect of the variables localized by 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) 578 

in VDL is 𝜎1/𝜎2 times as large as that by 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦) in the single-scale localization. The 579 

larger assimilation effect does not necessarily make the analysis increment larger in case the 580 

effects of multiple observations are canceled by each other. However, they are not canceled in 581 

case the first guess departure of radar reflectivity has large bias. To mitigate this overestimation 582 

of the analysis increment in this case, multiplying the factor (≤ 𝜎2/𝜎1) to 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) 583 

is effective. The solid gray, dashed gray, and magenta lines in Fig. 3b indicates the distributions 584 

of 𝐿𝜎1(𝑥)𝐿𝜎1(𝑦) , 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦) , and (𝜎2/𝜎1)𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) , respectively, against 𝑟 =585 

√𝑥2 + 𝑦2 in the case of 𝜎2/𝜎1 = 15/300 = 0.05. 586 

  587 
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Key Points: 16 

 This study implements scale- and variable-dependent localization (SDL and VDL) for 17 

data assimilation of the Rapid Refresh Forecast System. 18 

 SDL decreases the imbalance of the analysis field and the bias of temperature and 19 

humidity forecasts by the larger localization radius. 20 

 VDL enables simultaneous assimilation of conventional and radar reflectivity data 21 

without introducing noisy analysis increments. 22 

  23 



 1 

Abstract 24 

This study demonstrates the advantages of scale- and variable-dependent localization (SDL 25 

and VDL) on three-dimensional ensemble variational data assimilation of the hourly-updated 26 

high-resolution regional forecast system, the Rapid Refresh Forecast System (RRFS). SDL and 27 

VDL apply different localization radii for each spatial scale and variable, respectively, by 28 

extended control vectors. Single-observation assimilation tests and cycling experiments with 29 

RRFS indicated that SDL can enlarge the localization radius without increasing the sampling 30 

error caused by the small ensemble size and decreased associated imbalance of the analysis 31 

field, which was effective at decreasing the bias of temperature and humidity forecasts. 32 

Moreover, simultaneous assimilation of conventional and radar reflectivity data with VDL, 33 

where a smaller localization radius was applied only for hydrometeors and vertical wind, 34 

improved precipitation forecasts without introducing noisy analysis increments. Statistical 35 

verification showed that these impacts contributed to forecast error reduction, especially for 36 

low-level temperature and heavy precipitation. 37 

  38 
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Plain Language Summary 39 

In atmospheric data assimilation based on ensemble forecasts, the analysis increment is 40 

limited to the vicinity of each observation by spatial localization to prevent spurious analysis 41 

increments due to sampling error caused by the small ensemble size. Scale- and variable-42 

dependent localization (SDL and VDL) make it possible to set optimal localization radii 43 

separately for each spatial scale and variable. Sensitivity experiments in this study with a high-44 

resolution forecast system showed that SDL could decrease the bias of temperature and 45 

humidity forecasts and that VDL could improve precipitation forecasts without introducing 46 

noisy analysis increments. 47 

  48 
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1. Introduction 49 

To improve short-term high-resolution forecasts of severe weather, it is important to develop 50 

high-frequency ensemble-based atmospheric data assimilation (DA) methods (e.g., Dong and 51 

Xue 2013; Johnson and Wang 2017). Such methods utilize a high-resolution ensemble to 52 

estimate and evolve background error covariance (BEC), providing flow dependent covariances 53 

for the data assimilation algorithm. Two of the more common ensemble-based DA methods to 54 

assimilate high-resolution observations, such as radar data, are the ensemble Kalman filter 55 

(EnKF, Evensen 1994) and the ensemble-variational (EnVar, Hamill and Snyder 2000; Lorenc 56 

2003). 57 

In ensemble-based DA such as with EnKF and EnVar methods, the impact of assimilating 58 

observations is generally limited to the local vicinity of each observation utilizing spatial 59 

localization (Hamill et al. 2001; Houtekamer and Mitchell 2001). This spatial localization is 60 

required to mitigate the sampling error caused by the small ensemble sizes ~O(102). However, 61 

the small spatial localization limits the spatial extent of synoptic-scale analysis increments and 62 

introduces the dynamical imbalance of the analysis (e.g., Greybush et al. 2011). 63 

To account for the disadvantage of small spatial localization, several multiscale localization 64 

methods were proposed. Zhang et al. (2009) suggested the successive covariance localization 65 

(SCL), which involves running the EnKF algorithm twice; the first pass uses a larger 66 

localization radius for so-called large-scale observations (e.g. rawinsondes) and a second pass 67 
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uses a shorter localization radius to assimilate dense convective-scale observations, such as 68 

those from Doppler radars. Miyoshi and Kondo (2013) suggested another two-step EnKF, 69 

which combines two independent EnKF analysis increments in the assimilation of the same 70 

observations with different localization radii. For EnVar, Buehner (2012) suggested a similar 71 

multiscale localization method, scale-dependent localization (SDL). SDL separates ensemble 72 

perturbations into multiple wavebands and different localization radii are simultaneously 73 

applied for each perturbation via extended control vectors. Buehner and Shlyaeva (2015) 74 

extended this SDL to include cross-scale BECs: this SDL has been tested with several 75 

operational global and regional EnVar systems (e.g., Caron and Buehner 2018, 2022; Caron et 76 

al. 2019; Huang et al. 2021). Although the simultaneous multiscale localization approach such 77 

as SDL is generally not applied in the EnKF with observation-space localization, it is also 78 

possible in an EnKF framework with model-space localization such as the multiscale local gain 79 

form ensemble transform Kalman filter (Wang et al. 2021). 80 

Although the multiscale localization, such as SDL, attempts to mitigate sampling error 81 

without eliminating large-scale analysis increments by setting localization radii separately for 82 

synoptic- and convective-scales, the optimal localization radius also may depend on the control 83 

variables. In particular, the optimal localization radii of hydrometeors are smaller than other 84 

atmospheric variables, such as horizontal wind, temperature, and humidity (e.g., Michel et al. 85 

2011). Furthermore, a smaller localization radius is generally optimal for variables associated 86 
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with dense spatial distributions, such as radar data (Perianez et al. 2014). These previous studies 87 

indicate the potential necessity of variable-dependent localization (VDL), which uses different 88 

localization radii for several variable groups. This facilitates the small-scale update of 89 

hydrometeors and the large-scale update of atmospheric variables simultaneously. Wang and 90 

Wang (2023a, hereafter WW23) proposed and implemented SDL and VDL simultaneously in a 91 

regional EnVar system including radar DA and showed its advantage in a supercell case. Wang 92 

and Wang (2023b) further applied this EnVar system to a CONUS case study of squall lines and 93 

demonstrated the benefits of SDL and VDL over the single-scale localization method in 94 

extracting information from the assimilated conventional in-situ and radar reflectivity 95 

observations. 96 

As shown in WW23, SDL and VDL are beneficial in the regional EnVar framework, 97 

especially for radar DA. On the other hand, it has not been clear what kind of forecast indicators 98 

are statistically improved by application of SDL and VDL in an operational high-frequency DA 99 

system, or how much they are improved. This study implements SDL and VDL in the EnVar 100 

algorithm of the Rapid Refresh Forecast System (RRFS, Carley et al. 2023), which is the 101 

hourly-updated high-resolution (3 km grid spacing) regional forecast system being developed 102 

as the next operational regional forecast system for the National Weather Service. Further, we 103 

demonstrate which aspects of the forecast are improved when applying SDL and VDL by 104 

examining impacts on near surface sensible weather, upper air forecast scores, and precipitation 105 
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via a series of sensitivity experiments. In particular, we focus on the impact of SDL and VDL 106 

on decreasing the imbalance of the analysis. 107 

The remainder of this paper is organized as follows. Section 2 explains the formulation of 108 

SDL and VDL. Section 3 describes the experimental design of the SDL and VDL sensitivity 109 

experiments. Section 4 describes the results of the experiments and discusses the impact of SDL 110 

and VDL on the analysis and the forecast in the case of Hurricane Ian in 2022. Section 5 presents 111 

the conclusions. 112 

 113 

2. Formulation 114 

a. Hybrid 3DEnVar 115 

This study implements SDL and VDL in the Gridpoint Statistical Interpolation (GSI)-based 116 

hybrid three-dimensional EnVar (3DEnVar) system (Wang et al. 2013). In this hybrid 3DEnVar, 117 

the analysis increment 𝛿𝐱 is obtained by minimization of the cost function: 118 

 𝐽(𝛿𝐱𝑠𝑡 , 𝐚1, … , 𝐚𝐾) =
1

2
𝛽𝑠𝑡(𝛿𝐱𝑠𝑡)

𝑇B𝑠𝑡
−1(𝛿𝐱𝑠𝑡) +

1

2
𝛽𝑒𝑛∑(𝐚𝑘)

𝑇L
−1(𝐚𝑘)

𝐾

𝑘=1

+
1

2
(H𝛿𝐱 − 𝐝)𝑇R−1(H𝛿𝐱 − 𝐝), (1) 

 𝛿𝐱 = 𝛿𝐱𝑠𝑡 +∑[
𝐚𝑘 ∘ 𝐱𝑘

𝑒𝑛(1)

⋮

𝐚𝑘 ∘ 𝐱𝑘
𝑒𝑛(𝐼)

]

𝐾

𝑘=1

, (2) 

where 𝛿𝐱𝑠𝑡  and 𝐚𝑘  (𝑘 = 1,… , 𝐾 ; 𝐾  is the ensemble size) are 𝑁𝐼 - and 𝑁 -dimension 119 

control vectors, respectively (𝑁 and 𝐼 are the number of analysis grid points and the number 120 

of variables, respectively), B𝑠𝑡 in the first term of the right-hand side of Eq. (1) denotes the 121 

static BEC (𝑁𝐼 × 𝑁𝐼 matrix), L in the second term denotes the localization (𝑁 × 𝑁 matrix), 122 
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and R, H, and 𝐝 in the third term denote the observation error covariance (𝑀 ×𝑀 matrix), 123 

the linearized observation operator (𝑀 ×𝑁𝐼  matrix), and the 𝑀 -dimension observation 124 

innovation vector, respectively (𝑀 is the number of assimilated observations). 𝛽𝑠𝑡 and 𝛽𝑒𝑛 125 

(1/𝛽𝑠𝑡 + 1/𝛽𝑒𝑛 = 1) are the weights of the static and ensemble BECs, respectively. 𝐱𝑘
𝑒𝑛(𝑖)

 in 126 

Eq. (2) is the 𝑁 -dimension 𝑘 -th ensemble perturbation vector (𝑘 -th ensemble member 127 

subtracted by ensemble mean and normalized by √𝐾 − 1) of the 𝑖-th kind of variable (𝑖 =128 

1, … , 𝐼) and “∘” denotes the Schur product. 129 

 130 

b. Scale- and variable-dependent localization 131 

Earlier studies (Buehner and Shlyaeva 2015; Caron and Buehner 2018; Huang et al. 2021) 132 

have implemented and explored SDL in the EnVar context. WW23 further proposed and 133 

implemented both SDL and VDL within the GSI-based EnVar system. This subsection explains 134 

how to implement SDL and VDL, mainly mirroring the notations of WW23. The scale 135 

separation method for SDL realized by the recursive filter (Purser et al. 2003) is also shown 136 

here. 137 

In the formulation for SDL and VDL, the control vector 𝐚𝑘 in Eq. (1) is extended to 𝑁𝑆𝑉-138 

dimension (𝑆 and 𝑉 denote the total numbers of scales in SDL and variable groups in VDL, 139 

respectively) as 140 
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 𝐚𝑘 =

[
 
 
 
 
 
 (

𝐚𝑘,1,1
⋮

𝐚𝑘,1,𝑉
)

⋮

(

𝐚𝑘,𝑆,1
⋮

𝐚𝑘,𝑆,𝑉
)
]
 
 
 
 
 
 

, (3) 

and the analysis increment is written as 141 

 𝛿𝐱 = 𝛿𝐱𝑠𝑡 +∑∑[

𝐚𝑘,𝑠,𝑣(1) ∘ 𝐱𝑘,𝑠
𝑒𝑛(1)

⋮

𝐚𝑘,𝑠,𝑣(𝐼) ∘ 𝐱𝑘,𝑠
𝑒𝑛(𝐼)

]

𝑆

𝑠=1

𝐾

𝑘=1

, (4) 

where 𝑣(𝑖) [1 ≤ 𝑣(𝑖) ≤ 𝑉] denotes the variable group number including the 𝑖-th variable. 142 

Compared to Eq. (2), 𝛿𝐱 is created by the summation of each scale analysis increment and 143 

𝐚𝑘,𝑠,𝑣(𝑖)  is multiplied to the ensemble perturbations 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

  separately for each scale 𝑠  and 144 

variable group 𝑣(𝑖). 145 

In this formulation, the localization L is also extended to 𝑁𝑆𝑉 × 𝑁𝑆𝑉 matrix as 146 

 L =

[
 
 
 
 
 
 
 
𝑐1,1
𝑠 (

𝑐1,1
𝑣 L1,1

1/2
L1,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L1,1

1/2
L1,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L1,𝑉

1/2
L1,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L1,𝑉

1/2
L1,𝑉
𝑇/2
) ⋯ 𝑐1,𝑆

𝑠 (

𝑐1,1
𝑣 L1,1

1/2
L𝑆,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L1,1

1/2
L𝑆,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L1,𝑉

1/2
L𝑆,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L1,𝑉

1/2
L𝑆,𝑉
𝑇/2
)

⋮ ⋱ ⋮

𝑐𝑆,1
𝑠 (

𝑐1,1
𝑣 L𝑆,1

1/2
L1,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L𝑆,1

1/2
L1,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L𝑆,𝑉

1/2
L1,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L𝑆,𝑉

1/2
L1,𝑉
𝑇/2
) ⋯ 𝑐𝑆,𝑆

𝑠 (

𝑐1,1
𝑣 L𝑆,1

1/2
L𝑆,1
𝑇/2

⋯ 𝑐1,𝑉
𝑣 L𝑆,1

1/2
L𝑆,𝑉
𝑇/2

⋮ ⋱ ⋮

𝑐𝑉,1
𝑣 L𝑆,𝑉

1/2
L𝑆,1
𝑇/2

⋯ 𝑐𝑉,𝑉
𝑣 L𝑆,𝑉

1/2
L𝑆,𝑉
𝑇/2
)

]
 
 
 
 
 
 
 

, (5) 

where L𝑠,𝑣
1/2

  denotes square root of the localization matrix L𝑠,𝑣  (𝑁 × 𝑁  matrix) and is 147 

realized by the recursive filter for the 𝑠-th scale in SDL and for the 𝑣-th variable group in VDL. 148 

𝑐𝑠1,𝑠2
𝑠  (𝑠1, 𝑠2 = 1,… , 𝑆) and 𝑐𝑣1,𝑣2

𝑣  (𝑣1, 𝑣2 = 1,… , 𝑉) are factors multiplying cross-scale and 149 

cross-variable correlations, respectively. If 𝑐𝑠1,𝑠2
𝑠 = 1  (“Cross” in Huang et al. 2021) and 150 

𝑐𝑣1,𝑣2
𝑣 = 1 in all scales and variables, L is represented simply as 151 
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 L =

[
 
 
 
 
 
 
 
(

L1,1
1/2

⋮

L1,𝑉
1/2
)

⋮

(

L𝑆,1
1/2

⋮

L𝑆,𝑉
1/2
)

]
 
 
 
 
 
 
 

[(L1,1
𝑇/2

⋯ L1,𝑉
𝑇/2) ⋯ (L𝑆,1

𝑇/2
⋯ L𝑆,𝑉

𝑇/2)]. (6) 

On contrary, if 𝑐𝑠1,𝑠2
𝑠 = 𝛿𝑠1𝑠2 (“NoCross” in Huang et al. 2021) and 𝑐𝑣1,𝑣2

𝑣 = 𝛿𝑣1𝑣2, all cross-152 

scale and cross-variable correlations are ignored as 153 

 L =

[
 
 
 
 
 
 
 
 
(

L1,1
1/2

𝟎

⋱

𝟎 L1,𝑉
1/2

) 𝟎

⋱

𝟎 (

L𝑆,1
1/2

𝟎

⋱

𝟎 L𝑆,𝑉
1/2

)

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
(

L1,1
𝑇/2

𝟎

⋱

𝟎 L1,𝑉
𝑇/2

) 𝟎

⋱

𝟎 (

L𝑆,1
𝑇/2

𝟎

⋱

𝟎 L𝑆,𝑉
𝑇/2

)

]
 
 
 
 
 
 
 
 

. (7) 

In this study, the scale separation to obtain 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

 from the original ensemble perturbation 154 

𝐱𝑘
𝑒𝑛(𝑖)

 is achieved as 155 

 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

=

{
 
 

 
 F𝑠,𝑣(𝑖)𝐱𝑘

𝑒𝑛(𝑖)
 (𝑠 = 1)

F𝑠,𝑣(𝑖) [𝐱𝑘
𝑒𝑛(𝑖)

− 𝐱𝑘,𝑠−1
𝑒𝑛(𝑖)

] (1 < 𝑠 < 𝑆)

𝐱𝑘
𝑒𝑛(𝑖)

− 𝐱𝑘,𝑆−1
𝑒𝑛(𝑖) (𝑠 = 𝑆),

 (8) 

where F𝑠,𝑣 is the low-pass filter realized by the recursive filter for the 𝑠-th scale in SDL and 156 

the 𝑣-th variable group in VDL. The recursive filter in calculating F𝑠,𝑣 should be normalized 157 

to make the spatially-integrated value one while that in calculating L𝑠,𝑣 is normalized to make 158 

the peak value one. The resulting power spectra of 𝐱𝑘,𝑠
𝑒𝑛(𝑖)

 are quasi-Gaussian in the wave space 159 

(see Appendix A). The scale separation based on Eq. (8) obtains each scale in order from the 160 

largest scale with the recursive filter, which is not strictly the same as the approach used in 161 

WW23 applying the diffusion operator in order from the smallest scale. However, the resulting 162 

power spectra was almost the same (not shown) and the computational expense of Eq. (8) is 163 
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less than that of WW23 because the computationally-efficient recursive filter is used instead of 164 

the diffusion operator. 165 

 166 

3. Experimental design 167 

In this study, we implemented SDL and VDL in hybrid 3DEnVar of a prototype RRFS 168 

(Carley et al. 2023). First, we conducted the control experiment of single scale localization 169 

(SSL) without radar reflectivity DA and compared it to the experiment with SDL. After that, 170 

we additionally assimilated radar reflectivity in the experiment with VDL and compared it to 171 

the control experiment. As a reference, the experiment with the early operational multiscale 172 

approach, which runs 3DEnVar twice with different localization radii for large- and convective-173 

scale observations (SCL), was conducted. We also include comparisons with experiments using 174 

both SDL and SCL as well as with both SDL and VDL. These experiments will be explained in 175 

more detail later in this section. 176 

The RRFS is the high-resolution forecast system based on the limited area model capability 177 

for the non-hydrostatic finite-volume cubed-sphere dynamical core (FV3LAM, Lin 2004; 178 

Putman and Lin 2007; Black et al. 2021), which is being developed as the next-generation 179 

operational regional forecast systems in National Centers for Environmental Prediction (NCEP) 180 

and may replace several existing regional systems [e.g., the North American Mesoscale (NAM; 181 

Janjic 2003; Janjic and Gall 2012) 3-km nests and High-Resolution Ensemble Forecast system 182 
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(HREF; Roberts et al. 2019, 2020)]. The horizontal grid interval is 3 km. The number of vertical 183 

layers is 65 and the lowest level thickness and the top of the model are 8 m and 2 hPa, 184 

respectively. Although the operational RRFS will cover a North American domain, this study 185 

applies it only for the CONUS (contiguous United States) domain and the number of grid cells 186 

is 1820 x 1092 horizontally. Physics schemes used in the FV3LAM for this study are listed in 187 

Table 1. 188 

The schematics of the procedure of the experiments for this study are shown in Fig. 1. Here, 189 

hourly analysis-forecast cycles with GSI-based 3DEnVar and FV3LAM (initiated at 03 and 15 190 

UTC) and 36-hour forecasts (from the 3DEnVar analysis at 12 and 00 UTC) were repeated 191 

every 12 hours. The BEC in 3DEnVar was purely ensemble-based and created by 1-hour 192 

FV3LAM ensemble forecasts from the 30-member serial ensemble square root filter (EnSRF; 193 

Whitaker and Hamill 2002). The EnSRF analysis mean was replaced with the 3DEnVar analysis 194 

(recentering in Fig. 1) and the ensemble spread was inflated by the relaxation-to-prior spread 195 

method (RTPS; Whitaker and Hamill, 2012) with the factor of 0.85. Only for the analyses at 03 196 

and 15 UTC, the BEC was created using a 9-hour global ensemble forecast subset from the 80-197 

member local gain form ensemble transform Kalman filter (LGETKF; Hunt et al. 2007; Lei et 198 

al. 2018) run as a part of the Global DA System (GDAS) operated by NCEP. The initial 199 

conditions (ICs), namely the first guesses of the 3DEnVar and the initial states of 30-member 200 

ensemble forecasts, were created by 3-hour deterministic forecasts in the Global Forecast 201 
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System (GFS) in NCEP and by 9-hour global ensemble forecasts in GDAS (30 of 80 members), 202 

respectively, under constraints of operational availability. The deterministic forecasts of GFS 203 

were also used for the lateral boundary conditions (LBCs) of all FV3LAM forecasts in the 204 

experiments for this study, meaning also that lateral boundary perturbations were not introduced 205 

for the ensemble. 206 

To verify the impacts of SDL for synoptic-scale analysis and VDL for radar reflectivity DA, 207 

five sensitivity experiments were conducted in this study along with the control simulation. The 208 

control experiment (hereafter CNTL) assimilated a similar set of observations associated with 209 

the Rapid Refresh (RAP; Benjamin et al. 2004, 2016) and High Resolution Rapid Refresh 210 

(HRRR; Dowell et al. 2022), which includes observations from METAR, rawinsondes, aircraft, 211 

and radial winds of Weather Surveillance Radar-1988 Doppler (WSR-88D; Crum and Alberty 212 

1993, Liu et al. 2016), in both 3DEnVar and EnSRF. Satellite radiance data was not assimilated. 213 

The localization radii are prescribed somewhat differently between their respective 214 

implementations in EnSRF and 3DEnVar algorithms. The former defines the radii as the cutoff 215 

scale of the Gaspari-Cohn localization function (Gaspari and Cohn 1999) while the latter uses 216 

the Gaussian localization function (𝑒−20/3-folding scale). Therefore, the localization radii were 217 

set to 300 km horizontally and 1.1 scale heights vertically, while the corresponding 𝑒−1/2-218 

folding scale in 3DEnVar was 82.158 km horizontally and 0.30125 scale heights vertically. 219 

After 3DEnVar only, the lowest-level and soil temperature and specific humidity were adjusted 220 
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by land-snow DA with satellite-based soil temperature and specific humidity data (Benjamin et 221 

al. 2022), and hydrometeors were adjusted by non-variational cloud-hydrometeor assimilation 222 

with radar reflectivity and lightning data (Benjamin et al. 2021). 223 

The difference in the settings of the sensitivity experiments are summarized in Table 2. 224 

Neither SDL nor VDL was applied in CNTL (𝐿 = 1 and 𝐽 = 1). In the experiment with SDL 225 

(hereafter EXPSDL), only the horizontal localization radii in 3DEnVar were different from 226 

CNTL and set to 1200 and 300 km for larger and smaller-scale ensemble perturbations with 2-227 

scale SDL (𝐿 = 2 and 𝐽 = 1) including cross-scale covariance (𝑐1,1
𝑠 = 𝑐1,2

𝑠 = 𝑐2,1
𝑠 = 𝑐2,2

𝑠 = 1). 228 

These 2 scales were separated by the horizontal recursive filter with 300-km 𝑒−20/3-folding 229 

scale as shown in Fig. 2. The other four experiments directly assimilated radar reflectivity with 230 

the method of Wang and Wang (2017) only in 3DEnVar, where the non-variational cloud-231 

hydrometeor assimilation (Benjamin et al. 2021) done in CNTL and EXPSDL was limited to 232 

just clearing out rain, snow, and graupel without radar reflectivity observations. Here, only 10 233 

dBZ and larger reflectivity data interpolated to the analysis grids were assimilated directly, and 234 

5 dBZ and less reflectivity data, thinned at every other horizontal and vertical grid point, were 235 

also assimilated as 0 dBZ observations. The observation error standard deviation was set to 5 236 

dBZ. In EXP2DA, radar reflectivity was assimilated in the second pass of 3DEnVar with the 237 

smaller horizontal localization radius (15-km 𝑒−20/3 -folding scale) just after the other 238 

observations were assimilated in the first 3DEnVar pass (SCL in Zhang et al. 2009). In 239 
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EXPVDL, on the other hand, radar reflectivity was assimilated simultaneously with the other 240 

observations in a single 3DEnVar instance using VDL (𝐿 = 1  and 𝐽 = 2 ): the horizontal 241 

localization radii were set to 300 km for the conventional analysis variables (i.e., horizontal 242 

wind, temperature, specific humidity, and surface pressure), and 15 km for the other analysis 243 

variables added for the radar reflectivity DA (i.e., vertical wind, reflectivity, and mixing ratios 244 

of cloud water, cloud ice, rain, snow, and graupel). The cross-variable covariance between these 245 

two variable groups was decreased by multiplying the factor 0.05 (=15/300) to prevent too large 246 

impacts of radar reflectivity DA (𝑐1,1
𝑣 = 𝑐2,2

𝑣 = 1  and 𝑐1,2
𝑣 = 𝑐2,1

𝑣 = 0.05 , see Appendix B). 247 

EXPSDL2DA was the same as EXP2DA except applying SDL (𝐿 = 2 and 𝐽 = 1) only for the 248 

first 3DEnVar like EXPSDL. EXPSDLVDL was the same as EXPVDL except applying SDL 249 

for atmospheric variables in addition to VDL (𝐿 = 2 and 𝐽 = 2). In all experiments, the other 250 

settings including the vertical localization radius were the same as CNTL. In all applications of 251 

the EnSRF, radar reflectivity was not assimilated and neither SDL nor VDL was used. 252 

We set the experimental period of the analysis-forecast cycles from 03 UTC, May 11 to 12 253 

UTC, May 19, 2021 and from 15 UTC, September 29 to 00 UTC, September 30, 2022. These 254 

periods were chosen to examine the impact of SDL and VDL in cases of severe local storms 255 

(the former period) and a tropical cyclone (the latter). In May 2021, 287 tornadoes, the largest 256 

in 2021, were reported in the U.S. For the May 11–19 period, most tornadoes were generated 257 

in the south-central U.S. The strongest tornado in this period was generated in Texas at 0011 258 
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UTC on May 18 and ranked as EF2 (NCEI 2023). In September 2022, Hurricane Ian produced 259 

catastrophic storm surge, winds, and floods. Ian reached its peak intensity of 72.0 m s–1 (a 260 

category 5 hurricane) at 1200 UTC, 28 September, and made landfall in southwestern Florida 261 

with winds of 66.9 m s–1 at 1905 UTC, September 28, and in South Carolina with winds of 36.0 262 

m s–1 at 1805 UTC, September 30 (Bucci et al. 2023). 263 

  264 
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Table 1. List of physics schemes used in FV3-LAM. 265 

Physics schemes Specification 
 

Cloud microphysics Thompson-Eidhammer Aerosol Aware Microphysics 
(Thompson and Eidhammer 2014) 
 

Planetary boundary layer Mellor-Yamada-Nakanishi-Niino Eddy Diffusivity/Mass 
Flux (MYNN-EDMF; Nakanishi and Niino 2009; Olson 
et al. 2019; Angevine et al. 2020) 
 

Surface layer Mellor-Yamada-Nakanishi-Niino surface layer (Olson et 
al. 2021) 
 

Gravity wave Small Scale Gravity Wave Drag (SSGWD; Tsiringakis 
et al. 2017) and Turbulent Orographic Form Drag 
(TOFD; Beljaars et al. 2004) 
 

Land Rapid Update Cycle Land Surface Model (RUC LSM; 
Smirnova et al. 1997, 2000, 2016) 
 

Long and short-wave radiation Rapid Radiative Transfer Model for Global Circulation 
Models (RRTMG; Mlawer 1997; Iacono et al. 2008) 
 

 266 

 267 

Fig. 1. Schematics of analysis-forecast cycling experiments. 268 

  269 
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Table 2. List of settings of EnVar in sensitivity experiments. 270 

Name Radar reflectivity DA Horizontal localization radius (𝑒−20/3 scale) 
 

CNTL 
 

Not assimilated 
 

300 km 
 

EXPSDL 
 

Not assimilated 
 

1200 km (large-scale) 
300 km (small-scale) 
 

EXP2DA 
 

Assimilated separately 
after conventional DA 
 

300 km (conventional DA) 
15 km (radar reflectivity DA) 
 

EXPSDL2DA 
 

Assimilated separately 
after conventional DA 
 

1200 km (large-scale in conventional DA) 
300 km (small-scale in conventional DA) 
15 km (radar reflectivity DA) 
 

EXPVDL 
 

Assimilated 
simultaneously with 
conventional DA 
 

300 km (atmosphere) 
15 km (hydrometeors) 
 

EXPSDLVDL 
 

Assimilated 
simultaneously with 
conventional DA 
 

1200 km (large-scale atmosphere) 
300 km (small-scale atmosphere) 
15 km (large-scale hydrometeors) 
15 km (small-scale hydrometeors) 
 

 271 

 272 

Fig. 2. The power spectrum density ratio of ensemble perturbations in SDL (black: original 273 

perturbation; orange: filtered perturbation by recursive filter; green: difference between original 274 

and filtered perturbations). Gray solid line indicates characteristic wavelength in scale 275 

separation (recursive filter 𝑒−1/2-folding scale). 276 

  277 
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4. Results and discussion 278 

a. Single observation experiments 279 

In this subsection, we examine the impact of SDL and VDL first via a single observation 280 

experiment with pseudo surface pressure observation using the settings of CNTL, EXPSDL, 281 

and EXPVDL. We also include two additional experiments that are configured in the same 282 

manner as CNTL except use a single-scale horizontal localization radii (𝑒−20/3 scale) of 1200 283 

km and 15 km (hereafter EXPSSL1200 and EXPSSL15, respectively). The horizontal 284 

localization function in each experiment is shown in Fig. 3. Each single observation experiment 285 

uses the same first guess field. The pseudo surface pressure observation having a first guess 286 

departure of –10 hPa and an observation error standard deviation of 1 hPa was assimilated in 287 

the northern region of Hurricane Ian at 80W and 31N at 16 UTC on September 29, 2022. 288 

Figure 4 shows the analysis increments of the lowest-level temperature and sea level 289 

pressure (SLP) analysis in CNTL, EXPSSL1200, and EXPSDL. In CNTL, the analysis 290 

increments were limited within the northern part of the hurricane and the resulting surface 291 

pressure analysis was inconsistent with the expected axisymmetric hurricane structure (Fig. 4a). 292 

In EXPSSL1200, such unrealistic structure was not seen, and the hurricane was reasonably 293 

intensified because of the larger localization radius (Fig. 4b). However, the analysis increment 294 

was noisy north of the hurricane into South Carolina, likely due to sampling error. In EXPSDL 295 

(Fig. 4c), which includes both localization radii of CNTL and EXPSSL1200, the analysis 296 
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increments cover approximately the same area as EXPSSL1200 but are smoother overall. 297 

Further, the analysis increment near the observation location remains similar to that noted in 298 

the CNTL. The increments in the EXPSDL single observation experiment suggest that a large-299 

scale impact can be achieved in a way that reduces apparent sampling error. 300 

The analysis increments of radar reflectivity at the lowest model level and SLP analysis for 301 

CNTL, EXPSSL15, and EXPVDL are also shown in Fig. 5. In CNTL, the horizontal scale of 302 

the analysis increment for radar reflectivity was as large as that for temperature (Figs. 4a and 303 

5a) based on the localization function shown in the solid gray line in Fig. 3b. In EXPSSL15, on 304 

the other hand, the smaller localization radius (dashed gray line in Fig. 3b) severely limits the 305 

spatial extent of the analysis increment (Fig. 5b). Such small-scale analysis increments can 306 

cause large dynamical imbalance of atmospheric variables. In EXPVDL with both localization 307 

radii of CNTL (for horizontal wind, temperature, specific humidity, and surface pressure) and 308 

EXPSSL15 (for vertical wind, reflectivity, and hydrometeors), the analysis of atmospheric 309 

variables was identical to that in CNTL (compare SLP analyses in Figs. 5a and c). However, 310 

the analysis increment of radar reflectivity in EXPVDL was smaller than that in CNTL and its 311 

horizontal scale was between those in CNTL and EXPSSL15 (color in Fig. 5c) because the peak 312 

value and the 𝑒−20/3-folding scale of the localization function for cross-variable covariances 313 

were approximately 0.005 and 212 km, respectively (see magenta line in Fig. 3b and Appendix 314 

B). 315 



 20 

 316 

Fig. 3. Horizontal localization functions [a: CNTL (solid gray), EXPSSL1200 (dashed gray), 317 

and EXPSDL for the cross-scale covariance (orange); b: CNTL (solid gray), EXPSSL15 318 

(dashed gray), and EXPVDL for the cross-variable covariance (magenta)]. Horizontal axis is 319 

the horizontal distance from the analysis point. 320 
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 322 

Fig. 4. Analysis increment of lowest-level temperature (color, K) and SLP analysis (gray 323 

contours, every 4 hPa) at 16 UTC on September 29, 2022 in the single surface pressure DA 324 

experiments (a: CNTL; b: EXPSSL1200; c: EXPSDL). Yellow dot is the position of the 325 

assimilated observation. 326 

 327 

 328 

Fig. 5. Analysis increment of lowest-level radar reflectivity (color, dBZ) and SLP analysis (gray 329 

contours, every 4 hPa) at 16 UTC on September 29, 2022 in the single surface pressure DA 330 

experiments (a: CNTL; b: EXPSSL15; c: EXPVDL). 331 
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b. Statistical verification in cycling experiments 333 

In this subsection, the impact of SDL and VDL is statistically verified in cycling 334 

experiments for May 11–19, 2021. For the verification of atmospheric variables, SDL had more 335 

impact than VDL as a whole. The relative impact of radar reflectivity DA to CNTL was almost 336 

the same between in two-step EnVar with SCL (EXP2DA and EXPSDL2DA) and in 337 

simultaneous EnVar with VDL (EXPVDL and EXPSDLVDL). 338 

Figure 6 shows the first guess departure of assimilated in-situ temperature, relative humidity, 339 

and horizontal wind observations. Compared to CNTL, the RMSE was significantly 340 

(confidence level ≥ 95%) smaller for temperature (Fig. 6a) and near-surface (> 950hPa) relative 341 

humidity (Fig. 6b) in the experiments with SDL (EXPSDL, EXPSDL2DA, and EXPSDLVDL). 342 

These RMSE reductions were associated with SDL making the horizontally averaged 343 

temperature warmer (Fig. 6d) and relative humidity dryer (Fig. 6e), respectively, in the 344 

corresponding vertical layers. The RMSE for low-level wind and its strong bias also tended to 345 

be smaller in the experiments with SDL (Figs. 6c and f) 346 

The impact of SDL shown above was also seen in the 12-hour upper-air forecast verified 347 

against radiosonde data for May 11–19, 2021 (Fig. 7): the cold bias of low-level (> 650hPa) 348 

temperature and the moist bias of low-level (> 850 hPa) relative humidity were clearly 349 

decreased by SDL. These bias reductions were also clear in the surface verification. Both for 350 

temperature (Fig. 8a) and for dew point temperature (Fig. 8b), the cold and moist biases were 351 
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decreased until the end of the forecast (36 hours). The cause of these bias reductions is discussed 352 

in the next section. As for the near surface wind, the impact was neutral (not shown). 353 

The radar reflectivity DA slightly increased and decreased the cold bias of low-level and 354 

mid-level temperature, respectively (see the differences between the experiments with 355 

(EXP2DA, EXPSDL2DA, EXPVDL, and EXPSDLVDL) and without (CNTL and EXPSDL) 356 

radar reflectivity DA in Fig. 6d), and their associated RMSEs (Fig. 6a); this impact was 357 

associated with increasing near-surface evaporation cooling and midlevel condensation heating. 358 

In fact, near-surface and midlevel first guesses of temperature were clearly lower and higher, 359 

respectively, in the precipitation region in EXP2DA and EXPVDL than those in CNTL (Fig. 9). 360 

Please note that the impact of the radar reflectivity DA was smaller and only seen in the shorter-361 

range forecast than that of SDL (Figs. 6–8) since it was limited to the precipitation region. 362 

As for radar reflectivity forecasts, the impacts of both SDL and VDL were clear. Figure 10 363 

is the performance diagram (Roebber 2009) of 3-hour and 12-hour composite reflectivity 364 

forecasts, which shows success ratio (SR) and probability of detection (POD) verified against 365 

the Multi-Radar Multi-Sensor (MRMS, Smith et al. 2016) as horizontal and vertical axes, 366 

respectively. In this diagram, points in the upper right indicate the higher critical success index 367 

(CSI). Points in the upper left and in the lower right indicate the higher and lower bias, 368 

respectively, of the reflectivity forecast. It shows that radar reflectivity DA made both CSI and 369 

positive bias larger especially in the short-term forecasts of low reflectivity. This impact was 370 
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larger in EXP2DA than in EXPVDL (Fig. 10a) and also seen in 12-hour forecasts except for the 371 

high reflectivity (Fig. 10b). This positive bias of reflectivity forecasts was decreased by both 372 

SDL and VDL. This SDL-induced bias reduction was larger than its increase by radar 373 

reflectivity DA in 12-hour forecasts (Fig. 10b), and retained until the end of (36-hour) forecasts 374 

(not shown). Although SDL did not necessarily improve CSI in the 3-hour forecasts (Fig. 10a), 375 

it was clearly improved by SDL especially in 12-hour forecasts for high reflectivity (Fig. 10b). 376 

 377 

Fig. 6. Vertical profiles of first guess departure (a–c) standard deviations (difference from 378 

CNTL) and (d–f) biases verified against assimilated in-situ observations [a and d: temperature 379 

(K); b and e: relative humidity (%); c and f: horizontal wind (m s–1)] in each cycling experiment 380 

for May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; blue: EXPSDL2DA; 381 

magenta: EXPVDL; red: EXPSDLVDL). Square marks indicate significantly different from 382 

CNTL (confidence level ≥ 95%). 383 
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 385 

Fig. 7. Vertical profiles of 12-hour forecast RMSE (solid lines) and bias (dotted lines) verified 386 

against radiosonde (a) temperature (K) and (b) relative humidity (%) observations in each 387 

cycling experiment for May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; 388 

blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). The relative humidity forecast 389 

was computed with observed temperature. The error bars show 95% confidence in CNTL. 390 
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 392 

Fig. 8. Forecast RMSE (solid lines) and bias (dotted lines) verified against (a) temperature (K) 393 

and (b) dew point temperature (K) observations at 2-m AGL in each cycling experiment for 394 

May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; blue: EXPSDL2DA; 395 

magenta: EXPVDL; red: EXPSDLVDL). The error bars show 95% confidence in CNTL. 396 
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 398 

Fig. 9. Difference of 1-hour temperature forecasts in (a,b) 300 hPa and (c,d) 950 hPa at 399 

00UTC, September 30, 2022 (a,c; EXP2DA-CNTL; b,d: EXPVDL-CNTL). Black contours 400 

are composited radar reflectivity forecasts (10 dBZ) in (a,c) EXP2DA and (b,d) EXPVDL. 401 

  402 



 28 

 403 

Fig. 10. Performance diagram of (a) 3-hour and (b) 12-hour radar reflectivity forecasts in each 404 

cycling experiment for May 11–19, 2021 (gray: CNTL; orange: EXPSDL; cyan: EXP2DA; 405 

blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). Horizontal and vertical axes are 406 

SR and POD, respectively, verified against the MRMS composite reflectivity (thresholds: 15, 407 

20, 25, 30, 35, 40, and 45 dBZ from higher SR and POD to lower). Bold numbers indicate CSI 408 

(gray) and bias (black). 409 

  410 
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c. Impacts on the hurricane analysis and forecast 411 

In this section, the impacts of SDL and VDL shown in the previous section are discussed in 412 

more detail based on the case of Hurricane Ian in September 2022. The cold bias of low-level 413 

temperature seen in the period for May 11–19, 2021 was similarly decreased by SDL also in 414 

the period for September 29–30, 2022 (not shown). 415 

Figure 11 depicts the analysis increments of surface pressure in each experiment at 16 UTC, 416 

September 29. In the experiments with SDL (Figs. 11b, d, and f), the analysis increment was 417 

horizontally smoother than those without SDL (Figs. 11a, c, and e) because the larger 418 

localization radius was applied for the larger-scale (smoothed) ensemble covariances in SDL. 419 

As a result, SDL reduced the horizontally-averaged first guess departure more than the 420 

experiments without SDL, which is why the bias of temperature and humidity was smaller in 421 

the experiments with SDL for the May cycling period of experiments (Figs. 6–8). 422 

The relative smoothness of the analysis increment is dependent on the power spectra of the 423 

ensemble perturbations. For example, SDL also made the analysis increment of lowest-level 424 

temperature smoother horizontally (not shown). However, it was not as smooth as surface 425 

pressure because the power spectrum of large wavelength of lowest-level temperature was not 426 

larger relatively than that of surface pressure. Figure 12 shows the power spectra of one-427 

member’s ensemble perturbations of surface pressure and temperature used for ensemble-based 428 

BEC in the EnVar analysis at 16 UTC, September 29, which indicates the contribution ratio of 429 
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power spectrum of larger wavelength to the whole was larger in surface pressure (Fig. 12a) than 430 

that in lowest-level temperature (Fig. 12b). Note that the power spectrum density ratio of 431 

ensemble perturbations separated by SDL (Fig. 2) did not depend on variables. 432 

The smoother analysis increment caused by SDL does not necessarily decrease RMSE of 433 

the short-term forecast because the resulting analysis is not as close to the assimilated 434 

observations in the finer scale. However, it may be beneficial for the long-term forecast due to 435 

the smaller dynamical imbalance of the analysis. In fact, the mean surface pressure tendencies 436 

of the forecasts from the analyses at 00 UTC, September 30 were smaller in the experiments 437 

with SDL (Fig. 13). 438 

Figure 13 also shows that radar reflectivity DA enlarged the imbalance. This tendency was 439 

seen especially in the experiments with SCL (EXP2DA and EXPSDL2DA) because the smaller 440 

horizontal localization in the second pass of 3DEnVar limited the analysis increments of 441 

atmospheric variables only near assimilated observations (dashed gray line in Fig. 3b) and made 442 

them noisy (northeast coast of Florida in Figs. 11c and d). In the experiments with VDL 443 

(EXPVDL and EXPSDLVDL), the analysis increment was less noisy even with radar 444 

reflectivity DA than that in the experiments with SCL (Figs. 11e and f) because the localization 445 

function of atmospheric variables was smaller and wider (magenta line in Fig. 3b). As a result, 446 

VDL kept the imbalance smaller even while assimilating radar reflectivity and the imbalance 447 

reduction by SDL was clearer than the experiments with SCL. 448 
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The imbalance reduction by SDL and VDL also affected the track forecast of Hurricane Ian 449 

(Figs. 14 and 15). In the experiments with radar reflectivity DA (Figs. 14c–f), the composite 450 

reflectivity analyses were closer to the MRMS observation than that in CNTL near the center 451 

of Ian. However, the analyses of SLP were less axisymmetric, and the resulting track forecast 452 

had larger cross-track error in the experiments with SCL (Figs. 14c and d) than those in the 453 

other experiments (Fig. 15a). In the experiments with VDL (Figs. 14e and f), the cross-track 454 

errors were as small as that in CNTL, and the composite reflectivity analyses were similar to 455 

the experiments with SCL. On the other hand, the intensification forecast of Ian (Fig. 15c) was 456 

a little overestimated in EXPVDL probably because the smaller imbalance was more suitable 457 

for the hurricane intensification than EXP2DA. This overestimation was not seen in comparison 458 

between EXPSDLVDL and EXPSDL2DA. The larger-scale, smoother analysis increment in 459 

EXPSDLVDL might affect the intensification forecast. Note that these impacts were seen in the 460 

specific forecast, and SDL and VDL do not necessarily improve the track and intensification 461 

forecasts. More cases would need to be evaluated to assess the overall impact on tropical 462 

cyclone forecasts. 463 

 464 
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 465 

Fig. 11. Analysis increment of surface pressure (hPa) at 16UTC, September 29, 2022, in each 466 

experiment (a: CNTL; b: EXPSDL; c: EXP2DA; d: EXPSDL2DA; e: EXPVDL; f: 467 

EXPSDLVDL). 468 

  469 
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 470 

Fig. 12. The power spectra of (a) surface pressure (Pa2 m) and (b) the lowest-level temperature 471 

(K2 m), in the analysis at 16UTC on September 29, 2022, in EXPSDLVDL (black: original 472 

perturbation: orange: filtered perturbation by recursive filter; green: difference between original 473 

and filtered perturbations). Gray solid line indicates characteristic wavelength in scale 474 

separation (recursive filter 𝑒−1/2-folding scale). Black dotted line indicates (wavenumber)–5/3. 475 

 476 

 477 

Fig. 13. Mean absolute pressure tendency (hPa hr–1) of the first 6-hour forecasts from the 478 

analysis at 00 UTC, September 30, 2022 in each experiment (gray: CNTL; orange: EXPSDL; 479 

cyan: EXP2DA; blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). 480 
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 482 

Fig. 14. Composited radar reflectivity (color, dBZ) and SLP (blue contours, every 4 hPa) 483 

analyses at 00UTC, September 30, 2022, and Hurricane Ian track forecasts (black lines) in each 484 

experiment (a: CNTL; b: EXPSDL; c: EXP2DA; d: EXPSDL2DA; e: EXPVDL; f: 485 

EXPSDLVDL) and (g) MRMS observations and HRRR SLP analysis. White lines are Ian’s 486 

best track. 487 
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 489 

Fig. 15. (a) Cross-track error (positive: right of track) and (b) along-track error (positive: faster) 490 

verified against the best track (km) and (c) minimum sea level pressure (hPa) of Hurricane Ian 491 

forecasts initialized at 00UTC, September 30, 2022, in each experiment (gray: CNTL; orange: 492 

EXPSDL; cyan: EXP2DA; blue: EXPSDL2DA; magenta: EXPVDL; red: EXPSDLVDL). 493 

Black dotted line in (c) indicates the best track. 494 
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5. Conclusions 496 

In this study, both scale- and variable-dependent localization (SDL and VDL) were 497 

implemented in a prototype RRFS. Through sensitivity tests we have shown several advantages 498 

of adopting SDL and VDL techniques for convective-scale DA based upon a week-long cycling 499 

test and a brief case study with Hurricane Ian. 500 

The advantage of SDL is that the localization radius can be larger while keeping the effect 501 

of the sampling error small. It made the analysis increments smoother and was effective in 502 

improving the bias of the forecast of low-level temperature and relative humidity (Figs. 6–8) 503 

and at decreasing the dynamical imbalance of the analysis (Fig. 13). Although the smoother 504 

analysis increment does not necessarily decrease the RMSE of the short-term forecast, it may 505 

improve the long-term forecast. In particular, low-level temperature and precipitation were 506 

improved for 12-hour forecasts (Figs. 6–8). 507 

On the other hand, the main advantage of VDL is to make the simultaneous conventional 508 

and radar reflectivity DA possible. In the conventional localization, the localization radii for all 509 

variables including hydrometeors cannot be optimized simultaneously. However, SCL 510 

generated a large imbalance due to too small localization radius for atmospheric variables in 511 

radar reflectivity DA (Fig. 13). In assimilating radar reflectivity by VDL, the imbalance became 512 

smaller than SCL (Fig. 13) because of the larger localization radius and the smaller analysis 513 

increment of atmospheric variables (Fig. 3b). 514 
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In both SDL and VDL, the imbalance reduction is important in considering 515 

implementation of them in the operational DA system. These methods are beneficial especially 516 

in the following situations: (i) the ensemble size is limited, (ii) the imbalance of the analysis 517 

largely affects the targeted forecast, and (iii) dense hydrometeor observations are assimilated 518 

simultaneously with the other sparse atmospheric observations. In operational regional DA 519 

systems, these limitations generally should be considered to assimilate many observations in a 520 

tight time limit. 521 

SDL and VDL increase the memory usage and the computation time for the localization. 522 

However, the computational cost in VDL is smaller than that in SCL since the number of times 523 

of inputting files required to run EnVar (once) is less than that required in SCL (twice). In this 524 

study, the total computation time for EnVar was comparable between CNTL and EXPSDLVDL. 525 

Since the weight of each scale in SDL is automatically determined depending on the power 526 

spectra of the variables, the sensitivity of the localization radius to the forecast is less than the 527 

case without SDL (not shown). However, tuning localization radii are still required even with 528 

SDL, and the optimal radii depend on variables, vertical levels, seasons, and so on. Adapting 529 

different localization radii separately for these components with techniques such as VDL may 530 

optimize the localization radii more strictly. However, it makes tuning them more complicated. 531 

To prevent manual tuning, new techniques such as the adaptive localization (e.g., Menetrier and 532 

Auligne 2015) should be developed also for SDL and VDL.  533 
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APPENDIX A 548 

Characteristic wavelength in scale separation with the 549 

recursive filter in SDL 550 

The recursive filter F𝑠,𝑣 used for scale separation in Eq. (8) is working as a low-pass filter 551 

and the resulting power spectra of ensemble perturbations are quasi-Gaussian in wave space. 552 

This characteristic of scale separation is explained as follows. 553 

Since the recursive filter is regarded as a quasi-Gaussian filter (Purser et al. 2003), the 554 

filtering kernel of F𝑠,𝑣 in the 𝑥-direction is approximated as Gaussian 555 

 𝐹𝜎(𝑥) =
1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2 , (A1) 

where 𝜎 is the 𝑒−1/2-folding length of the recursive filter and ∫ 𝐹𝜎(𝑥)𝑑𝑥
∞

−∞
= 1. Using this 556 

Eq. (A1), Fourier response of this 𝐹𝜎(𝑥) is obtained as 557 

 𝐺𝜎(𝑘) ≡ ∫ 𝐹𝜎(𝑥)𝑒
−𝑖𝑘𝑥𝑑𝑥

∞

−∞

= 𝑒−
𝑘2𝜎2

2 ∫
1

√2𝜋𝜎
𝑒
−
(𝑥+𝑖𝑘𝜎2)

2

2𝜎2 𝑑𝑥
∞

−∞

= 𝑒−
𝑘2𝜎2

2 . (A2) 

Eq. (A2) indicates that 𝐺𝜎(𝑘)  is also Gaussian in wave space and its characteristic 558 

wavenumber 𝑘𝑐  defined by 𝐺𝜎(𝑘𝑐) ≡ 𝑒−1/2  is 𝑘𝑐 = 1/𝜎 . As a result, the characteristic 559 

wavelength of 𝐺𝜎(𝑘)  is 𝜆𝑐 ≡ 2𝜋/𝑘𝑐 = 2𝜋𝜎 . Since the power spectrum density ratio of 560 

filtered ensemble perturbations (e.g., Fig. 2) is proportional to 𝐺𝜎(𝑘)
2, the ratio is about 𝑒−1 561 

in wavenumber of 𝜆𝑐 = 2𝜋𝜎. 562 

  563 
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APPENDIX B 564 

Localization of cross-variable covariance in VDL 565 

In EXPVDL and EXPSDLVDL, the parameter making the cross-variable correlation 566 

smaller was applied to mitigate overestimation of analysis increments. This overestimation is 567 

caused by the horizontally-integrated localization function in VDL, which is larger than that 568 

applied for radar reflectivity in general. Details are explained as follows. 569 

When the filtering kernels of L𝑠,𝑣  and L𝑠,𝑣
1/2

  in 𝑥 -direction are written as 𝐿𝜎(𝑥)  and 570 

𝐶𝜎(𝑥), respectively, their relationship should be written as: 571 

 𝐿𝜎(𝑥) = ∫ 𝐶𝜎(𝑥 − 𝑥
′)𝐶𝜎(𝑥

′)𝑑𝑥′
∞

−∞

= 𝑒
−
𝑥2

2𝜎2 . (B1) 

Note that the normalization factor is different between 𝐿𝜎(𝑥) in Eq. (B1) and 𝐹𝜎(𝑥) in Eq. 572 

(A1) because the peak value of L𝑠,𝑣 should be one. From this Eq. (B1), 𝐶𝜎(𝑥) is obtained as: 573 

 𝐶𝜎(𝑥) = (
2

𝜋𝜎2
)
1/4

𝑒
−
𝑥2

𝜎2 . (B2) 

Using this Eq. (B2), the localization applied for cross-variable covariances in VDL is based on 574 

the following kernel: 575 

 𝐿𝜎1,𝜎2(𝑥) = ∫ 𝐶𝜎1(𝑥 − 𝑥
′)𝐶𝜎2(𝑥

′)𝑑𝑥′
∞

−∞

= √
2𝜎1𝜎2

𝜎1
2 + 𝜎2

2 𝑒
−

𝑥2

𝜎1
2+𝜎2

2
, (B3) 

where 𝜎1 ≫ 𝜎2. According to Eq. (B3), the peak value of 𝐿𝜎1,𝜎2(𝑥) is less than one, and the 576 

ratio of horizontally-integrated 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) and 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦) is calculated as: 577 

 
∫ 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∫ 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦)𝑑𝑥𝑑𝑦
∞

−∞

=
𝜎1
𝜎2
≫ 1. (B4) 
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Eq. (B4) means that the total assimilation effect of the variables localized by 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) 578 

in VDL is 𝜎1/𝜎2 times as large as that by 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦) in the single-scale localization. The 579 

larger assimilation effect does not necessarily make the analysis increment larger in case the 580 

effects of multiple observations are canceled by each other. However, they are not canceled in 581 

case the first guess departure of radar reflectivity has large bias. To mitigate this overestimation 582 

of the analysis increment in this case, multiplying the factor (≤ 𝜎2/𝜎1) to 𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) 583 

is effective. The solid gray, dashed gray, and magenta lines in Fig. 3b indicates the distributions 584 

of 𝐿𝜎1(𝑥)𝐿𝜎1(𝑦) , 𝐿𝜎2(𝑥)𝐿𝜎2(𝑦) , and (𝜎2/𝜎1)𝐿𝜎1,𝜎2(𝑥)𝐿𝜎1,𝜎2(𝑦) , respectively, against 𝑟 =585 

√𝑥2 + 𝑦2 in the case of 𝜎2/𝜎1 = 15/300 = 0.05. 586 

  587 
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