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Abstract13

Global-scale changes in water vapor and responses to surface temperature variability since14

1979 are evaluated across a range of satellite and ground-based observations, a reanal-15

ysis (ERA5) and coupled and atmosphere-only CMIP6 climate model simulations. Global-16

mean column integrated water vapor increased by 1%/decade during 1988-2014 in ob-17

servations and atmosphere-only simulations but coupled simulations overestimate trends18

because internal climate variability suppressed observed warming in this period. Decreases19

in low-altitude tropical water vapor in ERA5 and ground-based observations before around20

1993 are inconsistent with simulations and increased column integrated water vapor in21

a satellite dataset since 1987. AIRS satellite data does not capture the increased tropo-22

spheric water vapor since 2002 in other satellite, reanalysis and model products. How-23

ever, global water vapor responses to interannual temperature variability is consistent24

across datasets with increases of ∼4-5% per K near the surface and 10-15%/K at 30025

hPa. Global water vapor responses are explained by thermodynamic amplification of up-26

per tropospheric temperature changes and the Clausius Clapeyron temperature depen-27

dence of saturation vapor pressure that are dominated by the tropical ocean responses.28

Upper tropospheric moistening is larger in climate model simulations with greater up-29

per tropospheric warming.30

Plain Language Summary31

Evaporated water becomes a gas (water vapor) in the air where it traps heat by32

absorbing thermal infrared radiative energy as well as sunlight. Water vapor is also the33

fuel for rain and snowfall. Increases in atmospheric water vapor in a warming climate34

therefore leads to greater trapping of heat and heavier precipitation events. This study35

looks at how water vapor has increased since 1979 by examining satellite measurements,36

observations at ground level and complex computer simulations that are also used to make37

predictions of future climate change. We find that the total water vapor in the atmo-38

sphere is increasing by about 1% every 10 years. Changes calculated as a percentage of39

the initial amount are larger the higher up in the atmosphere, which is consistent with40

simple physics. There are some differences between the observations and simulations: some41

simulations overestimate the observed changes and this is because natural fluctuations42

in the ocean temporarily slowed the warming over the period studied (1988-2014). It is43
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not known for sure what other differences between observations are caused by but it seems44

possible that decreases in humidity in some datasets may not be real.45

1 Introduction46

Water vapor increases the magnitude of climate change in response to natural and47

human-caused climate variability and change through a powerful amplifying feedback48

(Manabe & Wetherald, 1967; Soden et al., 2002, 2005; Dessler et al., 2008; Forster et al.,49

2021). This is determined by thermodynamically driven increases in water vapor with50

temperature that cause greater longwave and shortwave radiative absorption by the at-51

mosphere. Increases in low-altitude water vapor with warming are also central in wa-52

ter cycle intensification, including heavy precipitation and associated flood events (Allan53

& Soden, 2008; Fowler et al., 2021; Douville et al., 2021).54

The water vapor feedback is physically well understood and there is good agree-55

ment in its magnitude between observations (1.85±0.32 Wm–2K–1) and climate model56

simulations (1.77±0.20 Wm–2K–1) (Forster et al., 2021), yet there remains some uncer-57

tainty in altitude dependent changes that in part relate to the pattern of warming, tem-58

perature lapse rate responses as well as atmospheric and surface processes (Allan et al.,59

2002; Dessler et al., 2013; Forster et al., 2021; Colman & Soden, 2021). Although hu-60

midity distributions are improved in higher resolution, storm-resolving models, a sub-61

stantial range remains in some dynamical regimes such as during transition between moist62

convection and suppressed phases and very dry regions of strong subsidence (Lang et al.,63

2021). Notable discrepancies also exist in low-altitude humidity changes in recent decades64

(Simmons et al., 2010; Dunn et al., 2017; Willett et al., 2020). While it is not yet clear65

to what extent discrepancies relate to homogeneity in data records, spatial sampling or66

physical inadequacies in the model simulations (Douville et al., 2021), it remains impor-67

tant to evaluate height-dependent variability in water vapor across observing systems68

and model simulations. For example, using this approach, Santer et al. (2021) demon-69

strated a strong relationship between trends in column integrated water vapor and sur-70

face temperature and argue that microwave satellite-based lower tropospheric temper-71

ature trends are underestimated based upon multiple lines of evidence using a range of72

climate models, observations and reanalyses. Thus, the motivation of the present study73

is to assess consistencies and identify discrepancies across multiple satellite and ground-74

based observations, global reanalysis estimates and the latest climate model simulations75
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from phase 6 of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016).76

While evaluation of CMIP6 simulations at the regional scale are ongoing (e.g., He et al.,77

2022), here the objective is to assess global-scale tropospheric responses over the forty78

year period since 1979 from multiple lines of evidence.79

2 Data and Methods80

While observational sampling and its variation over time represents a limitation81

in the observational record (e.g., Schröder et al., 2018; Willett et al., 2020), the goal of82

the present study is to assess tropical and global mean changes over the satellite era (since83

1979) that allows consistent comparison across observations, reanalyses and climate mod-84

els. To enable this, an imperfect yet pragmatic approach is to employ a set of compli-85

mentary, near-global observing systems, covering most of the troposphere, and to merge86

the incompletely sampled observations with a state of the art reanalysis system. Spe-87

cific and relative humidity and temperature are assessed, focusing on deseasonalised area88

mean anomalies which are computed as relative (percentage deviation) from climatolog-89

ical area-mean averages for specific humidity and absolute deviations for temperature90

(K) and relative humidity (% RH). The troposphere is resolved across 7 pressure lev-91

els (300, 400, 500, 600, 700, 850 and 925 hPa). Water vapor feedback operating near the92

tropical tropopause and in the lower stratosphere is not considered due to limitations93

in the satellite estimates used in the present study, though its importance to the over-94

all feedback is nevertheless acknowledged (Dessler et al., 2013).95

2.1 Reanalysis96

The 5th generation European Centre for Medium-range Weather Forecasts (ECMWF)97

global reanalysis (ERA5; Hersbach et al., 2020) combines observations with a high res-98

olution atmosphere modeling system via 4 dimensional-variational (4D-Var) data assim-99

ilation. Extensive conventional and satellite observations of surface and tropospheric tem-100

perature and humidity are assimilated, including the SSMI(S), AIRS, HIRS and MetOp101

radiance data that are also used to construct the climate datasets used in the present102

study. ERA5 provides a consistent hourly record of the atmosphere, land, and ocean sur-103

face since 1950 using a ∼31 km horizontal grid and 137 levels in the vertical. Monthly104

means of daily means covering the period 1979-2020 are considered: data on a 0.25×0.25105

latitude-longitude grid is extracted, considering 2 m and pressure level air temperature,106
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column integrated and pressure level specific and relative humidity. Monthly mean near-107

surface (2 m) specific humidity is computed from monthly 2 m air temperature, dew-108

point temperature and surface pressure (Simmons et al., 1999). Computing using monthly109

rather than hourly fields is not expected to noticeably affect the estimates of deseason-110

alised trends and variability based on additional calculations (see supplementary).111

2.2 Observations112

2.2.1 AIRS infrared satellite data113

The Atmospheric Infra-red Sounder (AIRS) instrument provides a calibrated, spec-114

trally resolved record of combined infrared and microwave radiances (Tian et al., 2019;115

Trent et al., 2019) from which temperature and humidity profiles through the troposphere116

are retrieved in up to 80% cloud cover. Outgoing longwave radiation computed from the117

retrieved temperature and humidity profiles show consistency with independent satel-118

lite measurements (Sun et al., 2011), though discrepancies relate to sampling and un-119

detected cirrus. Version 6 AIRS data was combined with simulations based on reanal-120

ysis inputs to remove systematic biases related to sampling, thereby producing a prod-121

uct suitable for evaluating climate model simulations as part of the Obs4MIP project122

(version 2: Tian & Hearty, 2020) from September 2002 to September 2016. Since ERA5123

provides values by extrapolation for pressure levels below the surface (e.g. mountains),124

these values are used to fill these missing data areas to ensure sampling consistency, though125

this only noticeably affects result over land for the 925 hPa level (by <10% for global126

trends; Fig. S2).127

2.2.2 Upper Tropospheric Humidity satellite data128

Upper tropospheric Humidity (UTH) data for 60◦S-60◦N from two satellite sources129

are used in this study (John et al., 2021). One is based on infrared radiances measured130

by the High Resolution Infrared Radiation Sounder (HIRS; 6.7 to 6.5 µm Channel 12)131

instruments (Shi & Bates, 2011) and the other based on the microwave radiances mea-132

sured by Advanced microwave sounding unit (AMSU-B; 183.31 GHz channels) or Mi-133

crowave Humidity Sounder (MHS; 190.31 GHz channels) instruments (Chung et al., 2013).134

In these datasets, UTH represents a Jacobian weighted average of relative humidity with135

respect to water in a broad layer which is roughly between 500 and 200 hPa, but slightly136
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varies depending upon atmospheric humidity profile with lower altitude layers sampled137

for drier, higher latitude profiles. Therefore, analysis focuses primarily on tropical re-138

gions. John et al. (2021) presents the variability and change in UTH in these datasets.139

2.2.3 SSMI(S) microwave satellite observations140

The Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave141

Imager Sounder (SSMIS) are passive microwave radiometers onboard Defense Meteoro-142

logical Satellite Program (DMSP) satellites since 1987. Column integrated water vapor,143

retrieved and averaged onto a 0.25×0.25 grid over the ice-free oceans (Wentz, 1997), is144

taken from the Remote Sensing Systems SSM/I records (F08, 1987-1991; F11, 1992-1995;145

F13, 1996-1999; F15, 2000-2006) and the SSMIS record (F17, 2007-2020). These were146

chosen as the set with a relatively stable satellite overpass time. This record was merged147

with the ERA5 data by replacing missing data, primarily over land and ice-covered ocean,148

to provide a globally complete observations-based estimate of column integrated water149

vapor since 1987 (Allan et al., 2020).150

2.2.4 HadISDH ground based humidity observations151

The Met Office Hadley Centre homogenized and quality controlled, integrated sub-152

daily dataset (HadISDH; Willett et al., 2014, 2020) blends marine and land near-surface153

temperature and humidity fields over the period 1973-2020 (version 1.0 is constructed154

from HadISDH.land v4.2.0 and HadISDH.marine v1.0.0) which are averaged onto a 5×5155

latitude-longitude grid. Data since 1979 is used in the present study and this is further156

merged with ERA5 near-surface data (mapped onto the HadISDH grid) by reconstruct-157

ing absolute values and recalculating anomalies to produce an additional globally com-158

pete filled version. This ensures that the large areas of missing data do not accentuate159

the substantial coverage bias and therefore complements previous assessments rather than160

providing a new version of the data. The un-merged HadISDH product was also consid-161

ered where appropriate.162

2.3 Climate models163

An ensemble of climate model simulations contributing to the CMIP6 historical and164

amip experiments were selected (Table 1) based on the availability of diagnostics includ-165
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ing near-surface and atmospheric pressure-level specific and relative humidity and tem-166

perature as well as column integrated water vapor. Although the full set of CMIP6 mod-167

els is not considered, doing so would still not ensure the full range of uncertainty is cap-168

tured and the set of 18 models is considered a suitable number to sufficiently represent169

internal variability as well as model structural uncertainty.170

The historical experiments apply realistic changes in radiative forcings to coupled171

versions of the climate models over the period 1850-2014 (the 1979-2014 subset is extracted).172

The amip experiments apply realistic radiative forcings, sea surface temperature (SST)173

and sea ice distributions to force the land surface and atmosphere-only components of174

the models over 1979-2014. Ensemble members r1i1p1f1 were used apart from CNRM175

models (r1i1p1f2), UKESM (r1i1p1f2 for historical, r1i1p1f4 for amip) and HadGEM3176

(r1i1p1f3) which accounts for slight adjustments to forcings required to produce the re-177

quired CMIP6 simulations. Only some models filled pressure level data below the sur-178

face by extrapolation (BCC-CSM2-MR, BCC-ESM1, CanESM5, GISS-E2-1-G, INM-CM5-179

0, CMCC-CM2-SR5, NorESM2-LM). It was decided not to investigate filling unsampled180

regions in the remaining models due to the small sensitivity AIRS results to filling us-181

ing ERA5 (only noticeable at 925 hPa and <10% difference in global mean trend and182

sensitivity to interannual surface temperature changes; see Fig. S2).183

In general, the CNRM models simulate the driest atmosphere, even where observed184

SSTs are prescribed in the amip simulations; the IPSL upper troposphere is notably dry185

compared to other models (Table 1 and S1) though comparable with the ERA5 and the186

AIRS 400 hPa estimates (Table 1). The CNRM models also simulate relatively low spe-187

cific humidity at 400 hPa, though this appears mainly related to a relatively warm up-188

per troposphere rather than low relative humidity (Table S1). The CanESM5 model pro-189

duces the highest near-surface moisture amount and relative humidity (Tables 1 and S1)190

and the BCC-ESM1 and GISS-E2 models simulate the largest tropospheric moisture to-191

tals with most models overestimating water vapor amounts compared to ERA5 and the192

observations-based estimates. The MIROC model simulates unusually high global sur-193

face temperature, even in the amip experiment where SSTs are constrained by observa-194

tions with land regions therefore being unusually warm (e.g., by >10 K regionally). It195

is not clear whether this is due to a diagnostic or physical reason though the model does196

exhibit a positive net heating of about 1 Wm−2 in the pre-industrial spin-up simulations197
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(Tatebe et al., 2019) and also simulates above average water vapor amount in the amip198

and historical simulations (Table 1).199

2.4 Methodology200

Monthly mean data from the observational (filled and unfilled), reanalysis and cli-201

mate models spanning 1979–2020 and depending on the data record lengths were pro-202

cessed using cdo software (version 1.9.5; http://mpimet.mpg.de/cdo). Datasets were203

bi-linearly interpolated onto a common 0.75×0.75 latitude-longitude grid. Monthly global,204

tropical and zonal means were computed over the land, ocean and all regions using a com-205

mon land-sea mask derived from the reanalysis data (land is assumed if more than half206

of the interpolated grid points are land points). In addition, grid point deseasonalised207

anomalies and relative anomalies (% deviation from climatology) and corresponding global,208

tropical and zonal means were computed, though analysis primarily focuses on the ab-209

solute means which were subsequently processed using IDL to compute absolute and rel-210

ative deseasonalised anomalies of the global, tropical and zonal means using a base pe-211

riod of 1995–2014 (2002-2014 for AIRS), commonly used to denote ’present day’ condi-212

tions (e.g., Douville et al., 2021). Present-day multi-annual means and linear trends of213

deseasonalised anomalies were computed over various time-scales and depending on data214

availability (a focus was 1988-2014 based on data availability). Finally, to assess the in-215

terannual coupling of large-scale humidity and temperature variability, the linear trends216

are removed from the time series and the sensitivity of detrended anomalies to correspond-217

ing area-mean (detrended) surface temperature were computed over the same time pe-218

riods. This therefore isolates the interannual relationship between atmospheric moisture219

and surface temperature that is distinct from the (multi-)decadal scale trends.220

3 Results221

3.1 Water vapor changes222

Changes in global mean atmospheric water vapor and surface air temperature are223

displayed in Figure 1 during 1979-2020 for the observationally-based datasets, ERA5 re-224

analysis and amip simulations. Interannual variability is characterised by warming and225

moistening during El Niño events (e.g. 1987/88, 1997/98, 2015/16) with cooler and drier226

conditions globally during La Niña events (e.g. 1988/89, 1998-2000, 2008/09). Large vol-227
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Figure 1. Deseasonalised anomaly time series of global mean atmospheric water vapor (%

anomaly relative to 1995-2014 baseline) for amip models (ensemble mean±1 standard devia-

tion) and ERA5 for (a) 400 hPa specific humidity (q) including AIRS satellite observations,

(b) column integrated water vapor (CWV) 700 hPa including SSMI(S)/ERA5 blended satellite

microwave estimates and (c) near surface specific humidity (2 m) including HadISDH/ERA5

blended observations and (d) surface temperature (◦C anomalies) including HadCRUT5 observa-

tions. A 3-month smoothing is applied.
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canic eruptions also cause cooling which is amplified by resulting drying of the tropo-228

sphere, as evident following the eruption of Mt. Pinatubo in 1991 (Soden et al., 2002).229

There is broad agreement between datasets with notable exceptions:230

• Increases in upper tropospheric specific humidity at 400 hPa (q400) in simulations231

and ERA5 are underestimated by AIRS observations (2008-2016), though inter-232

annual variability is similar (Fig. 1a).233

• A decrease in ERA5 column integrated water vapor 1979-1993 conflicts with sim-234

ulations and the SSMI(S)/ERA5 blended record since 1987 with strong agreement235

after 1993 (anomalies within ∼0.5%; Fig. 1b).236

• Simulated increases in 2 m specific humidity (q2m) are not captured by ERA5 be-237

fore around 1993 and nor by HadISDH/ERA5 estimates over the full record (Fig. 1c).238

The decrease in ERA5 lower tropospheric moisture in the late 1980s/early 1990s239

appear consistent with a previous version of the reanalysis that were attributed to an240

unrealistic influence of the changing observing system (Hersbach et al., 2020; Allan et241

al., 2020). This also raises questions as to the realism of the low level water vapor trends242

estimated by HadISDH/ERA5 (Fig. 1c); since this fills missing data with ERA5, the dif-243

ference to ERA5-only is indicative of the HadISDH data alone which appears to show244

a decrease in specific humidity relative to ERA5 over time.245

3.1.1 Water vapor trends246

Table 2 quantifies the global mean trends (dq/dt) across all datasets for 1988-2014,247

including the historical simulations which represent unforced interannual variability but248

are not designed to capture its correct timing. The amip simulations estimate a smaller249

magnitude increase in water vapor (around half) compared to historical simulations (Ta-250

ble 2). This is principally due to the suppressed observed warming during 1998-2013 re-251

lating to internal climate variability though radiative forcing and high climate sensitiv-252

ity in some models also plays a role (Kosaka & Xie, 2013; Mitchell et al., 2020; Eyring253

et al., 2021; Forster et al., 2021). Corresponding 1988-2014 trends in ERA5 are increased254

by around 0.5%/decade throughout the troposphere when extending this period up to255

2019 (Fig. S2b).256
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In agreement with Fig. 1, simulated increases in column integrated water vapor of257

about 1%/decade are reproduced by the SSMI(S)/ERA5 observations-based estimate.258

Simulated 2 m water vapor increases are consistent with column trends but 23% smaller,259

while insignificant trends in HadISDH/ERA5 2 m specific humidity are at odds with the260

observed column integrated trends. Upper tropospheric (400 hPa) moisture increases261

by ∼2%/decade in ERA5 and amip simulations but not in the AIRS record. The dis-262

crepancy is smaller when considering the full AIRS record (2003-2016) which produces263

∼1%/decade more positive trends (Fig. S2b).264

Larger relative magnitude (%) moisture responses at higher altitudes (Fig. S1) are265

consistent with the Clausius Clapeyron equation which determines a larger relative change266

in saturation vapor pressure with warming at lower temperatures (e.g., Allan, 2012) but267

also due to amplification of warming aloft due to diabatic and radiative processes (e.g.,268

Ohmura, 2012). Combined with an observed global surface warming of 0.17±0.01 K/decade269

based on HadCRUT5, the moisture increases correspond with around 6%/K sensitivity270

for column integrated water vapor and a ∼12%/K response at 400 hPa.271

The relatively low moisture content CNRM models also produce one of the small-272

est %/decade column integrated and near-surface water vapor trends of the amip sim-273

ulations. Conversely, the CanESM model simulates a relatively moist near-surface but274

a smaller than amip average %/decade trend and the IPSL model simulates a dry up-275

per troposphere yet produces one of the largest %/decade 400 hPa moisture trends.276

Moisture trends on pressure levels are dominated by lower latitude ocean changes277

where the moisture amount is larger and so global mean changes are similar to tropical278

ocean mean changes: tropical ocean dCWV/dt is 1.77±0.45 %/decade in historical sim-279

ulations and 0.86±0.10 in amip, both smaller than but within 20% of their respective280

global mean values (see also Fig. S1). This is also the case for ERA5/SSMI(S) but trop-281

ical responses are instead 20% larger than the global trend. There is a smaller trend in282

ERA5 water vapor over tropical land than the global mean and compared with the amip283

simulations at all levels considered (Fig. S1), with a non-significant CWV trend of 0.3%/decade284

compared with 0.8-1.7%/decade range for amip simulations. The decreasing global CWV285

trends in ERA5 before 1993 are particularly apparent for the 850 hPa level and over the286

tropical oceans (Fig. S2).287
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While AIRS observations reproduce the interannual variability in moisture through-288

out the troposphere displayed by ERA5 and amip simulations (Fig. 1a; Fig. S2), trends289

are generally not significant in the mid/upper troposphere but strongly positive in the290

lower troposphere (e.g. 2.6%/decade for global mean 850 hPa trends 2002-2016) and there291

is inhomogeneity apparent in the 925 hPa AIRS time series during early 2014 (Fig. S2).292

Computing the global mean of % water vapor anomalies is of greater relevance to293

longwave radiative effect and water vapor feedback and increases the importance of higher294

latitude regions: this increases low altitude global trends by ∼0.2%/decade and decreases295

upper tropospheric water vapor trends by up to ∼1%/decade (see ERA5 in Fig. S2d),296

only marginally different to the % anomalies of the global mean in Table 2.297

3.1.2 Zonal mean moisture variability and trends298

The dependence of moisture variability and trends as a function of latitude are pre-299

sented in Fig. 2. Zonal mean water vapor is computed and deseasonalised anomalies are300

calculated as a percentage of monthly climatological mean but a zonal mean of the grid301

point deseasonalised percentage anomalies are very similar (not shown). Variability in302

upper tropospheric water vapor (q300) is smoother in the amip ensemble mean compared303

to ERA5 (as expected due to ensemble averaging) but with consistent increases in equa-304

torial latitudes during the strong El Niño events of 1983, 1998 and also 2010. However,305

while the latitude-mean trends are positive (0–5%/decade) across all ensemble members306

and the historical ensemble mean (Fig. 2a, right panel), ERA5 displays negative trends307

around Antarctic latitudes and stronger than simulated trends in the northern tropics.308

Column integrated water vapor (Fig. 2c-e) displays some similar features to the up-309

per troposphere such as the tropical El Niño signals but the latitude structure in trends310

differs. The largest CWV trends as a percentage of climatology are over Arctic latitudes:311

∼2-5%/decade in amip simulations with ERA5 at the upper end of this range. Arctic312

changes agree with previous estimates based on earlier reanalyses and radiosonde data313

(Rinke et al., 2019), with relative trends smallest in February-March and largest in October-314

January. This is consistent with an increased local moisture source due to delayed freez-315

ing of the open ocean (Nusbaumer et al., 2019), though increased moisture transport also316

plays a role (Dufour et al., 2016; Nyg̊ard et al., 2020). Trends in CWV are smaller than317

for q300 in the southern hemisphere (0-60oS) with the SSMI(S)/ERA5 estimates close318
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Figure 2. Time-latitude variability and trends for: 300 hPa specific humidity (a) model en-

semble mean amip simulations and 1979-2014 trends for each model (gray) and ensemble mean

historical experiment trend (dashed thick); (b) ERA5 (1979-2020); column integrated water va-

por for (c) model ensemble mean amip simulations (trends as in a); (d) ERA5 (1979-2020); (e)

SSMI(S)/ERA5 (1987-2020); 2 m specific humidity in (f) model ensemble mean amip simulations

(trends as in a); (g) ERA5; (h) HadISDH (1979-2019). The time-latitude plots (left) depict %

anomalies relative to zonal monthly mean (1995-2014) while zonal mean trends (right) apply

for the respective record lengths with ±2 standard error on the calculated trends in ERA5 and

observations (dashed).
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to amip simulations and more positive than ERA5-only estimates, which in part relates319

to the apparently spurious decreases in ERA5 moisture before 1993.320

Near-surface water vapor changes (Fig. 2f-h) broadly match those for CWV but321

with less prominent tropical El Niño signals. The unfilled HadISDH latitudinal variabil-322

ity and trends (Fig. 2h) show similarity to ERA5 but with negative trends apparent in323

the southern hemisphere, particularly before 2015. Dunn et al. (2017) identified weaker324

global water vapor increases since 1973 in HadISDH compared with coupled models from325

the CMIP6 predecessor (CMIP5); this was particularly so for the 1996-2015 period which326

can partly be explained by the stronger warming in CMIP5 historical experiments than327

observations over the period, consistent with CMIP6 (Mitchell et al., 2020).328

Larger trends in historical experiments compared to amip (Fig. 2a,c,f right pan-329

els) are particularly prominent in the northern tropics but also in the southern hemisphere330

extra-tropics for CWV and q2m. Weak trends in HadISDH q2m over the southern hemi-331

sphere were reported by Dunn et al. (2017); negative trends over southern mid-latitudes332

appear to reverse after 2014 (Fig. 2). While Dunn et al. (2017) noted the model under-333

estimate in 2 m relative humidity decline over land, the discrepancy in water vapor trends334

is particularly acute over the tropical ocean (Fig. S1-S2): HadISDH/ERA5 shows a non-335

significant negative trend of −0.3 %/decade compared to significant increases in amip336

(0.5-0.8 %/decade) and hist (0.8–2.1 %/decade).337

3.1.3 Sensitivity of water vapor changes to surface temperature338

Constructing decadal-scale datasets of climate-quality is limited by issues of ho-339

mogeneity, sampling and record length (Simmons et al., 2014; Willett et al., 2020; Hers-340

bach et al., 2020; Schröder et al., 2018). Interannual variability is, however, more robustly341

represented (Fig. 1, S2-S3). Such variability in water vapor or precipitation are often utilised342

to test the coupling with surface temperature on these time-scales and infer links to cli-343

mate change (Allan & Soden, 2008; Adler et al., 2008; Dessler et al., 2008) with the caveat344

that there is not a simple link between interannual and multi-decadal responses.345

Interannual coupling is now assessed in models, reanalyses and observation over346

the period 1988-2014 through linear regression of detrended water vapor (surface to 300 hPa347

pressure level % anomalies) and surface temperature anomalies (see Section 2.4) for the348

global and tropical mean and corresponding ocean-only and land-only estimates (Table 3;349
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Figure 3. Detrended linear regression between atmospheric water vapor and HadCRUT5

surface temperature (%/K) for the (a) global land and ocean, (b) global ocean, (c) global land,

(d) tropical land and ocean, (e) tropical ocean and (f) tropical land over 1988-2014 for amip

and historical model experiments (line denotes ensemble median and shading the range), ERA5,

AIRS satellite observations (2002-2014), SSMI(S)/ERA5 column integrated water vapor and

HadISDH/ERA5 2 m observations (horizontal lines denote 90% uncertainty range).

Fig. 3). The interannual sensitivity of detrended moisture to surface temperature anoma-350

lies (dq/dTs) therefore provides distinct yet complimentary information relative to the351

corresponding sensitivity computed from multi-decadal trends in moisture and surface352

temperature ((dq/dt)/(dTs/dt)).353

The increase in temperature sensitivity of global mean moisture responses with al-354

titude (∼4–5 %/K near the surface up to ∼10 %/K at 400 hPa) in amip simulations,355

reanalyses and observations (Table 3, Fig. 3a) is expected from the temperature depen-356

dence of the Clausius Clapeyron equation and the lower temperatures at higher altitudes357
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(e.g., Allan, 2012). Dessler et al. (2008) presented a qualitatively similar picture consid-358

ering global and tropical mean changes between 2007 (warm event) and 2008 (cold event).359

Responses are below the saturation vapor pressure rate (∼6-7 %/K near the surface up360

to about 15%/K in the upper troposphere) though this depends on the regional pattern361

in temperature changes and the larger moisture amounts in lower latitudes. Responses362

in temperature lapse rate also contribute, explaining the stronger increases with altitude363

over the oceans (Fig. 3b) and in the tropics (Fig. 3d-e) where the atmospheric thermal364

structure is more strongly constrained by the moist adiabatic lapse rate. Over land (Fig. 3c),365

there are weaker sensitivities (∼2-5 %/K) with little altitude dependence apart from in366

the tropics at altitudes higher than the 400 hPa level (Fig. 3f).367

Regional variations in moisture sensitivity are partly explained by a greater upper368

tropospheric temperature response than the surface over ocean (Fig. 4b), particularly369

the topical oceans (Fig. 3e). The weaker atmospoheric moisture response to tempera-370

ture variation over land is partly explained by a steepening of temperature lapse rates371

during warmer years as implied by the smaller upper tropospheric temperature response372

to surface warming over land (Fig. 4c). These regional differences are dominated by El373

Niño variability which exhibits a particular pattern of ocean warming and correspond-374

ing lapse rate responses that contrast with long-term trends (1988-2014). Multi-decadal375

temperature trends appear more consistent between ocean and land though with less sim-376

ilarity between datasets (Fig. S4). ERA5 underestimates tropospheric temperature trends377

by up to 0.1 K/decade compared to the amip ensemble mean, which itself shows sup-378

pressed warming compared to the coupled historical experiment (by 0.1-0.2 K/decade)379

again partly explained by internal variability (Mitchell et al., 2020; Kosaka & Xie, 2013).380

There is greater consistency in interannual moisture and temperature responses across381

datasets compared with multi-decadal trends. AIRS displays a smaller mid and upper382

tropospheric water vapor sensitivity to surface temperature than other datasets, partic-383

ularly around 600-700 hPa over the tropical oceans where mid-tropospheric tempera-384

ture responses are also smaller than other datasets, though AIRS samples a shorter pe-385

riod (2002-2014 in Figs. 3-4). Including the full AIRS data record increases the sensi-386

tivity by around 1%/K throughout most of the troposphere (Fig. S2a). The interannual387

sensitivity is also relatively robust to time period, detrending and sampling compared388

with trends (see Supplementary information; Fig. S2).389
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Despite discrepancies between long term trends in q2m and CWV between HadISDH-390

ERA5 and amip simulations, interannual responses are consistent and within the model391

ranges. The MRI-ESM2 amip simulation produce the smallest interannual sensitivity at392

all levels while the CNRM models simulate the largest upper tropospheric water vapor393

sensitivity (>11 %/K; Table 3). This is explained by the atmospheric temperature re-394

sponse to interannual surface temperature changes which is small in MRI-ESM2 and large395

in the CNRM models (Table S3). However, the substantial range in (detrended) upper396

tropospheric interannual dq/dT sensitivities exhibited by the model historical experiments397

(7.3–18.3 %/K; Table 3) indicates a diversity in unforced climate variability generated398

by the coupled climate models in terms of magnitude and spatial or temporal charac-399

teristics400

3.1.4 Links between tropospheric temperature and moisture variability401

Thermodynamic coupling between temperature and water vapor is confirmed by402

considering the interannual and multi-decadal relationships across datasets, illustrated403

for the 400 hPa level in Fig. 5 for full data records within the 1979-2019 period. There404

is a robust relationship between water vapor and temperature responses over interan-405

nual (Fig. 5a) and multi-decadal (Fig. 5b) scales across models that are in broad agree-406

ment with ERA5 and AIRS values. ERA5 produces a large water vapor trend relative407

to its 400 hPa temperature trend (Fig. 5b) in comparison with AIRS and the models.408

However, temperature and moisture trends in AIRS and ERA5 are smaller than the amip409

simulations for the shorter 1988-2014 period (2002-2014 for AIRS; Figs. S1, S4).410

The range of historical experiment multi-decadal water vapor trends is partly ex-411

plained by the range of warming rates (Fig. 5b) with a strong relationship across mod-412

els between 400 hPa temperature and moisture trends (r=0.94). For example, the CanESM5413

model simulates a 400 hPa warming of 0.48 K/decade and moistening of 4.8 %/decade414

while the MRI-CM2 model simulates a weak warming and moistening of 0.23 K/decade415

and 2.0 %/decade (corresponding temperature trends for 1988-2014 in Table S2). How-416

ever, a relationship between temperature and moisture trends also exists across amip sim-417

ulations, albeit weaker (r=0.7), despite consistent surface warming as constrained by the418

experimental design, and indicating a diversity in coupling between the upper troposphere419

and surface temperature. This is confirmed by considering the interannual sensitivity420

of upper tropospheric temperature and moisture to surface temperature (Fig. 5a) which421
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Figure 4. Detrended linear regression between in atmospheric temperature and HadCRUT5

surface temperature (%/K) for the (a) global land and ocean, (b) global ocean, (c) global land,

(d) tropical land and ocean, (e) tropical ocean and (f) tropical land over 1988-2014 for amip and

historical model experiments (ensemble median±1 standard deviation), ERA5, AIRS satellite

observations (2002-2014) and HadISDH 2 m observations.

shows a significant positive relationship across models with albeit weaker correlation in422

amip (r=0.74) compared to historical (r=0.94).423

Models with a stronger interannual upper troposphere temperature response to sur-424

face warming therefore also display a stronger upper tropospheric water vapor response:425

the MIROC6 historical simulation produces a strong global mean 400 hPa water vapor426

and temperature response to surface temperature (17.5 %/K and 1.8 K/K for 1979-2014)427

while the MRI model displays a weak coupling (8 %/K and 1.1 K/K; corresponding 1988-428

2014 responses in Tables 3 and S3). Combining these estimates suggests a more consis-429

tent coupling between 400 hPa moisture and temperature of 9.7 %/K for MIROC6 and430
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7.3 %/K for MRI-ESM2, approximately 1%/K larger than (so quite close to) their re-431

spective amip experiment interannual sensitivities.432

A greater amplification of upper tropospheric warming can be partly explained by433

a larger tropical to global warming ratio. This is suggested based on a weak positive cor-434

relation between 400 hPa temperature trends and the ratio of tropical to global surface435

warming trend across historical simulations (Fig. S5). This can further partly explain436

a positive relationship between 400 hPa specific humidity trends and the tropical to global437

warming ratio (r=0.49). Proportionally greater warming in the convective tropics, which438

is more strongly constrained by the moist adiabatic lapse rate than at higher latitudes439

or in subsidence regions, therefore favors a greater upper tropospheric warming and, through440

thermodynamic constraints, larger water vapor responses to warming. However, a di-441

versity in patterns of warming in historical experiments across models (the “pattern ef-442

fect”, e.g., Stevens et al., 2016) does not apply to the amip simulations since the evolv-443

ing pattern of ocean warming is constrained to be near-identical across model simula-444

tions. Therefore additional factors such as contrasting convection schemes and additional445

parametrizations must also contribute (e.g., Allan et al., 2002). Notably, the MRI-ESM2446

model simulates one of the weakest upper tropospheric amplification of surface warm-447

ing in both historical and amip experiments and across timescales (interannual and multi-448

decadal).449

Since greater amplification of warming aloft leads to greater outgoing longwave ra-450

diative emission, while the associated larger moisture increases reduces this longwave emis-451

sion, there is a well understood strong compensation between the negative temperature452

lapse rate feedback and the positive water vapor feedback (Colman & Soden, 2021; Al-453

lan et al., 2002). Therefore it is useful to consider the range in combined lapse rate and454

water vapor feedbacks as well as a relative humidity feedback in assessing the contribu-455

tion to uncertainty in climate sensitivity (Forster et al., 2021). The combined temper-456

ature and water vapour feedback is the total clear-sky radiative feedback relating to tem-457

perature and water vapor changes, often simplified as a constant relative humidity feed-458

back given the tropospheric temperature changes. The relative humidity feedback relates459

to deviations away from constant relative humidity alone. The next section assesses changes460

in relative humidity across datasets, considering tropical ocean and land and near-global461

trends across lines of latitude.462
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Figure 5. Responses of global mean upper tropospheric water vapor and temperature re-

sponses across models (amip and hist experiments 1979-2014; large symbol denotes ensemble

mean) and for ERA5 (1979-2019) and AIRS observations (2002-2016): (a) detrended linear

regression between 400 hPa water vapor and surface temperature (dq/dTs) scattered against

400 hPa temperature regression with surface temperature (dT/dTs); (b) 400 hPa water vapor

trends scattered against 400 hPa temperature trends

3.2 Tropospheric relative humidity changes463

As expected from the strong thermodynamic constraint on atmospheric moisture,464

changes in relative humidity are small when averaging over large areas and limiting the465

effect of changes in atmospheric circulation changes: generally monthly anomalies in near-466

global relative humidity are within ±1% RH based on ERA5 and microwave and infrared467

upper tropospheric humidity (UTH) measurements since 1979 (John et al., 2021).468

Considering first the tropics (30◦S–30◦N), variability is similar in magnitude over469

the tropical ocean and land (Fig. 6a-7a) for UTH observations though is larger for ERA5470

400 hPa RH (∼ ±2%). This is partly explained by UTH being a weighted average of471

RH over a broad atmospheric layer (∼200-500 hPa in the tropics), though AIRS esti-472

mates of tropical mea 400 hPa relative humidity are strongly correlated with both UTH473

estimates (MW r=0.85; HIRS r=0.79) and ERA5 (r=0.83) over the 2003-2015 period.474

While previous studies have more consistently compared models and observations by sim-475

ulating satellite humidity channel brightness temperatures (Allan et al., 2003; Soden et476
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al., 2005), this is beyond the scope of the present work which is deemed adequate for the477

purposes of a qualitative comparison.478

There is good qualitative agreement in interannual RH variability over the trop-479

ical ocean across datasets (Fig. 6a) with decreased humidity during mature El Niño events,480

particularly in northern hemisphere spring (e.g. April in 1983, 1998, 2016) and relating481

partly to exceptionally strong subtropical subsidence in the Pacific (e.g., McCarthy &482

Toumi, 2004). Discrepancies include larger multi-decadal RH variability in ERA5 with483

negative anomalies generally before 2002 and positive anomalies after, in contrast to the484

amip simulations and HIRS infrared UTH estimates which tend to display negative trends.485

Anomalies are up to 1% RH more negative in ERA5 than the amip ensemble mean dur-486

ing 1993-97 and this is also apparent at the 700 hPa level (Fig. 6b).487

Tropical ocean near-surface humidity in ERA5 decreases by more than 1% from488

1979-2015 and to a lesser extent in the HadISDH-ERA5 blend. This is at odds with amip489

simulations which display a slight increase and small year to year variability in anoma-490

lies of order 0.5% RH (Fig. 6c). A declining surface RH trend over tropical land is also491

evident (Fig. 7c) though the discrepancy with amip simulations is less apparent, in part492

due to larger month to month variability. There is generally good agreement across datasets493

of RH variability throughout the troposphere, including the upper troposphere based on494

correlations between MW and AIRS (r=0.83), HIRS with AIRS (r=0.69) and ERA5 with495

AIRS (r=0.92) over the 2003-2015 period.496

A strong dipole in latitude-mean RH anomalies coincides with the mature phase497

of the 1983 and 1998 El Niño events with positive anomalies at 15◦N and negative equa-498

torial anomalies (Fig. 8). Monthly RH variability appears largest in ERA5, consistent499

with the tropical timeseries in Fig. 6-7. Smaller variability is expected for the amip en-500

semble mean, which averages out internal atmospheric variability. The HIRS infrared501

and MW UTH records also display smaller magnitude and consistent variability.502

Variability in ERA5 300-500 hPa RH is characterised by negative tropical anoma-503

lies and positive high latitude anomalies before ∼2002 (Fig. 8b) and this explains pos-504

itive tropical and negative high latitude trends greater in magnitude than 0.5 % RH per505

decade that are not apparent in other datasets (Fig. 8). However, there is an indication506

of negative RH trends up to −0.5 %/decade at around 40◦S in amip and historical ex-507

periments (1979-2014) and HIRS (1979-2020) observations (Fig. 8, right panels). Reduc-508
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Figure 6. Deseasonalised anomaly time series of relative humidity (RH) for amip models

(ensemble mean±1 standard deviation) and ERA5 at (a) 400 hPa including AIRS satellite ob-

servations and upper tropospheric humidity estimates from infra-red (HIRS) and microwave

(MW) satellite observations, (b) 700 hPa including AIRS and (c) at the surface (2 m) including

HadCRUT5 observations and (d) surface temperature.
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Figure 7. As Fig. 6 but for tropical land.
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Figure 8. Time-latitude relative humidity variability and trends for (a) 300-500 hPa RH

model ensemble mean amip simulations and 1979-2014 trends for each model (gray) and ensemble

mean historical experiment trend (dashed thick); (b) 300-500 hPa RH in ERA5 (1979-2020); (c)

HIRS satellite UTH (1979-2020) and (d) Microwave satellite UTH (1998-2020). The time-latitude

plots (left) depict % RH or UTH anomalies relative to 1995-2014 while zonal mean trends (right)

apply for the respective record lengths with ±2 standard error on the calculated observed trends

(dashed lines in b-d, right panels).

tions in subtropical humidity have been linked with expansion of the Hadley circulation509

with greenhouse gas induced warming (Lau & Kim, 2015), though observed drying is weak510

and restricted to the poleward edge of the southern winter-hemispheric dry belt in in-511

frared measurements (Tivig et al., 2020) and are not present in the MW record since 1999512

(Fig. 8d).513

Finally, the sensitivity of RH throughout the tropical troposphere to interannual514

variability in temperature (from HadCRUT5) is estimated based on detrended linear re-515

gression (Fig. 9). RH generally decreases with warming over interannual time-scales apart516

from near the surface in AIRS and HadISDH-ERA5 data. The response of RH to inter-517

annual temperature variability is generally small (0 to −2 %/K) over land in all datasets.518
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Figure 9. Detrended linear regression between relative humidity and surface temperature

(dRH/dTs) with pressure level and at the surface for tropical (a) oceans and (b) land, 1988-2014

for amip and CMIP historical model experiments, ERA5 and HadISDH surface observations,

AIRS satellite observations (2002-2014, horizontal lines depict 90% confidence range) and upper

tropospheric humidity estimates from infra-red (HIRS, 1988-2014) and microwave (MW, from

1999) satellite estimates (90% confidence ranges).

Near-surface relative humidity decreases over tropical land in warmer years in model sim-519

ulations (∼ −1 %/K) and ERA5 (∼ −0.5 %/K) but not in HadISDH observations. Up-520

per tropospheric RH tends to decrease with warming over tropical oceans at around −1521

to −3 %/K. AIRS and ERA5 also depict a drying in response to warming at around 700 hPa522

which is not reproduced by the amip or historical simulations. Overall, the response of523

relative humidity to interannual variability and long term warming is small in relation524

to it’s effect on the radiative feedbacks (Forster et al., 2021) such that the combined tem-525

perature lapse rate and specific humidity feedback dominate, strongly amplifying climate526

change (trapping ∼1.3 Wm−2 more heat for each K of warming).527

4 Conclusions528

Global changes in tropospheric water vapor since 1979 are assessed across a range529

of observations, reanalyses and climate model simulations. The main conclusions are:530

1. Increases in moisture since 1979 are identified throughout the troposphere across531

multiple datasets and simulations. Global-mean column integrated water vapor532
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increased by 1 %/decade during 1988-2014 in microwave satellite observations and533

atmosphere-only amip simulations. Combined with an observed global surface warm-534

ing trend of 0.17 K/decade, this equates to global moisture increases with warm-535

ing of ∼6%/K, close to that expected from the Clausius Clapeyron equation. Tro-536

pospheric moisture increases are consistent with an amplifying water vapor feed-537

back in agreement with previous work (Soden et al., 2005; Forster et al., 2021; Col-538

man & Soden, 2021).539

2. Coupled climate model historical simulations overestimate 1988-2014 water vapor540

trends by up to a factor of two compared with amip simulations and some of the541

observations-based datasets. This is primarily explained by observed internal vari-542

ability which suppressed warming, and therefore also moistening rates, during the543

1998-2012 period (Kosaka & Xie, 2013; Mitchell et al., 2020), though the realism544

of radiative forcings and climate sensitivity also play a role (Forster et al., 2021).545

3. Increases in global mean 2 m specific humidity from 1988–2014 in amip simula-546

tions (∼0.8 %/decade) are not captured by the HadISDH observations or the ERA5547

reanalysis. For ERA5, this discrepancy is coincident with declining column inte-548

grated water vapor over the tropical oceans before 1993 that is inconsistent with549

SSM/I microwave satellite measurements and simulations and partly explained550

by inhomogeneities in the observing system (Allan et al., 2020; Hersbach et al.,551

2020). Longer term decreases in near-surface water vapor over the southern hemi-552

sphere in HadISDH (1979-2014) are at odds with the ERA5 reanalysis and sim-553

ulations. HadISDH also does not capture near-surface relative humidity decreases554

over tropical land in warmer years shown in model simulations (∼ −1 %/K) and555

ERA5 (∼ −0.5 %/K) and as expected from drier El Niño conditions over trop-556

ical land (Trenberth & Shea, 2005). Caution is therefore required in interpreting557

an apparent underestimate in relative humidity decline over land by simulations558

compared to HadISDH (Dunn et al., 2017).559

4. Robust increases in upper tropospheric water vapor over time, of around 2% per560

decade at 400 hPa in amip simulations and ERA5, are larger than lower tropo-561

spheric %/decade moisture changes. This is well understood based on the Clau-562

sius Clapeyron temperature dependence of moisture response to warming and am-563

plified atmospheric warming aloft due to radiative convective balance, particularly564

over tropical oceans (Held & Soden, 2006; Ohmura, 2012). This is consistent with565
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small changes in upper tropospheric relative humidity from satellite observations,566

which strengthens past assessments (e.g., Soden et al., 2005). Increases in upper567

tropospheric water vapor are only apparent in AIRS satellite data when includ-568

ing the final two years of the 2002-2016 record.569

5. Global mean near-surface water vapor increases by about 5% per K increase in570

surface temperature over interannual time scales across all datasets. A larger sen-571

sitivity of 10-15%/K at 300 hPa is primarily related to changes over the tropical572

ocean and explained by thermodynamic amplification of upper tropospheric tem-573

perature changes and the Clausius Clapeyron temperature dependence of satu-574

ration vapor pressure, as known from previous work (Held & Soden, 2006; Dessler575

et al., 2008). These responses are not apparent for land over interannual times-576

scales with temperature lapse rate increases for warmer years and %/K moisture577

responses similar in magnitude to the surface. AIRS satellite measurements since578

2002 appear to underestimate water vapor changes in the mid-troposphere (500-579

700 hPa) due to relative humidity decline over the tropical oceans.580

6. Climate models with larger upper tropospheric temperature changes also simu-581

late stronger upper tropospheric water vapor changes. The range of warming rates582

reflect internal climate variability which dominates coupled model water vapor re-583

sponses and trends over time periods less than 30 years and is not the case for cor-584

responding uncoupled SST-constrained amip simulations. Differences is moisture585

responses in SST-constrained amip simulations relate more directly to the model586

parametrizations and merits further analysis. The MRI-ESM2 model simulates587

the smallest water vapor responses to observed (amip) temperature variability (3.2%/K588

at the surface, 6.2%/K at 400 hPa) while the CNRM models simulate among the589

largest responses (>4%/K at the surface, >11%/K at 400 hPa), partly explained590

by the stronger tropospheric temperature responses to surface warming in the CNRM591

simulations. The CNRM models also simulate a relatively dry near-surface layer592

compared to other models, though similar to observation-based estimates.593

In summary, tropospheric water vapor changes at the global scale since 1979 are594

consistent with a powerfully amplifying water vapor feedback based on observations-based595

products and the latest CMIP6 climate model simulations, as anticipated from a strong596

physical basis and multiple lines of evidence (Forster et al., 2021; Colman & Soden, 2021).597

Discrepancies in moisture trends across datasets are strongly influenced by tropical ocean598
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relative humidity, which are susceptible to inhomogeneities in the observational records599

that also determine unrealistic global-scale responses represented by reanalysis products600

such as ERA5. Future improvements in these records will further aid the evaluation and601

improvement of model parametrizations and coupled behavior compared to the real world.602
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Tivig, M., Grützun, V., John, V. O., & Buehler, S. A. (2020). Trends in upper-832

tropospheric humidity: Expansion of the subtropical dry zones? Journal of833

Climate, 33 (6), 2149 - 2161. doi: 10.1175/JCLI-D-19-0046.1834

Trenberth, K. E., & Shea, D. J. (2005). Relationships between precipitation and835

surface temperature. Geophysical Research Letters, 32 (14), L14703+. doi: 10836

.1029/2005GL022760837
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Table 1. Global mean specific humidity (q), column water vapor (CWV ) and 2m temperature

(T2m) over 1995-2014 for model amip and historical experiments, ERA5 and observationally-

based estimates (HadCRUT5 T2m; HadISDH/ERA5 q2m; SSMI(S)/ERA5 CWV ; AIRS q700,400).

T2m (K) q2m (g/kg) CWV (kg/m2) q700 (g/kg) q400 (g/kg)

Model/experiment hist amip hist amip hist amip hist amip hist amip

ACCESS-ESM1-5a 288.5 287.7 10.6 10.3 25.5 24.7 3.3 3.2 0.55 0.53

BCC-CSM2-MRb∗ 288.6 287.7 9.7 — 25.5 24.9 3.4 3.3 0.56 0.53

BCC-ESM1b∗ 288.5 287.7 10.0 — 27.0 26.3 3.8 3.7 0.69 0.67

CanESM5c∗ 287.9 287.9 11.9 11.8 24.5 24.1 3.1 3.1 0.58 0.54

CESM2d 288.0 287.4 10.5 10.2 25.7 24.9 3.4 3.3 0.58 0.53

CESM2-WACCMd 287.9 287.4 10.4 10.2 25.6 24.9 3.4 3.3 0.58 0.54

CMCC-CM2-SR5e∗ 288.3 287.5 10.5 10.3 26.6 25.7 3.5 3.3 0.65 0.59

CNRM-CM6-1f 286.8 287.3 9.5 9.7 23.2 24.1 3.0 3.2 0.46 0.51

CNRM-ESM2-1f 287.5 287.4 9.8 9.7 24.0 24.0 3.2 3.2 0.49 0.51

GFDL-ESM4g 287.2 287.2 10.0 10.0 23.5 23.9 3.2 3.2 0.46 0.48

GISS-E2-1-Gh∗ 287.6 287.5 10.5 10.2 27.2 26.0 3.8 3.6 0.64 0.60

HadGEM3-GC31-MMi 287.7 287.7 9.9 10.0 24.6 24.9 3.3 3.3 0.51 0.52

INM-CM5-0j∗ 287.1 287.5 9.6 10.0 24.1 25.8 3.1 3.4 0.57 0.65

IPSL-CM6A-LRk 287.0 287.2 9.9 10.1 24.9 25.6 3.4 3.5 0.45 0.48

MIROC6l 289.0 288.9 10.4 10.5 25.8 26.6 3.7 3.8 0.55 0.60

MRI-ESM2-0m 287.6 287.8 10.4 10.6 24.5 25.2 3.3 3.4 0.55 0.57

NorESM2-LMn∗ 288.2 287.6 10.3 10.1 26.4 25.8 3.5 3.5 0.65 0.61

UKESM1-0-LLo 287.2 287.7 9.8 10.0 24.2 24.7 3.2 3.3 0.52 0.53

Ensemble Mean 287.8 287.6 10.2 10.2 25.2 25.1 3.4 3.4 0.56 0.55

ERA5p∗ 287.5 9.8 24.2 3.2 0.50

Observationsp,q 287.5 9.8 24.8 3.2 0.48

aZiehn et al. (2020); bWu et al. (2019); cSwart et al. (2019); dGettelman et al. (2019);

eScoccimarro et al. (2021); Lovato et al. (2021); fVoldoire et al. (2019); Séférian et al. (2019);

gZhao et al. (2018); hElsaesser et al. (2017); iAndrews et al. (2020); jSong et al. (2021);

kBoucher et al. (2020); lTatebe et al. (2019); mYukimoto et al. (2019);

nSeland et al. (2020); oSwaminathan et al. (2021); pHersbach et al. (2020);

qMorice et al. (2021); Willett et al. (2014, 2020); Wentz (1997); Tian and Hearty (2020) .

∗pressure level data below surface filled by extrapolation
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Table 2. Global mean trends (%/decade, 1988-2014) in 2m specific humidity (q2m), column

integrated water vapour (CWV ) and specific humidity at 400 hPa (q400) for model amip and

historical experiments, ERA5 and observations-based estimates (HadISDH/ERA5 q2m; SS-

MIS(S)/ERA5 CWV ; AIRS 2002-2014 only q400) [*significant at 90% confidence level accounting

for autocorrelation; ±1 standard error in linear fit apart from model ensemble ±1 standard de-

viation model spread.] Observations denote HadISDH/ERA5 q2m; SSMIS(S)/ERA5 CWV and

AIRS (2002-2014 only) q400.

Model q2m CWV q400

Trend (%/decade) hist amip hist amip hist amip

ACCESS-ESM1-5 2.09±0.07* 0.81±0.06* 2.55±0.09* 0.92±0.08* 4.33±0.19* 1.69±0.19*

BCC-CSM2-MR 1.37±0.06* ———— 1.63±0.08* 0.95±0.08* 2.82±0.16* 1.65±0.18*

BCC-ESM1 1.23±0.06* ———— 1.45±0.08* 1.04±0.08* 2.46±0.16* 1.83±0.18*

CanESM5 2.05±0.06* 0.77±0.05* 2.82±0.10* 1.16±0.08* 5.48±0.21* 2.17±0.18*

CESM2 1.52±0.08* 0.86±0.06* 1.89±0.10* 1.13±0.08* 3.52±0.22* 2.30±0.19*

CESM2-WACCM 1.55±0.06* 0.91±0.06* 1.90±0.08* 1.08±0.08* 3.41±0.17* 2.16±0.19*

CMCC-CM2-SR5 2.01±0.09* 1.04±0.06* 2.39±0.11* 1.28±0.08* 4.21±0.24* 2.41±0.18*

CNRM-CM6-1 1.01±0.06* 0.77±0.06* 1.21±0.09* 0.98±0.09* 2.34±0.20* 2.02±0.20*

CNRM-ESM2-1 1.42±0.05* 0.77±0.06* 1.70±0.07* 0.98±0.09* 3.13±0.16* 1.89±0.20*

GFDL-ESM4 1.53±0.08* 0.85±0.06* 1.94±0.11* 1.19±0.08* 3.82±0.22* 2.25±0.20*

GISS-E2-1-G 1.40±0.10* 0.83±0.06* 1.79±0.15 0.97±0.08* 3.15±0.29* 1.72±0.17*

HadGEM3-GC31-MM 1.92±0.07* 0.81±0.07* 2.23±0.08* 0.92±0.09* 3.75±0.16* 1.67±0.17*

INM-CM5-0 1.04±0.06* 0.82±0.06* 1.20±0.07* 1.07±0.07* 2.30±0.13* 2.07±0.15*

IPSL-CM6A-LR 1.27±0.09* 0.88±0.06* 1.63±0.13* 1.12±0.08* 3.13±0.26* 2.25±0.18*

MIROC6 1.58±0.09* 0.74±0.06* 2.09±0.14* 0.96±0.09* 3.75±0.29* 1.93±0.18*

MRI-ESM2-0 1.23±0.07* 0.78±0.06* 1.53±0.10* 1.06±0.08* 2.47±0.18* 1.81±0.15*

NorESM2-LM 1.73±0.08* 0.92±0.06* 2.11±0.11* 1.14±0.08* 3.67±0.22* 2.08±0.18*

UKESM1-0-LL 2.21±0.06* 0.82±0.06* 2.49±0.08* 0.93±0.09* 4.06±0.16* 1.63±0.17*

Ensemble median 1.53±0.36* 0.82±0.07* 1.90±0.46* 1.06±0.11* 3.52±0.82* 2.02±0.25*

ERA5 0.28±0.05 0.78±0.08* 2.26±1.17*

Observations −0.04±0.05 1.02±0.07* 0.69±0.51
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Table 3. Global mean sensitivity of detrended water vapor to surface temperature (%/K)

over 1988-2014 for amip and historical simulations, ERA5 and observation-based estimates for

2m specific humidity (q2m), column integrated water vapour (CWV ) and specific humidity at

400 hPa (q400) [*significant at 90% confidence level accounting for autocorrelation; ±1 standard

error in linear fit apart from model ensemble ±1 standard deviation model spread.] Observations

denote HadISDH/ERA5 q2m; SSMIS(S)/ERA5 CWV and AIRS (2002-2014 only) q400.

Model q2m CWV q400

Sensitivity (%/K) hist amip hist amip hist amip

ACCESS-ESM1-5 4.08±0.21* 4.20±0.21* 5.02±0.31* 5.23±0.31* 8.35±0.74* 10.13±0.82*

BCC-CSM2-MR 3.91±0.20* ———– 4.59±0.31* 4.37±0.30* 8.49±0.63* 8.13±0.68*

BCC-ESM1 3.60±0.24* ———– 4.81±0.33* 4.78±0.29* 8.91±0.70* 9.46±0.67*

CanESM5 3.86±0.19* 3.48±0.19* 5.60±0.31* 4.61±0.33* 10.98±0.74* 8.15±0.77*

CESM2 5.32±0.18* 4.15±0.21* 6.14±0.28* 5.44±0.31* 11.88±0.77* 10.65±0.77*

CESM2-WACCM 4.42±0.20* 3.86±0.21* 5.04±0.30* 4.80±0.31* 9.04±0.69* 9.74±0.75*

CMCC-CM2-SR5 4.99±0.16* 3.79±0.22* 6.37±0.23* 4.76±0.32* 12.00±0.55* 9.45±0.73*

CNRM-CM6-1 4.70±0.23* 4.17±0.24* 6.25±0.33* 5.08±0.34* 13.50±0.82* 11.40±0.78*

CNRM-ESM2-1 3.91±0.23* 4.25±0.23* 4.83±0.33* 5.43±0.32* 9.41±0.73* 11.84±0.78*

GFDL-ESM4 5.50±0.17* 4.05±0.22* 7.10±0.27* 5.05±0.35* 12.64±0.62* 10.75±0.88*

GISS-E2-1-G 6.01±0.23* 4.00±0.26* 8.67±0.35* 4.84±0.39* 16.76±0.74* 8.88±0.84*

HadGEM3-GC31-MM 4.72±0.18* 4.43±0.23* 5.59±0.24* 5.08±0.33* 9.06±0.53* 9.31±0.69*

INM-CM5-0 4.40±0.18* 3.55±0.18* 4.96±0.25* 3.99±0.26* 8.46±0.51* 7.11±0.62*

IPSL-CM6A-LR 4.95±0.16* 3.74±0.20* 6.67±0.25* 4.56±0.32* 12.62±0.60* 8.28±0.75*

MIROC6 6.20±0.19* 3.72±0.22* 9.36±0.31* 4.90±0.32* 18.29±0.68* 8.75±0.70*

MRI-ESM2-0 4.18±0.27* 3.23±0.20* 5.45±0.40* 3.83±0.28* 8.83±0.76* 6.19±0.58*

NorESM2-LM 5.54±0.18* 3.83±0.21* 7.02±0.26* 4.77±0.30* 12.42±0.61* 9.35±0.70*

UKESM1-0-LL 4.08±0.22* 4.53±0.23* 4.55±0.30* 5.43±0.34* 7.31±0.70* 9.69±0.71*

Ensemble median 4.70±0.77* 4.00±0.35* 5.60±1.37* 4.84±0.45* 10.98±3.01* 9.45±1.42*

ERA5 4.45±0.22* 5.76±0.35* 10.20±0.84*

Observations 4.41±0.24* 5.53±0.36* 9.89±1.51*
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