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Abstract 

This  work  aims  to  study  the  streamflow  statistic  patterns  in  the  Sapucaí  River

watershed,  state  of  Minas  Gerais,  Brazil.  This  study  embraces  the  streamflow

probabilistic modeling to determine the reference streamflow and, later, the streamflow

regionalization  to  improve  the  water  resources  management.  A  26-year-data  series

(1989 - 2014) of maximum, average, and minimum streamflow were used. Probability

density  functions  were  applied  to  the  maximum and  minimum daily  streamflow to

determine the recurrence periods. Long-term average annual and monthly streamflow

were also calculated. Linear and non-linear regressions were adjusted for the streamflow

regionalization.  The drainage area and the streamflow equivalent to the total  rainfall

(with and without abstractions) were used as predictor variables. The probability density

functions that best  adjusted the maximum streamflow data set  were the Generalized
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Extreme Values, and for the minimum streamflow was the normal distribution. Linear

and  non-linear  regressions  were  efficient  (R²>  0.90  and  d  Willmott>  0.97)  in  the

regionalization process regardless of the predictor variables. However, a small statistical

advantage was found for the adjustment of non-linear regressions that used the predictor

variables  drainage  area  and  the  streamflow equivalent  to  the  total  rainfall  (without

abstractions).

Keywords: Reference water flow, Streamflow probabilistic modeling, Hydrology, 10.
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1. INTRODUCTION

Water is  an extremely important  element  human activity.  The water availability  has

been reducing over the years due to the increase in population density, expansion of

irrigated agriculture,  and degradation of the water quality  (Pruski,  Nunes, Pruski,  &

Rodriguez,  2013).  In addition,  larger regional-scale  trends in floods (Mediero et  al.,

2015)  and  water  availability  (Koutroulis  et  al.,  2019)  often  result  from changes  in

climatic variables. Governments and international agencies highlight water as the most

important natural resource (Silva, Oliveira, Mello, & Pierangeli, 2006) and point out the

need for its better management of the water resources. Adequate management requires,

fundamentally, the availability of hydrological data, from a dense hydrometric network

uniformly distributed in space and with consistent  hydrological  data (Beskow et al.,

2014).  Currently,  these requirements  are  not  met  in  Brazil  (Baena,  Silva,  Pruski,  &

Calijuri,  2004; Piol, Reis, Caiado, & Mendonça, 2019; Pruski, Rodriguez, & Nunes,

2015).  Therefore,  some  statistical/hydrological  techniques  have  been  developed  or

adapted to provide estimations for hydrological data in places where measured data is

scarce. Such techniques are hydrological models (Andrade, Mello, & Bescow, 2013;

Beskow, Norton, & Mello, 2013) and hydrological regionalization (Baena et al. 2004;

Maciel, Vieira, Monte, & Vasques, 2019; Pruski et al., 2015; Pruski, Rodriguez, Pruski,

Nunes, & Rego, 2016).

Hydrological  regionalization  is  an  useful  technique  to  compensate  the  lack  of

hydrological data in places where this  data is scarce or non-existent (Beskow et al.,

2014; Pruski et al., 2013). This is done to support water resources management (Piol et

al., 2019). The streamflow stands out among the hydrological data important for the

water resources management (Barros, Pessoa, Santana, Lopes, & Costa, 2018; Cecilio,

Zanetti, Gasparini, & Catrinck, 2018; Costa et al. 2019; Pruski et al., 2015). Although

streamflow data is essential for the water use grant rights process, most Brazilian states

still lack detailed streamflow data (Lisboa, David, Moreira, Silva, & Uliana, 2019).

The long-term average  streamflow is  an  important  variable  used  to  characterize  the

water potential to regularize the streamflow. Its determination needs a historical series

with a considerable number of years (at least 20 years), which is not always available

(Pruski  et  al.,  2013).  The  minimum  streamflow  is  used  to  determine  the  water

availability and its values serve as a reference to set limits for water grants. In Minas

Gerais (Lisboa et al., 2019), and São Paulo (Wolff, Duarte, & Mingoti, 2014) states,

southeastern Brazil, the minimum reference streamflow used to limit the water grant is
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based on the average minimum streamflow for seven consecutive days with a 10-year

recurrence  period  (Q7,10).  To  determine  Q7,10,  beyond  the  availability  of  a  long and

consistent historical data series, a probability density function (PDF) is also needed to

obtain  the  theoretical  frequency  associated  with  the  10-year  recurrence  period.

Therefore,  it  is  necessary  to  verify  different  PDFs  and  their  performances  in

representing the minimum streamflow data set by using goodness-of-fit tests (Barros et

al., 2018; Finkler, Mendes, Schneider, Bortolin, & Schneider, 2015). 

In Brazil, at a federal level, the minimum reference streamflow is the one that remains

in the watercourse for,  at  least,  95% of the time (Q95) (Serrano, Ribeiro,  Borges, &

Pruski, 2020). Q7,10 and Q95 are widely used to set limits for water withdrawals. Even

though  they  represent  different  conditions  in  terms  of  water  limitation,  the  Q7,10

represents  more  extreme  conditions  for  minimum  streamflow  than  Q95,  both  are

important tools for water resources management and planning (Ouyang, 2012; Serrano

et  al.,  2020).  Other  reference  minimum  streamflow  that  is  important  to  the  water

resources management and planning is the streamflow that remains in the watercourse

for 90% (Q90),  80% (Q80),  and 50% (Q50)  of  the time (Baena et  al.,  2004).  Despite

advances in statistical and process based hydrological models, The estimation of low‐

flows in rivers is a vexing problem (Konrad & Rumsey, 2019). 

The maximum streamflow is of great importance in the design of hydraulic projects and

flood predictions  (Lopes,  Prado,  Zolim,  Paulino,  & Antoniel,  2016;  Mediero  et  al.,

2015). Usually, the maximum streamflow is associated with a recurrence period that

indicates the project’s safety. The higher the project’s safety the higher the recurrence

period.  However,  the  higher  the  recurrence  period  the  more  expensive  is  the

construction (Cassalho et al., 2017). The recurrence periods usually used for hydraulic

projects range between 5 and 500 years depending on the project.

For the hydrological regionalization of streamflow, several methods are used, such as

the traditional method (ELETROBAS 1985), the methods of linear interpolation and

modified linear interpolation (ELETROBRAS 1985), the characteristics values method,

and  the  exponential  curve  method  (Piol  et  al.,  2019).  Among  these  methods,  the

traditional  method  stands  out.  It  starts  with  the  identification  of  hydrologically

homogeneous  regions.  Later,  linear  or  non-linear  regressions  are  applied  using  the

morphometric  and/or  climatic  characteristics  (predictor  variables)  and  the  targeted

streamflow (response  variable).  Linear  (multiple  or  simple)  or  non-linear  (power or

exponential) regressions using drainage area (Da), and/or the streamflow equivalent to
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the total rainfall (Peq), or the streamflow equivalent to the rainfall volume considering

the abstraction of part of the rainfall that does not reach the river and does not become

streamflow (Peq750) are the most used ones (Cassalho et al., 2017; Pruski et al., 2015).

The traditional method has been successfully applied and has superior performance than

the other methods in some watersheds located in several regions of Brazil e.g. (Cecilio

et al., 2018; Amorim et al., 2020; Matos, Uliana, Martins, & Rapalo, 2020).

The  Sapucaí  River  watershed  is  part  of  the  Grande  River  watershed,  located  in

southeastern Brazil,  crossing São Paulo and Minas Gerais states.  The Sapucaí River

watershed is in an important Brazilian region, with a predominance of the sectors of

services,  industry,  and  agriculture.  The  region’s  GDP  between  2016  and  2017

corresponded  to  near  1.2% of  Brazil's  GDP in  the  same period.  The  region  has  a

complex topography with an orographic influence of the Serra da Mantiqueira, which is

crucial  for  the  rainfall  regime,  the  river  formation,  and the  hydrological  regime.  In

general, the water resources in this watershed are not intensely used (low hydrological

stress)  (Duraes,  Mello,  &  Bescow,  2015),  however,  the  watershed  has  flood-prone

regions  (Almeida,  Abreu,  Fraga,  Silva,  &  Cecílio,  2017).  The  Sapucaí  River

watershed’s mouth is the Furnas dam, a hydroelectric power plant with an area of 1,440

km², 1,216 megawatts of power, and intersecting 34 cities in Minas Gerais, one of the

main power plants in Brazil.

Although the Sapucaí River watershed has interesting hydrological conditions regarding

water resources availability and flood-prone areas, few studies focused on its average,

minimum, and maximum streamflow, which is the motivation of this study. In light of

the  aforementioned,  this  work  aimed  to  study the  streamflow in  the  Sapucaí  River

watershed, with the specific goals: i) determine the long-term average streamflow, the

maximum annual daily streamflow and the minimum reference streamflow (Q7,10, Q95,

Q90, Q80, Q50); ii) test different probability density functions in the representation of the

maximum and minimum reference streamflow data using goodness-of-fit tests; and iii)

obtain models for regionalization of the long-term average, maximum, and minimum

reference streamflow.

2. MATERIALS AND METHODS

2.1 Study area

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144



The Sapucaí River watershed is located in the southeastern region of Brazil (Figure 1),

with a drainage area of 25,095.79 km² (Almeida et al., 2017). It covers part of the states

of São Paulo, where the Sapucaí River begins in Campos do Jordão, state of São Paulo.

It also covers part of Minas Gerais, where it ends in the Furnas dam (Almeida et al.,

2017; Matos,  Pioltine,  Mauad, & Barbosa,  2011).  The Furnas dam power plant  can

produce 1,216 Mega Watts of energy and is of great importance for the Brazilian energy

scenario (Durães & Mello 2016). The watershed includes more than 75 municipalities

and  a  population  of  1,615,128  inhabitants  (IBGE  2019).  The  region's  economy  is

concentrated in the provision of services, industries and agriculture, the latter activity

being extremely relevant to the socioeconomic dynamics of the region. The production

of  coffee,  dairy  farming,  metallurgy-aluminum,  mining,  agribusiness,  electronics,

helicopters, auto parts, beverages, textiles, and tourism stands out (IBGE 2010; 2017).

The predominant soils are the Inceptisols (≈56%), Oxisols (≈32%), Entisols (≈11%) and

Ultisols  (≈1%).  The  land  cover/land  use  include  mostly  pastures,  area  of  native

vegetation,  mostly Atlantic  Forest,  agriculture,  planted forests (especially  Eucalyptus

spp forets) and urban area (Durães & Mello 2016). 

The region’s climate is classified, according to Köppen, as subtropical with dry winter

and  hot  summer  (Cwa)  and  subtropical  of  altitude  with  dry  winter  and  temperate

summer  (Cwb)  (Alvares,  Stape,  Sentelhas,  Gonçalves,  &  Sparovek,  2013;  Martins,

Gonzaga, Santos, & Reboita, 2018). The region has great orographic influence due to

Serra da Mantiqueira, with elevations ranging from 774 to 2795 m, average slope of

16% (wavy relief) with the slope in some areas ranging from 0% (flat relief) to 218%

(strongly  mountainous  relief)  (Almeida  et  al.,  2017).  Annual  total  rainfall  varies

between 1,500 and 1,700 mm, and the average annual air temperatures between 15 and

19 ºC. 

2.2 Data acquiring, selection and pre-treatment

Fourteen streamflow gauges and five rain gauges (Figure 1 and Table 1) were selected

from  the  National  Water  and  Basic  Sanitation  Agency  (ANA),  available  on  the

hydrological  data  platform  HidroWeb  (Hydrological  Information  System  -

http://www.snirh.gov.br/hidroweb/),  and  the  National  Institute  of  Meteorology

(https://portal.inmet.gov.br/),  respectively.  The gauges were within the Sapucaí River

watershed and had consistent daily data. The base period, from 1989 to 2014, met at

least 20-year-data minimum criteria (Pruski et al., 2016, 2015). 
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[Insert Table 1]

[Insert Figure 1]

Afterward,  series  of  maximum  annual  daily  streamflow  (Qmax),  average  annual

streamflow (Qavg),  average  monthly  streamflow (QJan,  QFeb,  …,  QDec),  and  minimum

streamflow  averaged  from  seven  consecutive  days  (Q7)  were  constructed  for  each

stream gauge station. Minimum streamflow of 95% (Q95), 90% (Q90), 80% (Q80), and

50% (Q50), from the permanence curve, were also established. The permanence curve is

a hydrological function that relates flow rate and the percentage of time that this flow is

equal or exceeded during the entire historical period considered for its construction. The

gauge selection  and the  annual  series  were  aided by the  Computational  System for

Hydrological  Analysis  (SisCAH  1.0),  developed  by  the  Research  Group  on  Water

Resources at the Federal University of Viçosa (Sousa, Pruski, Bof, Cecon, & Sousa,

2009).

The rainfall data analysis consisted in obtaining the watershed’s average annual rainfall

(P,  mm) in  a  way that  P represented  the  rainfall  in  the  entire  watershed.  Later  the

streamflow equivalent to the total rainfall (Peq) was calculated (Pruski et al., 2013, 2015,

2016).  It  was  also  calculated  the  streamflow  equivalent  to  the  rainfall  volume

considering the abstraction of part of the rainfall (750 mm) that does not reach the river

and  does  not  become  streamflow  (Peq750)  (Pruski  et  al.,  2016).  These  variables  are

commonly used as independent variables in regionalization studies and are obtained by

applying the equations 1 and 2:

Peq=
P⋅Da
k                                                                                                                    (1)

Peq750=
(P-750 )⋅Da

k                                                                                                     (2)

In which: Peq is the equivalent streamflow for the average annual rainfall (m3 s-1); Peq750

is the equivalent streamflow for the average annual rainfall considering the abstraction

of 750 mm of the rainfall (m3 s-1); P is the watershed’s average annual rainfall (mm); Da

is  the  drainage  area  upstream  of  the  cross-section  of  interest  (km2);  and  k  is  a

conversion factor equal to 31,536.

2.3 Statistical Analyses
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Statistics of position and dispersion were calculated for the series of Qmax, Qavg, Q7, and

average monthly streamflow (QJan,  QFeb,  ...  QDec).  The box-plot  analysis  was used to

check extreme values, quartiles, Qmax and Q7 patterns in different gauges, as well as their

mean,  standard  deviations,  kurtosis  coefficients,  and  asymmetry  coefficient.  The

average  streamflow  was  analyzed  based  on  mean,  standard  deviation,  kurtosis

coefficient (k) and asymmetry (g), which was calculated according to equations 3 and 4,

respectively (Naghettini & Pinto 2007):

k=
N2

(N−1 )⋅(N−2 )⋅(N−3 )
⋅

∑
i=1

N

(x i−x)
4

s4

(3)                                                         

g=
N

(N−1 )⋅(N−2 )
⋅

∑
i=1

N

(x i−x )
3

s3

(4)                          

In  which:  xi  are  the  observed  streamflow,  x  is  the  streamflow’s  mean,  s  is  the

standard deviation, and N is the number of observations.

Probability  density  functions  (PDFs)  were  applied  to  the  series  of  Qmax and  Q7 to

associate the streamflow with a frequency of occurrence represented by the recurrence

period (RT). The PDFs were applied according to  Naghettini e Pinto (2007) and are

shown in  Table  2.  The recurrence  periods  of  5  (Qmax5),  10  (Qmax10),  20  (Qmax20),  50

(Qmax50), and 100 (Qmax100) years associated with the maximum annual streamflow. The

10-year  recurrence  period  (Q7,10)  associated  with  the  minimum  streamflow  of  time

permanence in the watercourse.

Goodness-of-fit tests were used to verify the adherence of the PDFs to the streamflow

data. The null hypothesis (H0) states that the probabilistic pattern of the random variable

can be modeled by the tested probability function. The alternative (H1) states that the

probabilistic  pattern  of  the  random  variable  cannot  be  modeled  by  the  probability

distribution function tested.

[Insert Table 2]

To  test  the  mentioned  hypotheses  the  following  adherence  tests  were  used:

Kolmogorov-Smirnov  (KS),  chi-square  (χ2),  Anderson-Darling  (AD),  Cramer-Von

Mises (CVM), Filliben (Fi) and Shapiro-Wilk (SW). The goal of using several adhesion
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tests was to verify the rigor of these tests and the PDFs versatility in representing the

maximum and minimum streamflow data, in several adhesion tests (regardless of the

test  and  its  rigor).  The  reason  for  it  is  because  each  goodness-of-fit  test  has  its

particularities.

Table  3  shows  each  test  statistics  to  be  compared  with  the  critical  standard  value

associated with a significance level. In this study, the significance level adopted was 5%

according to  several  hydrological  studies  (Abreu et  al.,  2018;  Beskow et  al.,  2015;

Granemann, Hofherr, & Merz, 2018; Costa et al., 2019). The probabilistic modeling of

maximum  and  minimum  streamflow  was  performed  using  the  “EnvStats”  package

(Millard, 2013) from the R software (R Team Core, 2018).

[Insert Table 3]

The analysis  of  aggroupment  (cluster)  and the  analysis  of  the  reference  streamflow

normalized according to the drainage area were the statistical procedures used to verify

homogeneous  regions  in  terms  of  streamflow.  Cluster  analysis  was  used  to  group

hydrologically  homogeneous  regions  in  terms  of  streamflow  in  several  studies

(Hannaford, Buys, Stahl, & Tallaksen, 2013; Elesbon et al., 2015; Mediero et al., 2015).

Ward's hierarchical method was one of the most used methods (Mediero et al., 2015).

The  number  of  established  groups  was  determined  by  a  model  based  on  the

parameterized  finite  Gaussian  mixture,  in  which  the  models  are  estimated  by  the

algorithm of  maximum optimization  expectation  (iterative  method to find parameter

estimates with maximum likelihood) that base the clustering in a hierarchical model.

The ideal model is then selected according to the Bayesian Information Criterion (BIC).

The model with the lowest BIC is the one with the best adjustment. The cluster analysis

was  performed with  the  R software  through the  “mcluster”  package  (Scrucca,  Fop,

Murphy, & Raftery, 2016). The main reference streamflow used in the cluster analysis

of this study were Qavg, Qmax, Q7, Q90, and Q95.

The analysis  of each gauge normalized streamflow was also used as a parameter  to

verify the hydrologically homogeneous regions. To this end, the reference streamflow

was plotted as a function of the drainage area. A similar pattern is expected in the same

homogeneous region between streamflow and drainage area (same angular coefficient)

(ELETROBRAS 1985).

The traditional  method is  widely  used for  streamflow regionalization  (Pruski  et  al.,

2015,  2016).  It  consists  of  relating  the  streamflow  (Q)  with  the  watershed’s

characteristics, such as the gauge’s drainage area (Da), drainage density (Dd), slope (S),
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river  length  (C),  and/or  climatic  characteristics,  such  as  rainfall  (P),  streamflow

equivalent to the total rainfall (Peq) or the streamflow equivalent to the rainfall volume

considering the abstraction of part of the rainfall that does not reach the river and does

not become streamflow (Baena et al., 2004; Pruski et al., 2015):

Q = f(Da, Peq, Peq750)                                                                                                      (5)

Since the variables Da, Peq, and Peq750 are easily obtained and have good performance as

a predictive variable (ordinate axis) of streamflow (abscissa axis) (Cecilio et al., 2018),

they were used for the regression analysis. The regression models tested were first-order

linear regression and nonlinear power regression. The quality of the adjustment of the

regressions  established  for  the  streamflow  regionalization  was  made  through  the

determination coefficient (R2), the Willmott concordance index (d) and the root means

square error (RMSE). 

R2=[
∑
i=1

N

(Oi  - O )⋅(E i  - E )

√∑
i=1

N

(Oi  - O )
2⋅∑
i=1

N

(E i  - E ) ]
2

                                                                                (6)

d =1−[
∑
i=1

N

(Oi  - Ei )
2

∑
i=1

N

(|Ei  - O|+|Oi  - O|)
2 ]

                                                                                      (7)

RMSE =√∑i=1

n (Ei−Oi )
2

n                                                                                                 (8)

3. RESULTS 

3.1 Streamflow position and dispersion statistics

The monthly and annual long-term average streamflow for the 26 years analyzed are

shown in Table 4. Table 4 is of great importance for the development  of water use

projects  (e.g.  water  supply,  energy  production,  irrigation,  navigation)  because  it

represents  the  potential  water  availability  in  the  watershed (Pruski  et  al.,  2016).  In

general, the highest streamflow is observed along the Verde River (gauges: 61537000,

61510000 and 61460000), and the Sapucaí River (61305000) in Santa Rita do Sapucaí,
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before joining with the Sapucaí Mirim River (Figure 1). The two lowest streamflow

were  found  in  the  tributaries  of  the  Sapucaí  Mirim  River  (gauges:  61250000  and

61295000), in the upper region of the Sapucaí River and just after the Sapucaí Mirim

joins the Sapucaí River.

[Insert Table 4]

Table 4 analysis allows identifying the effects of the streamflow seasonality influenced

by the rainy season. Usually, the streamflow decreases from March until reaching its

minimum  values  in  August  then  it  starts  to  increase  until  the  months  of  greatest

streamflow, usually January and February. The kurtosis coefficient had positive values

for all months, and its values were close (3.2 ≤ k ≤ 5.1). The asymmetry coefficient

followed the  same pattern  with positive  values  and little  variation  (1.9  ≤ g ≤  2.2).

Therefore,  the  monthly  series  and  the  long-term  averages  (Qavg)  are  considered

leptokurtic (its distribution function curve is larger than the normal distribution) and

with its tail longer on the right side than the left side (greater number of streamflow

observations in the smallest classes).

Figure 3 shows the box-plot analysis of the Qmax (Figure 3a), and the Q7 (Figure 3b).

The highest Qmax and Q7 were found in the Verde River (61537000 and 61510000) in the

Três Corações, and Careaçu region, and in the Sapucaí River (61305000) in Santa Rita

do Sapucaí. The lowest Qmax (61250000, 61295000 and 61343000), and Q7 (61295000,

61343000, and 615650000) were found in gauges at  the south of the watershed,  in

tributaries of the Sapucaí River or the Verde River (Figure 1 and Table 1).

[Insert Figure 3]

Table  5  shows  the  kurtosis  (k)  and  asymmetry  (g)  coefficients  for  maximum

streamflow, and minimum streamflow of seven consecutive days for the gauges in the

Sapucaí  River  watershed.  In  general,  the  Qmax distributions  showed,  mostly,  a

leptokurtic pattern on the right. It means that the Qmax distributions are fewer and has

most of the observations in smaller streamflow classes. The Q7 showed both platykurtic

series (more tapered than the normal  distribution)  on the right  (concentrates  greater

streamflow  observations  in  smaller  classes),  and  leptokurtic  series  (fewer  than  the

normal distribution) on the left (concentrates greater streamflow observations in higher

streamflow classes), and the right. 

[Insert Table 5]

3.2 Streamflow probabilistic modeling
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Table 6 shows each PDF percentage  of  adherence  in  each goodness-of-fit  test.  The

goodness-of-fit tests showed differences in rigor regarding the acceptance of the null

adherence hypothesis. However, the same pattern regarding each PDF’s suitability to

represent the minimum and maximum streamflow in each gauge were observed. The KS

test was the most permissive in accepting adherence, followed by the χ2 test. The CVM

and AD tests showed intermediate rigor, while the Fi and SW tests were, respectively,

the most rigorous ones. It is important to state that the PDF GEV couldn’t be adjusted to

represent  the  minimum streamflow from the  Itajubá  gauge (61272000),  through the

parameter estimation using the maximum likelihood method. Lyra et al.  (2006) also

observed that  the  KS test  had  a  lower  tolerance  than  the  χ2 for  assessing  the  PDF

adherence to the monthly rainfall. The authors argue that this is because KS compares

only the most frequent occurrence classes, while χ2 compares all classes.

[Insert Table 6]

Analysing  the  PDF’s  performance  in  representing  the  Qmax  and  Q7 data,  a  small

difference  was  found  between  the  distributions.  For  the  maximum  streamflow  the

distributions that stood out, in performance order, were the GEV, Gamma, and Weibull

(99%, 86% and 83% adherence,  respectively)  and for Q7 stood out the distributions

Normal, Weibull and GEV (98%, 95%, and 94% adherence, respectively).

Figure 4 shows the p-values classification obtained in the different goodness-of-fit tests

to represent the maximum streamflow. It is noted that the highest p-values were found

in the Kolmogorov-Smirnov test (Figure 4a) which is less rigorous, while the Filliben

(Figure 4e) and Shapiro-Wilk tests (Figure 4f) were the most rigorous ones. The other

tests (χ2, AD e CVM) had intermediate rigor. The GEV distribution had the highest p-

values regardless of the goodness-of-fit  tests. It confirms that this PDF had the best

performance in representing the streamflow data, especially maximum streamflow. The

Gamma and Weibull distributions also had good results in terms of adherence to the

Qmax data. The normal distribution had the worst performance in representing the Qmax

data.

[Insert Figure 4]

The p-values found in the PDFs representing Q7 are shown in Figure 5. The pattern of

the rigor of the goodness-of-fit  tests was similar  to the one obtained for Qmax.   The

highest p-values were found in the KS test. (Figure 5a) and the lowest in the rFi tests

(Figure  5e)  and  SW  (Figure  5f).  However,  regarding  the  probability  distributions,

performance patterns found in the Qmax goodness-of-fit tests were different. The Normal
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distribution  had  the  best  performance  in  representing  the  minimum  streamflow,

followed  by  the  GEV  and  Weibull  distribution.  The  Log-normal  and  Gumbel

distributions  had  the  worst  performances.  Gamma  PDF  had  an  intermediate

performance. Comparatively, the Q7 had the coefficients k and g values closer to zero

than the Qmax which indicates greater proximity to the normal distribution.

[Insert Figure 5]

Tables A1 and A2 show the parameters of the probability density functions (PDF) for

the  maximum  and  minimum  reference  streamflow,  respectively.  For  Qmax,  the

parameters of location and scale of GEV distribution were high correlation (r) with Da

(r = 0.998 and r = 0.987), Peq (r = 0.998 and r = 0.988) and Peq750 (r = 0.998 and r =

0.987) indicates the position of the peak (class of the peak) and the magnitude of the

peak. The correlations between Ad, Peq, Peq750 Q95, Q90, Q80 and Q95 with the mean and

standard  derivation  parameters  of  normal  distributions  were  high  (r  >  0.97).  It

represents the degree to which the minimum reference flows are dispersed around the

average.

According to the results obtained in this study, the maximum streamflow representation

was made by the GEV distribution, while the minimum streamflow representation was

done by the normal distribution.

 

3.3 Streamflow probabilistic modeling

The analysis of homogeneous regions in terms of reference streamflow through cluster

analysis and the analysis of normalized frequencies showed that it is not necessary to

discriminate the Sapucaí River watershed in groups. Figure 6a shows the performance

of the models in predicting the number of clusters. The ideal model was the ellipsoidal,

equal  volume,  shape,  and orientation  (EEE),  with the  lowest  BIC index in  a  single

group. Figure 6b shows the pattern of the maximum, average, and minimum streamflow

in function of the drainage area. It is notable the linearity of the streamflow in function

of the drainage area. Thus, regionalization through the traditional method can include all

gauges selected in this study.

Table  7  shows  the  linear  and  non-linear  (power)  regression  models  for  the

regionalization  of  maximum streamflow for  the  recurrence  periods  of  5  (Qmax5),  10

(Qmax10), 20 (Qmax20), 50 (Qmax50) and 100 (Qmax100) years. In general, the models were able

to predict the maximum streamflow with precision (R2> 0.90) and accuracy (d> 0.97).

The errors represented by the RMSE were lower than 25, 40, 56, 81, and 103 m3 s-1, for
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the recurrence periods of 5, 10, 20, 50, and 100 years, respectively. The performance of

streamflow regionalization models was similar to that one of other studies with the same

goals, which proves their feasibility (Baena et al., 2004; Lopes et al., 2016; Cassalho et

al., 2017).

[Insert Table 6]

In general, the linear model showed advantages in the adjustment up to the recurrence

period of 20 years, while the recurrence periods of 50 and 100 years the power model

had the  best  performance.  Another  important  issue  is  that  Da and Peq had  the  best

performance as predictor variables. 

Table  8  and  Table  9  show the  regionalization  models  for  the  annual  and  monthly

average streamflow,  respectively.  Just  like the maximum streamflow, the linear  and

non-linear  models  performed  similarly  for  the  average  annual  streamflow

regionalization,  however,  the power model  had the best performance.  The statistical

indexes were considered excellent in terms of precision (R2> 0.98) and accuracy (d>

0.99), with relatively low errors (RMSE < 8.0 m3 s-1) (Pruski et al., 2013, 2016; Cecilio

et  al.,  2018).  For  monthly  average  streamflow, nonlinear  (power) models  should be

preferred due to its better statistical performance in the streamflow representation.

The nonlinear  regression models for predicting the average monthly streamflow had

significant coefficients by the t-test,  and the “a” coefficient followed the streamflow

seasonality, decreasing its value between March and April until reaching its minimum

value  in  August.  In  September  and October,  its  value  increases  again,  reaching the

maximum value in December, January, or February. The “b” coefficient also showed

such a pattern indicating a potent relation of streamflow reduction during the dry period,

with Da, Peq, or Peq750. The predictor variables with the best performance for the average

streamflow, as well as for the maximum streamflow, were Da and Peq. 

[Insert Table 8]

[Insert Table 9]

Table  10  shows  the  linear  and  non-linear  models  for  Q7,10 regionalization  and  the

streamflow permanence curve (Q95, Q90, Q80, and Q50) in the Sapucaí River watershed. In

general,  the linear  and non-linear  models were able  to predict  minimum streamflow

with excellent precision (R2> 0.98), accuracy (d> 0.99), and errors that were considered

acceptable  (RMSE  <1.4  m3 s-1).  All  parameters  from  the  linear  regression  but  the

parameter “a” were significant. The parameter “a” from the linear regression indicates

the position where the line intersects the Y-axis and, when it is statistically equal to 0,
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the line passes through the origin, indicating linearity between the predictor variables

and the minimum reference streamflow. 

[Insert Table 10]

4. DISCUSSION 

Basically, the highest streamflow was found in gauges with large drainage areas (Da),

while in rivers with small  Da the streamflow tended to be lower. This confirms the

relationship between streamflow and Da, which justifies the use of this variable as a

streamflow  predictor  in  regionalization  studies.  Another  important  indicator  is  the

relationship  between  streamflow  and  frequently  flooded  areas,  such  as  the  gauges

61350000 and 6130500 (close to the region of Santa Rita do Sapucaí and São Sebastião

da  Bela  Vista),  and  the  gauges  6127200  and  6128500  (located  in  Itajubá).  The

streamflow in these gauges was considered of intermediate magnitudes. It indicates that

other factors affect the flood regime in these regions, such as the physiography and the

difference in slope (Almeida et al. 2017). Also, the trend analysis, carried out for the

gauges  (61250000 and 61285000) near  the  city  of  Itajubá,  did not  show increasing

trends for maximum and average streamflow (Almeida, Silva, Cecílio, Abreu, & Fraga,

2019),  which  corroborates  with  the  physiographic  conditions  as  the  main  flood

propensity factor. 

The  parameters  of  the  PDFs  were  correlated  with  the  predictive  variables  and  the

reference  streamflows  and  it  is  interesting  for  the  physical  meaning  of  probability

distributions. One major problem faced by water engineers is the determination of the

most suitable form of an extreme value (maximum or minimum) probability distribution

of the flood,  and the approximation  of parameters  of the distribution.  However,  the

parameter  values  that  give  the  maximum likelihood  function  among so many other

possible sample series of the population are considered the most suitable ones for that

sample series (Langat, Kumar, & Koech, 2019).

The GEV distribution is characterized by a good representation of positive asymptotic

series, as is the maximum streamflow (Cassalho et al., 2017; Castellarin, 2007; Guse,

Hofherr, & Merz, 2010). For the hydrological series of maximum annual daily rainfall,

which also shows a positive asymptotic pattern,  the PDF GEV was also efficient in

representing this data (Abreu et al., 2018; Beskow, Caldeira, Mello, Faria, & Guedes,

2015). Therefore, it is a promising PDF in hydrological studies of this nature. Also, the

GEV has three parameters that can be adjusted, while the other PDFs only have two
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parameters, hence the GEV adjustment is more flexible adjustment (Lyra et al., 2006).

The  normal  distribution’s  worst  performance  can  be  justified  by  its  symmetry

characteristic  and  the  bell  shape.  The  normal  distribution  is  considered  to  have

extremely limited flexibility in terms of asymmetry which is ideal to represent random

variables that fluctuate symmetrically around the mean.

The  normal  distribution  was  tested  only  in  a  few  streamflow  studies,  due  to  its

simplicity (it has two parameters) and, mainly, due to its characteristic of symmetry of

the values around the mean. This characteristic is not expected for most hydrological

variables, including streamflow. Finkler et al. (2015), tested the normal distribution to

obtain Q7,10 and it showed only 12.5% of inadequacies in representing the data by the χ2

goodness-of-fit test and 100% adherence in the KS and AD tests, in the Arroio Belo

River watershed in the of state of Rio Grande do Sul.  However,  some studies have

shown an inadequate or inferior performance of the normal distribution compared to

other PDFs (Langat et al., 2019; Modarres, 2008), which highlights the need to verify

the best PDF for each place. Another distributions with suitable fit in low flows are:

Gamma (Konrad & Rumsey, 2019), Weibull, Gumbel and GEV (Langat et al., 2019).

Comparatively,  the  power  regression  showed  a  slightly  better  adjustment  for  the

minimum  reference  streamflow  prediction  (Q7,10),  and  it  is  the  most  used  in

regionalization studies (Pruski et al., 2016; Cecilio et al., 2018). 

Another  important  observation  is  that  Q7,10 always  had  lower  values  than  Q95 the

minimum reference streamflow, therefore the Q7,10 is stricter in terms of defining the

limit for water withdrawals. Other studies have also found the same results  (Ouyang,

2012; Serrano et al., 2020).

 The good performance of Da as a streamflow predictor variable (maximum, average

and minimum) is relevant because it is one of the most used variables in streamflow

regionalization  (Razavi  &  Coulibaly,  2013) due  to  its  close  relationship  with  the

streamflow,  as  shown  in  Figure  6.  However,  some  researches  indicate  that

regionalization equations exclusively conditioned to Da may not reflect the effect of the

variation in rainfall along the watershed (Pruski et al., 2013, 2015, 2016; Cecilio et al.,

2018). As the rainfall variability was small (between 1380 and 1522 mm; the standard

deviation of 63 mm) in the watershed under study, the better performance of Da as a

predictor variable is justified. The streamflow gauges used were in drainage areas of

different sizes, which may have contributed to the Da’s good performance a predictor

variable.
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The consequences of using Da as a predictor  variable  in streamflow regionalization

studies  would  be  the  overestimation  of  the  streamflow  in  the  upper  areas  of  the

watershed,  where  the  drainage  areas  are  smaller  than  the  Da  used  to  establish

regionalization equations  (Silva Junior, Bueno, Tucci, & Castro, 2003). To minimize

such effect,  Pruski  et  al.  (2015)  indicate  the use of a  threshold value,  which is  the

maximum  specific  streamflow  estimated  in  the  streamflow  gauges  used  in  the

regionalization study. 

For  maximum  streamflow,  the  better  performance  of  the  equations  using  Da  is

explained by the fact that the average annual rainfall has little relation to the maximum

annual streamflow. The Qmax is the watershed’s hydrological response to a small set of

specific rainfall events, usually the maximum rainfall of one day, or the accumulated

rainfall of five days (Avila, Justino, Wilson, Bromwich, & Amorim, 2016), associated

with the hydraulic characteristics of the watercourses and land use. For average and

minimum streamflow, the effect of average annual rainfall is more relevant, although in

this study only Peq showed a similar statistical performance as the Da.

Therefore,  the  traditional  method  is  efficient  for  the  regionalization  of  maximum,

average, and minimum streamflow in the Sapucaí river watershed. Despite the similar

performance  of  the  first-order  linear  and  non-linear  power  regression  models,  the

second can be considered having a better performance. Also, with the easily obtained

data such as Da and Peq, reference streamflow from the Sapucaí River watershed can be

reliably estimated. However, it is recommended, for the Sapucaí River watershed, the

use  of  Da  because  it  had  better  statistical  performance  and  the  low  rainfall

representativeness in the watershed due to the scarce rainfall data.

5. CONCLUSIONS

The goodness-of-fit tests used for the frequency analysis of the reference streamflow

were different in terms of rigor in accepting the null hypothesis of adherence of the

probability density function (PDF) to the data set.  The Kolmogorov-Smirnov and  ²

tests were the most permissive in accepting the null hypothesis and the most rigorous

ones were the Filliben and Shapiro-Wilk tests. The probability density function with the

best  performance  in  representing  maximum  annual  streamflow  was  generalized  of

extreme values  (GEV), while for the representation of minimum streamflow was the

normal distribution.
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The streamflow regionalization models, linear and non-linear, with the drainage area

(Da) or with the streamflow equivalent to the rainfall volume (considering or not the

abstractions)  as  predictive  variables,  were  efficient  in  estimating  the  reference

streamflow.  Despite  the  similar  performance,  the  nonlinear  power  regressions  were

superior to the linear regression model, as well as the drainage area, and the streamflow

equivalent  to  the  rainfall  volume  (without  abstractions)  should  be  preferred  in

regionalization due to modest statistical superiority.

. 

DATA AVAILABILITY

The data that support the findings of this study are available in National Water Agency

(ANA)  -  HidroWeb  –  Hydrological  Information  System  platform  at

http://www.snirh.gov.br/hidroweb/publico/medicoes_historicas_abas.jsf.  and  National

Institute  of  Meteorology  (INMET)  at

https://portal.inmet.gov.br/?r=estacoes/estacoesAutomaticas.

Some or all data, models, or code generated or used during the study are available in a

repository online in accordance with funder data retention policies. 

The daily streamflow records were obtained from the hydrometeorological database of

the National Water Agency (ANA), through the HidroWeb – Hydrological Information

System platform:

 http://www.snirh.gov.br/hidroweb/publico/medicoes_historicas_abas.jsf. 

The daily rainfall records were obtained from the hydrometeorological database of the

National Institute of Meteorology (INMET), through the platform:

https://portal.inmet.gov.br/?r=estacoes/estacoesAutomaticas

Some or all data, models, or code generated or used during the study are available from

the corresponding author by request. 

The models and R codes, for example, can be made available. 
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APPENDICES 

Attachment 1 Parameters of location, scale and threshold for the Probability density function for the maximum annual streamflow.

fdp/
parameters

Gamma Weibull Normal Log-normal Gumbell GEV

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale Location Shape Scale

Station Qmax (m3 s-1)

61343000 7.787 4.243 3.252 36.714 33.041 10.757 3.432 0.398 27.774 10.668 28.942 10.488 0.209

61295000 2.948 10.581 1.851 35.247 31.190 17.817 3.261 0.630 23.011 13.795 22.596 13.469 -0.056

61565000 3.279 16.543 1.681 61.200 54.242 35.891 3.833 0.560 40.802 21.642 39.079 20.307 -0.141

61460000 5.199 35.771 2.416
209.49

2
185.972 80.156 5.126 0.473

149.43
6

66.616 151.723 67.340 0.062

61350000 3.367 46.321 1.832
176.62

2
155.981 91.678 4.894 0.565

117.14
5

62.305 112.518 58.679 -0.143

61250000 4.250 4.868 2.142 23.494 20.689 10.395 2.907 0.495 15.965 7.650 15.118 6.843 -0.220

61272000 7.391 15.857 3.042
130.93

9
117.195 40.907 4.695 0.397 97.618 37.419 100.797 37.796 0.160

61370000 7.027 10.868 3.641 84.297 76.372 23.471 4.263 0.446 64.140 26.242 70.257 25.319 0.466

61285000 13.187 5.472 4.579 79.183 72.160 18.567 4.240 0.289 62.609 18.664 67.072 19.748 0.445

61305000 10.125 22.020 3.985
246.06

4
222.957 63.853 5.357 0.337

190.14
5

65.675 202.339 66.474 0.347

61510000 4.771 84.132 2.139
454.16

3
401.359 197.358 5.886 0.475

318.46
5

140.832 315.332 139.454 -0.041
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61537000 6.053 92.335 2.732
627.68

6
558.891 216.383 6.241 0.440

456.40
8

191.551 469.790 194.679 0.130

61390000 8.401 6.442 3.865 59.755 54.122 16.073 3.931 0.388 45.770 17.468 50.035 17.349 0.480

61320000 4.861 13.351 2.555 73.197 64.898 27.450 4.066 0.492 51.566 24.331 54.288 25.693 0.205



Attachment 2 Parameters of location, scale and threshold for the Probability density function for the minimum annual streamflow.

fdp/parameters
Gamma Weibull Normal Log-normal Gumbell GEV

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale Location Shape Scale

Station Q7 (m3 s-1)

61343000 18.130 0.121 4.738 2.400 2.196 0.511 0.759 0.239 1.947 0.455 2.003 0.484 0.228

61295000 9.991 0.089 3.194 0.993 0.889 0.292 -0.168 0.317 0.756 0.224 0.749 0.219 -0.057

61565000 9.918 0.289 3.651 3.185 2.866 0.879 1.002 0.329 2.431 0.792 2.550 0.860 0.271

61460000 16.421 0.878 4.679 15.768 14.421 3.438 2.638 0.255 12.712 3.322 13.276 3.458 0.322

61350000 14.893 0.607 4.411 9.930 9.040 2.296 2.168 0.265 7.907 2.065 8.251 2.266 0.302

61250000 31.641 0.054 5.648 1.831 1.705 0.303 0.517 0.187 1.555 0.319 1.590 0.306 0.208

61272000 26.273 0.329 6.980 9.222 8.633 1.513 2.136 0.209 7.809 1.897 not fit not fit not fit

61370000 13.408 0.319 3.986 4.720 4.282 1.156 1.417 0.279 3.723 1.031 3.824 1.071 0.180

61285000 10.455 0.479 3.918 5.520 5.007 1.412 1.562 0.335 4.292 1.465 4.519 1.444 0.296

61305000 11.764 1.755 4.279 22.676 20.652 5.471 2.985 0.315 17.844 5.807 18.876 5.699 0.343

61510000 16.521 1.973 4.438 35.694 32.597 7.904 3.454 0.252 28.750 7.265 29.565 7.495 0.209

61537000 27.846 1.796 5.837 53.970 50.013 9.478 3.894 0.193 45.352 8.440 46.623 9.207 0.272

61390000 11.453 0.269 3.688 3.403 3.078 0.887 1.080 0.306 2.646 0.814 2.724 0.835 0.172

61320000 13.676 0.325 4.680 4.864 4.445 1.109 1.455 0.287 3.870 1.160 4.137 1.183 0.436
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TABLES

TABLE 1 Stream gauge stations and rain gauge stations selected for the study

Stream gauge stations

Code Station name River Latitude Longitude Da (km2)

61343000 Bairro do Analdino Capivari -22.550 -45.883 247

61295000 Brasópolis Vargem Grande -22.467 -45.622 156

61565000 Cachoeira Poço Fundo Machado -21.783 -45.124 349

61460000 Conceição do Rio Verde Verde -21.883 -45.079 1840

61350000 Conceição dos Ouros Sapucaí-Mirim -22.400 -45.791 1310

61250000 Fazenda da Guarda Sapucaí -22.683 -45.480 109

61272000 Itajubá Sapucaí -22.433 -45.450 870

61370000 Ponte do Rodrigues Itaim -22.350 -45.854 676

61285000 São João de Itajubá Lourenço Velho -22.367 -45.448 560

61305000 Santa Rita do Sapucaí Sapucaí -22.250 -45.709 2810

61510000 Três Corações Verde -21.700 -45.248 4180

61537000 UHE Furnas rio Verde Verde -21.600 -45.489 6300

61390000 Vargem do Cervo Cervo -22.117 -45.918 468

61320000 São Bento do Sapucaí Sapucaí-Mirim -22.683 -45.735 475

Rain gauge stations

Code (OMM) Station name Altitude (m) Latitude Longitude

83714 Campos do Jordão 1642 -22.75 -45.6 -

83032 Lambari 878.45 -21.94 -45.31 -

83687 Lavras 918.84 -21.75 -45.00 -

83683 Machado 873.35 -21.68 -45.94 -

83736 São Lourenço 953.20 -22.10 -45.01 -

Da = Drenage area 
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TABLE 2 The probability density functions and cumulative distribution function for the probability density frequency (PDFs)

PDF Probability Density Function Cumulative Distribution Function Parameters Observations

Gamma
f x( x )=

(x θ)
η−1

exp(−xθ)
θΓ (η )

Fx( x )=∫
0

∞ (xθ)
η−1

exp(−xθ)
θΓ (η )

 dx

Ɵ = scale

ƞ = shape

For: X, Ɵ and ƞ >
0

Γ (η )=∫
0

∞

xη−1e−xdx

Weibull f x( x )=
α
β ( xβ )

α-1

 exp[−( xβ )
α

] Fx ( x )=1−  exp [−( xβ )
α

]
α = scale 

β = shape

Normal f x( x )=
1

√2πθ2
2

exp{−1
2 [ (x−θ1)

θ2
]
2

} Fx( x )=∫
−∞

x
1

√2πθ2
2

exp {−1
2 [ ( x−θ1 )

θ2
]
2

}dx
E[X] = μ = Ɵ1

Var[X] = σ2 = Ɵ2

For: -  < X < ꝏ ꝏ
μ = mean

σ = standart
derivation

Log-
normal f x( x )=

1
xσ ln( x )√2π

exp {−1
2 [

ln ( x )−μ ln( x )

σ ln( x ) ]
2

} Fx( x )=∫
−∞

x
1

xσln ( x )√2π
exp {−1

2 [
ln (x )−μln ( x )

σ ln ( x ) ]
2

} dx
E[X] = μ = Ɵ1

Var[X] = σ2 = Ɵ2

For: -  < X < ꝏ ꝏ
μ = mean

σ = standart
derivation

Gumbel f x( x )=
1
α

exp[− x−βα −exp(− x−βα )] Fx( x )=exp[−exp (− x−βα )]
α = scale 

β = shape

For: -  < X < ꝏ ꝏ
-  < β < ꝏ ꝏ

α < ꝏ
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GEV f x( x )=
1
α [1−k ( x−βα )

1/(k−1 )

exp{−[1−k ( x−βα )]
1/k

}] Fx( x )=exp {−[1−k ( x−βα )]
1/k

}
α = scale 

β = shape

k = position



TABLE 3 The goodness-of-fit test and the statistic of the test.

The goodness-of-fit
test

Statistics of the test

KS |∆F|max

χ2 χ2=∑
i=1

n ( f obs-i  - f theoretical-i)
2

f theoretical-i

AD AD2=    -N - ∑
i=1

N
(2i-1 ) [ ln ( P1)+  ln(P2)]

N

Fi rFi=

∑
i=1

N

(X i  - X )⋅(W i  - W )

√∑i=1

N

(X i  - X )
2⋅∑
i=1

N

(W i  - W )

CVM CVM2=    
1

2N
+∑
i=1

N

[ p( i )−2i - 1
2N ]

2

SW W =
∑
i=1

N

( p (¿ i )X i )
2

∑
i=1

N

( X i−X )
2

|∆F|max is the value of the KS test statistic, obtained through the largest difference 
between the cumulative, empirical and theoretical functions; fobs-i is the frequency 
observed in the i-th class; ftheoretical-i is the theoretical frequency in the i-th class; ie; P1 is 
the probability of non-exceedance calculated by the probability distribution with the 
data in ascending order, P2 is the probability of exceedance calculated by the 
probability distribution with the data in descending order and N is the sample size; Xi is 

the quantile observed in the i-th observation, X is the average of the observed 

quantiles, Wi is the theoretical quantile in the i-th observation, W  is the average of 

the estimated quantiles; p(i) = Φ ([X(i) - X  ]/s); Φ is the cumulative distribution of 
the density function of X(i) is the observation at the i-th position and s is the mean 
standard deviation of the observed values.
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TABLE 4 Monthly and annual long-term average streamflow (m3 s-1) of each stream

gauge station in the Sapucaí River basin

Estações Qjan Qfeb Qmar Qapr Qmay Qjun Qjul Qaug Qsep Qouc Qnov Qdec Qavg

61343000 11.1 11.1 9.2 6.9 5.2 4.3 3.7 3.0 3.0 3.5 4.1 5.8 5.9

61295000 6.5 5.8 4.3 2.9 2.2 1.8 1.6 1.2 1.3 1.6 2.0 3.2 2.9

61565000 16.4 14.8 12.7 9.1 6.7 5.7 4.8 4.0 4.2 5.0 6.5 10.5 8.4

61460000 78.9 68.7 55.1 41.4 30.7
25.
8

22.
1

18.6 19.0
21.
3

28.
0

45.3
37.9

61350000 44.6 44.3 36.0 27.4 20.6
17.
4

15.
1

12.2 12.3
14.
9

17.
6

25.7
24.0

61250000 5.3 5.6 4.6 3.8 3.2 2.8 2.6 2.2 2.2 2.5 2.9 3.9 3.5

61272000 34.0 32.4 28.2 22.2 18.0
15.
4

13.
0

10.8 11.3
13.
5

16.
3

21.8
19.8

61370000 27.0 27.4 21.2 15.2 11.1 9.5 8.1 6.3 6.8 8.3 9.6 13.7 13.7

61285000 21.7 21.0 17.9 13.8 10.6 9.1 7.7 6.5 6.6 7.4 9.2 13.7 12.1

61305000 96.9 92.5 75.9 57.7 45.7
39.
7

33.
3

27.6 28.8
32.
7

41.
0

58.8
52.5

61510000
176.

6
153.

1
126.

0
94.1 70.0

59.
4

50.
5

42.6 43.3
48.
7

62.
8

99.8
85.6

61537000
271.

5
267.

0
207.

8
152.

7
113.

5
94.
7

79.
9

65.6 67.5
81.
7

97.
4

143.2
136.

9

61390000 20.3 19.4 15.9 10.9 7.9 6.5 5.3 4.3 4.7 6.1 7.7 11.5 10.0

61320000 17.5 16.3 13.6 11.2 8.5 7.4 6.7 5.6 5.7 7.0 7.9 11.3 9.9

Mean 59.2 55.7 44.9 33.5 25.3
21.
4

18.
2

15.0 15.5
18.
1

22.
4

33.5
30.2

Sd 77.0 73.3 57.7 42.6 31.7
26.
6

22.
4

18.6 19.1
22.
6

27.
5

41.4
38.3

Skewness 2.1 2.2 2.1 2.1 2.1 2.0 2.0 2.0 2.0 2.1 2.0 1.9 2.1

Kurtosis 4.0 5.1 4.6 4.3 4.1 3.9 3.8 3.6 3.7 4.4 3.7 3.2 4.2

Sd = Standard derivation
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TABLE 5 Kurtosis and Skewness for maximum streamflow, and minimum streamflow
of seven consecutive days

6130500
0

0.164 -0.292 0.526 -0.289

6151000
0

4.258 1.757 0.054 0.306

6153700
0

1.170 0.652 -0.854 0.149

6139000
0

0.346 -0.473 1.000 0.410

6132000
0

-0.487 0.292 0.025 -0.404
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TABLE 6 PDF percentage of adherence in each goodness-of-fit test

PDF KS Χ2 AD CVM Fi SW

Maximum streamflow

Gamma 100 93 93 86 71 71

Weibull 100 93 71 79 79 79

Normal 100 79 64 64 57 57

Log-normal 100 93 71 71 50 57

Gumbel 100 93 79 79 57 64

GEV 100 93 100 100 100 100

Minimum streamflow of seven consecutive days

Gamma 100 100 86 93 79 86

Weibull 100 93 93 93 93 93

Normal 100 100 100 100 86 100

Log-normal 100 100 71 71 64 64

Gumbel 100 79 71 71 64 64

GEV 100 92 92 100 92 92
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TABLE 7 Linear  and non-linear  regression models  for regionalization of maximum

srteamflow for the Sapucaí River watershed

Equation a b R2 d RQME (m3 s-1)

Qmax5 = a + b·Da 27.482 0.113 0.986 0.996 23.665

Qmax5 = a · Peq
b 27.482 2.437 0.986 0.996 23.665

Qmax5 = a · Peq750
b 26.849 5.023 0.985 0.996 24.032

Qmax10 = a + b·Da 32.327 0.132 0.974 0.993 37.420

Qmax10 = a · Peq
b 32.327 2.847 0.974 0.993 37.420

Qmax10 = a · Peq750
b 31.611 5.866 0.974 0.993 37.910

Qmax20 = a + b·Da 37.456ns 0.149 0.959 0.989 53.867

Qmax20 = a · Peq
b 37.456ns 3.217 0.959 0.989 53.867

Qmax20 = a · Peq750
b 36.671ns 6.629 0.958 0.989 54.439

Qmax50 = a + b·Da 45.228ns 0.170 0.933 0.982 79.525

Qmax50 = a · Peq
b 45.228ns 3.667 0.933 0.982 79.525

Qmax50 = a · Peq750
b 44.364ns 7.555 0.932 0.982 80.169

Qmax100 = a + b·Da 52.156ns 0.185 0.909 0.976 101.890

Qmax100 = a · Peq
b 52.156ns 3.984 0.909 0.976 101.890

Qmax100 = a · Peq750
b 51.241ns 8.207 0.908 0.975 102.572
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Qmax5 = a · Dab 0.351 0.873 0.985 0.996 24.960

Qmax5 = a · Peq
b 5.117 0.873 0.985 0.996 24.960

Qmax5 = a · Peq750
b 9.370 0.878 0.984 0.996 25.574

Qmax10 = a · Dab 0.420ns 0.870 0.974 0.993 38.251

Qmax10 = a · Peq
b 6.071 0.870 0.974 0.993 38.251

Qmax10 = a · Peq750
b 11.088 0.875 0.973 0.993 39.015

Qmax20 = a · Dab 0.499ns 0.864 0.959 0.989 54.241

Qmax20 = a · Peq
b 7.083 0.864 0.959 0.989 54.241

Qmax20 = a · Peq750
b 12.881 0.870 0.957 0.989 55.116

Qmax50 = a · Dab 0.627ns 0.853 0.934 0.983 79.280

Qmax50 = a · Peq
b 8.603 0.853 0.934 0.983 79.280

Qmax50 = a · Peq750
b 15.519 0.858 0.932 0.982 80.273

Qmax100 = a · Dab 0.750ns 0.842 0.911 0.976 101.140

Qmax100 = a · Peq
b 9.946ns 0.842 0.911 0.976 101.140

Qmax100 = a · Peq750
b 17.806ns 0.847 0.909 0.976 102.209

ns = não significativo pelo teste t de Student (H
0
: a = 0; b=0) 810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825



TABLE  8 Linear  and  non-linear  regression  models  for  regionalization  of  average

annual streamflow for the Sapucaí River watershed.

Equation a b R2 d RQME (m3 s-1)

Qmed = a + b·Da -0.434ns 0.021 0.996 0.999 2.455

Qmed = a · b·Peq -0.434ns 0.455 0.996 0.999 2.455

Qmed = a · b·Peq750 -0.552ns 0.937 0.995 0.999 2.589

Qmed = a · Dab 0.013 1.056 0.997 0.999 2.088

Qmed = a · Peq
b 0.336 1.056 0.997 0.999 2.088

Qmed = a · Peq750
b 0.697 1.063 0.997 0.999 2.157
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TABLE 9 Linear and non-linear regression models for regionalization of average monthly flows for the Sapucaí River watershed

Equation a b R2 d RQME (m3 s-1) Equation a b R2 d RQME (m3 s-1)

Qjan = a + b·Da -2.292ns 0.042 0.993 0.996 6.405 Qjan = a + b·Peq -2.292ns 0.912
0.99

3
0.998 6.405

Qfeb = a + b·Da -2.722ns 0.040 0.988 0.997 7.752 Qfeb = a + b·Peq -2.722ns 0.866
0.98

8
0.997 7.752

Qmar = a + b·Da -1.157ns 0.032 0.993 0.998 4.730 Qmar = a + b·Peq -1.157ns 0.683
0.99

3
0.998 4.730

Qapr = a + b·Da -0.480ns 0.023 0.995 0.999 2.978 Qapr = a + b·Peq -0.480ns 0.505
0.99

5
0.999 2.978

Qmay = a + b·Da -0.082ns 0.017 0.996 0.999 1.928 Qmay = a + b·Peq -0.082ns 0.376
0.99

6
0.999 1.928

Qjun = a + b·Da 0.093ns 0.015 0.997 0.999 1.366 Qjun = a + b·Peq 0.093ns 0.316
0.99

7
0.999 1.366

Qjul = a + b·Da 0.200ns 0.012 0.997 0.999 1.128 Qjul = a + b·Peq 0.200ns 0.267
0.99

7
0.999 1.128

Qaug = a + b·Da 0.146ns 0.010 0.998 0.999 0.877 Qaug = a + b·Peq 0.146ns 0.221
0.99

8
0.999 0.877

Qsep = a + b·Da 0.216ns 0.010 0.997 0.999 0.929 Qsep = a + b·Peq 0.216ns 0.226
0.99

7
0.999 0.929

Qoct = a + b·Da 0.129ns 0.012 0.994 0.998 1.732 Qoct = a + b·Peq 0.129ns 0.267
0.99

4
0.998 1.732

Qnov = a + b·Da 0.369ns 0.015 0.997 0.999 1.339 Qnov = a + b·Peq 0.369ns 0.327 0.99 0.999 1.339
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7

Qdec = a + b·Da 0.367ns 0.023 0.996 0.999 2.568 Qdec = a + b·Peq 0.367ns 0.491
0.99

6
0.999 2.568

Qjan = a · Dab 0.021 1.081 0.995 0.999 5.445 Qjan = a · Peq
b 0.584 1.081

0.99
5

0.999 5.445

Qfeb = a · Dab 0.013 1.128 0.994 0.998 5.911 Qfeb = a · Peq
b 0.428 1.128

0.99
4

0.998 5.911

Qmar = a · Dab 0.016 1.083 0.996 0.999 3.835 Qmar = a · Peq
b 0.433 1.083

0.99
6

0.999 3.835

Qapr = a · Dab 0.014 1.060 0.997 0.999 2.545 Qapr = a · Peq
b 0.364 0.999

0.99
7

0.999 2.545

Qmay = a · Dab 0.012 1.040 0.997 0.999 1.753 Qmay = a · Peq
b 0.304 1.040

0.99
7

0.999 1.753

Qjun = a · Dab 0.012 1.024 0.998 0.999 1.305 Qjun = a · Peq
b 0.279 1.024

0.99
8

0.999 1.305

Qjul = a · Dab 0.011 1.017 0.998 0.999 1.111 Qjul = a · Peq
b 0.245 1.017

0.99
8

0.999 1.111

Qaug = a · Dab 0.009 1.012 0.998 0.999 0.872 Qaug = a · Peq
b 0.208 1.012

0.99
8

0.999 0.872

Qsep = a · Dab 0.010 1.009 0.998 0.999 0.937 Qsep = a · Peq
b 0.217 1.009

0.99
8

0.999 0.937

Qoct = a · Dab 0.009 1.040 0.995 0.999 1.640 Qoct = a · Peq
b 0.217 1.040

0.99
5

0.999 1.640



Qnov = a · Dab 0.014 1.007 0.998 0.999 1.364 Qnov = a · Peq
b 0.317 1.007

0.99
8

0.999 1.364

Qdec = a · Dab 0.023 1.000 0.996 0.999 2.584 Qdec = a · Peq
b 0.494 1.000

0.99
6

0.999 2.584
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TABLE  70 Linear and non-linear regression models for regionalization of minimum

flows for the Sapucaí River watershed

Equation a b R2 d RQME (m3 s-1)

Q7,10 = a + b·Da -0.307ns 0.006 0.987 0.997 1.135

Q7,10 = a + b·Peq -0.307ns 0.124 0.987 0.997 1.135

Q7,10 = a + b·Peq750 -0.336ns 0.256 0.986 0.997 1.185

Q95 = a + b·Da -0.106ns 0.007 0.994 0.999 0.981

Q95 = a + b·Peq -0.106ns 0.158 0.994 0.999 0.981

Q95 = a + b·Peq750 -0.145ns 0.326 0.993 0.998 1.052

Q90 = a + b·Da 0.116ns 0.008 0.996 0.999 0.864

Q90 = a + b·Peq 0.116ns 0.179 0.996 0.999 0.864

Q90 = a + b·Peq750 0.072ns 0.370 0.996 0.999 0.964

Q80 = a + b·Da 0.211ns 0.010 0.998 0.999 0.838

Q80 = a + b·Peq 0.211ns 0.214 0.998 0.999 0.838

Q80 = a + b·Peq750 0.158ns 0.442 0.997 0.999 0.961

Q50 = a + b·Da 0.040ns 0.015 0.998 0.999 1.226

Q50 = a + b·Peq 0.040ns 0.330 0.998 0.999 1.226

Q50 = a + b·Peq750 -0.044ns 0.680 0.997 0.999 1.387

Q7,10 = a · Dab 0.002 1.098 0.991 0.998 0.984

Q7,10 = a · Peq
b 0.072 1.098 0.991 0.998 0.984

Q7,10 = a · Peq750
b 0.154 1.106 0.991 0.997 1.018

Q95 = a · Dab 0.005 1.050 0.996 0.999 0.891

Q95 = a · Peq
b 0.121 1.050 0.996 0.999 0.891

Q95 = a · Peq750
b 0.249 1.057 0.995 0.999 0.944

Q90 = a · Dab 0.007 1.015 0.997 0.999 0.856

Q90 = a · Peq
b 0.166 1.015 0.997 0.999 0.856

Q90 = a · Peq750
b 0.335 1.022 0.996 0.999 0.941

Q80 = a· Dab 0.010 1.001 0.998 0.999 0.854

Q80 = a · Peq
b 0.215 1.001 0.998 0.999 0.854

Q80 = a · Peq750
b 0.428 1.008 0.997 0.999 0.964

Q50 = a · Dab 0.002 0.019 0.998 > 0.99 1.171

Q50 = a · Peq
b 0.297 1.020 0.998 > 0.99 1.171
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Q50 = a · Peq750
b 0.600 1.027 0.998 0.999 1.299



FIGURE LEGENDS 

FIGURE 1 Sapucaí River watershed, highlighting the stream gauge stations and rain gauge

stations used in the study

43

1

2

3

4

5

6

7

1
2



FIGURE 2 Flowchart of the methodology used
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FIGURE  3 Box-plot of the maximum streamflow (b) and minimum streamflow of seven

consecutive days (b) for the stream gauge stations in the Sapucaí River basin
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FIGURE 4 P-values classification obtained in the different goodness-of-fit tests to represent
the maximum streamflow
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FIGURE 5 P-values classification obtained in the different goodness-of-fit tests to represent
the minimum streamflow
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FIGURE 6 Bayesian Information Criterion (BIC) for choosing the agglomeration model with

the optimal number of groups (a) and standard reference flows of each fluviometric station

(b)
"EII" = spherical, equal volume ; "VII" = spherical, unequal volume; "EEI" = diagonal, equal volume and shape; "VEI" = diagonal, varying 

volume, equal shape; "EVI" = diagonal, equal volume, varying shape; "VVI" = diagonal, varying volume and shape; "EEE" = ellipsoidal, equal

volume, shape, and orientation; "EVE" = ellipsoidal, equal volume and orientation; "VEE" = ellipsoidal, equal shape and orientation; "VVE" 

= ellipsoidal, equal orientation; "EEV" = ellipsoidal, equal volume and equal shape; "VEV" = ellipsoidal, equal shape; "EVV" = ellipsoidal, 

equal volume; "VVV" = ellipsoidal, varying volume, shape, and orientation.
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