References
[1] Waterhouse J. Post-hunter-gatherer era microbes’ role in allergic, autoimmune and chronic inflammatory diseases. Authorea Prepr 2020. doi:10.22541/au.159113798.83363067. https://www.authorea.com/users/287266/articles/456222-post-hunter-gatherer-era-microbes-role-in-allergic-autoimmune-and-chronic-inflammatory-diseases?mode=edit
[2] Forbes A, Kalantzis T. Crohn’s disease: the cold chain hypothesis. Int J Colorectal Dis 2006;21:399–401. doi:10.1007/s00384-005-0003-7.
[3] Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A, Miyazaki M, et al. Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 2010;60:2529–34. doi:10.1099/ijs.0.016600-0.
[4] Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015;39:567–91. doi:10.1093/femsre/fuv013.
[5] Huffnagle GB, Dickson RP. The Bacterial Microbiota in Inflammatory Lung Diseases. Clin Immunol 2015;159:177. doi:10.1016/j.clim.2015.05.022.
[6] Branton WG, Ellestad KK, Maingat F, Wheatley BM, Rud E, Warren RL, et al. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status. PLoS One 2013;8:e54673. doi:10.1371/journal.pone.0054673.
[7] Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93. doi:10.1111/1469-0691.12023.
[8] Earl CS, An S, Ryan RP. The changing face of asthma and its relation with microbes. Trends Microbiol 2015;23:408–18. doi:10.1016/j.tim.2015.03.005.
[9] Palm NW, Rosenstein RK, Medzhitov R. Allergic Host Defenses. Nature 2012;484:465–72. doi:10.1038/nature11047.
[10] Sherman PW, Holland E, Sherman JS. Allergies: their role in cancer prevention. Q Rev Biol 2008;83:339–62. doi:10.1086/592850.
[11] Manalai P, Hamilton RG, Langenberg P, Kosisky SE, Lapidus M, Sleemi A, et al. Pollen-specific immunoglobulin E positivity is associated with worsening of depression scores in bipolar disorder patients during high pollen season. Bipolar Disord 2012;14:90–8. doi:10.1111/j.1399-5618.2012.00983.x.
[12] Kelly K, Ratliff S, Mezuk B. Allergies, asthma, and psychopathology in a nationally-representative US sample. J Affect Disord 2019;251:130–5. doi:10.1016/j.jad.2019.03.026.
[13] Bluth MH, Robin J, Ruditsky M, Norowitz KB, Chice S, Pytlak E, et al. IgE Anti-Borrelia burgdorferi Components (p18, p31, p34, p41, p45, p60) and Increased Blood CD8 + CD60+ T Cells in Children with Lyme Disease. Scand J Immunol 2007;65:376–82. doi:10.1111/j.1365-3083.2007.01904.x.
[14] Li H, Zhou X-Y, Yang X-R, Zhu Y-G, Hong Y-W, Su J-Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ 2019;665:61–8. doi:10.1016/j.scitotenv.2019.01.367.
[15] Qin T, Zhang F, Zhou H, Ren H, Du Y, Liang S, et al. High-Level PM2.5/PM10 Exposure Is Associated With Alterations in the Human Pharyngeal Microbiota Composition. Front Microbiol 2019;10:54. doi:10.3389/fmicb.2019.00054.
[16] Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, Masiol M, et al. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Ann Am Thorac Soc 2019;16:321–30. doi:10.1513/AnnalsATS.201810-691OC.
[17] Samek L. Overall human mortality and morbidity due to exposure to air pollution. Int J Occup Med Environ Health 2016;29:417–26. doi:10.13075/ijomeh.1896.00560.
[18] Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, et al. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Env Epidemiol 2019;30:219–35. doi:10.1038/s41370-019-0157-y.
[19] Gilbert JA, Stephens B. Microbiology of the built environment. Nat Rev Microbiol 2018;16:661–670. doi:10.1038/s41579-018-0065-5.
[20] Jiang C, Wang X, Li X, Inlora J, Wang T, Liu Q, et al. Dynamic Human Environmental Exposome Revealed by Longitudinal Personal Monitoring. Cell 2018;175:277-291.e31. doi:10.1016/j.cell.2018.08.060.
[21] Trost B, Lucchese G, Stufano A, Bickis M, Kusalik A, Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010;1:328–34. doi:10.4161/self.1.4.13315.
[22] Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019;176:1340-1355.e15. doi:10.1016/j.cell.2019.01.041.
[23] Petersen J, Ciacchi L, Tran MT, Loh KL, Kooy-Winkelaar Y, Croft NP, et al. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Nat Struct Mol Biol 2020;27:49–61. doi:10.1038/s41594-019-0353-4.
[24] Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB. Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans. Clin Microbiol Rev 2014;27:927–48. doi:10.1128/CMR.00044-14.
[25] Waterhouse J. Exploring the microbiome’s potential role in severe COVID-19: possible implications for prevention and treatment. Authorea Prepr 2020. doi:10.22541/au.158758665.58622495.  https://www.authorea.com/users/287266/articles/444635-exploring-the-microbiome-s-potential-role-in-severe-covid-19-possible-implications-for-prevention-and-treatment
[26] Del Poeta M, Casadevall A. Ten Challenges on Cryptococcus and Cryptococcosis. Mycopathologia 2012;173:303–10. doi:10.1007/s11046-011-9473-z.
[27] Casadevall A, Pirofski L. Benefits and Costs of Animal Virulence for Microbes. MBio 2019;10:e00863-19. doi:10.1128/mBio.00863-19.