References

  1. F. Bacon, Novum Organum (1620) available from various sources in the original Latin, and in translations, for example: F. Bacon, Novum Organum, Urbach P (translator), Gibson J (ed), Open Cour Publishing Company, Paul Carus Student Editions, 1994; or F. Bacon Novum Organum, Silverthorne M (translator) Jardine L (introduction), Cambridge Texts in the History of Philosophy, Cambridge University Press, 2008.
  2. P. Li, D. H. Warner, A. Fatemi and N. Phan, “Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research,” Int J Fatigue, vol. 85, pp. 130–143, 2016. DOI https://doi.org/10.1016/j.ijfatigue.2015.12.003
  3. S. Ford and M. Despeisse, “Additive manufacturing and sustainability: an exploratory study of the advantages and challenges,” Journal of Cleaner Production, vol. 137, pp. 1573-1587, 2016. DOI https://doi.org/10.1016/j.jclepro.2016.04.150
  4. S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Materials and Design, vol. 95, pp. 431-445, 2016. https://doi.org/10.1016/j.matdes.2016.01.099
  5. MIL-STD-1530D, Department Of Defense Standard Practice: Aircraft Structural Integrity Program (ASIP), 31-Aug-2016.
  6. C. A. Babish IV, EZ-SB-19-01, Structures Bulletin AFLCMC/EZ, Bldg. 28, 2145 Monahan Way, WPAFB, OH 45433-7101, 2019.
  7. S. Beretta and S. Romano, “A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes,” Int J Fatigue,vol. 94, pp. 178-191, 2017. DOI https://doi.org/10.1016/j.ijfatigue.2016.06.020
  8. M. Kahlin, H. Ansell and J.J. Moverare, “Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces,” Int J Fatigue , vol. 101, pp. 51–60, 2017. DOI https://doi.org/10.1016/j.ijfatigue.2017.04.009
  9. M. Kahlin, H. Ansell and J.J. Moverare, “Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading,” Int J Fatigue, vol. 103, pp. 352–363, 2017. DOI https://doi.org/10.1016/j.ijfatigue.2017.06.023
  10. D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger and T. Melz, “Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V,” Mat Sci Tech , vol. 32, pp. 629-634, 2016. DOI https://doi.org/10.1179/1743284715Y.0000000053
  11. K. S. Chan “Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques,”Surface Topography: Metrology and Properties, 2015. DOI https://doi.org/10.1088/2051-672X/3/4/044006
  12. S. Leuders, M. Vollmer, F. Brenne, T. Troster and T. Niendorf, “Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting,” Metall and Mat Trans A , vol. 46, pp. 3816–3823, 2015. DOI https://doi.org/10.1007/s11661-015-2864-x
  13. H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto and Y. Murakami, “Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing,” Int J Fatigue, vol. 117, pp. 163-179, 2018. DOI https://doi.org/10.1016/j.ijfatigue.2018.07.020
  14. K. S. Chan and A. Peralta-Duran, “A Methodology for Predicting Surface Crack Nucleation in Additively Manufactured Metallic Components,” Metallurgical and Materials Transactions A, vol. 50A, pp. 4378-4387, 2019. DOI https://doi.org/10.1007/s11661-019-05309-7
  15. R. Jones, R. K. Singh Raman and A. J. McMillan, “Crack growth: Does microstructure play a role?” Eng Frac Mech , vol. 187, pp. 190-210, 2018. DOI https://doi.org/10.1016/j.engfracmech.2017.11.023
  16. R. Jones “Fatigue crack growth and damage tolerance,” Fatigue Fract Eng Mater Struct, vol. 37, pp. 463-83, 2014. DOI https://doi.org/10.1111/ffe.12155
  17. K. Ali, D. Peng, R. Jones, R. K. Singh Raman, X. L. Zhao, A. J. McMillan and F. Berto, “Crack growth in a naturally corroded bridge steel,”Fatigue Fract Eng Mater Struct , vol. 40, pp. 1117-1127, 2017. DOI https://doi.org/10.1111/ffe.12568
  18. R. Jones, P. Huang and D. Peng, “Crack growth from naturally occurring material discontinuities under constant amplitude and operational loads,” Int J Fatigue , vol. 91, pp. 434-44, 2016. DOI https://doi.org/10.1016/j.ijfatigue.2016.02.010
  19. S. C. Forth, The purpose of generating fatigue crack growth threshold data, NASA Johnson Space Center, 2006. http://ntrs.nasa.gov/
  20. K. Wang, F. Wang, W. Cui, T. Hayat and B. Ahmad, “Prediction of short fatigue crack growth of Ti‐6Al‐4V,” Fatigue Fract Eng Mater Struct, vol. 37, pp. 1075-86, 2014. DOI https://doi.org/10.1111/ffe.12177
  21. Y. Zhai, H. Galarraga and D. A. Lados, “Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM,” Eng Fail Analysis , vol. 69, pp. 3-14, 2016. DOI https://doi.org/10.1016/j.engfailanal.2016.05.036
  22. D. Peng, P. Huang and R. Jones, “Practical computational fracture mechanics for aircraft structural integrity,” In: Jones R, Baker A, Matthews N, Champagne V (eds), Aircraft Sustainment and Repair, Butterworth-Heinemann Press, Oxford, pp. 67-128, 2018.
  23. R. Jones, J. G. Michopoulos, A. P. Iliopoulos, R. K. Singh Raman, N. Phan and T. Nguyen, “Representing Crack Growth In Additively Manufactured TI-6AL-4V,”Int J Fatigue, vol. 116, pp. 610-622, 2018. DOI https://doi.org/10.1016/j.ijfatigue.2018.07.019
  24. A. P. Iliopoulos, R. Jones, J. G. Michopoulos, N. Phan and R. K. Singh Raman, “Crack growth in a range of additively manufactured aerospace structural materials,”Aerospace , 2018. https://doi.org/10.3390/aerospace5040118
  25. R. Jones, N. Matthews, D. Peng, N. Phan, and T. T. Nguyen, “Damage Tolerant Assessment Of Additively Manufactured Replacement Parts,” Proc. 13th Int Conf Mechanical Behaviour of Materials (ICM13), Melbourne, Australia, 11 -14 June 2019.
  26. R. Jones, N. Matthews, D. Peng, N. Phan and T. Nguyen, “Applications of SPD to enhance the structural integrity of corroded airframes,” In: Jones R, Baker A, Matthews N, Champagne V (eds), Aircraft Sustainment and Repair, Butterworth-Heinemann Press, Oxford, pp. 863-906, 2018.
  27. N. Matthews, L. Molent, S. Barter and R. Jones, “Application of SPD to enhance the structural integrity of fuselage skins and centre barrels,” In: Jones R, Baker A, Matthews N, Champagne V (eds), Aircraft Sustainment and Repair, Butterworth-Heinemann Press, Oxford, pp. 907-930, 2018.
  28. EZ-SB-13-001 Structures Bulletin, AFLCMC/EZ, Bldg. 28, 2145 Monahan Way, WPAFB, OH 45433-7101, 2013.
  29. J. Lincoln and R. A. Melliere, “Economic Life Determination for a Military Aircraft,” AIAA Journal of Aircraft , vol. 36, pp. 737-742, 1999. https://doi.org/10.2514/2.2512
  30. M. Lo, R. Jones, A. Bowler, M. Dorman and D. Edwards, “Crack growth at fastener holes containing intergranular cracking,” Fatigue Fract Eng Mater Struct, vol. 40, pp. 1664–1675, 2017. DOI https://doi.org/10.1111/ffe.12597
  31. D. Tamboli, S. Barter and R. Jones, “On the growth of cracks from etch pits and the scatter associated with them under a miniTWIST spectrum,” Int J Fatigue, vol. 109, pp. 10-16, 2018. DOI https://doi.org/10.1016/j.ijfatigue.2017.12.002
  32. R. Jones, D. Peng and A. J. McMillan, “Crack growth from naturally occurring material discontinuities,” In: Jones R, Baker A, Matthews N, Champagne V (eds), Aircraft Sustainment and Repair, Butterworth-Heinemann Press, Oxford, pp. 129-190, 2018.
  33. T. Yuri, Y. Ono and T. Ogata, “Effects of surface roughness and notch on fatigue properties for Ti–5Al–2.5Sn ELI alloy at cryogenic temperatures,” Science and Technology of Advanced Materials, vol. 4, pp. 291-299, 2003. DOI https://doi.org/10.1016/S1468-6996(03)00058-5
  34. J. Lai, H. Huang and W. Buising, “Effects of microstructure and surface roughness on the fatigue strength of high-strength steels,” Procedia Structural Integrity, vol. 2, pp. 1213-1220, 2016. DOI https://doi.org/10.1016/j.prostr.2016.06.155
  35. A. Townsend, N. Senin, L. Blunt, R. K. Leach and J. S. Taylor, “Surface texture metrology for metal additive manufacturing: a review,” Precision Engineering, vol. 46, pp. 34-47, 2016. DOI https://doi.org/10.1016/j.precisioneng.2016.06.001
  36. A. Triantaphyllou, C. L. Giusca, G. D. Macaulay, F. Roerig, M. Hoebel, R. K. Leach, B. Tomita and K. A. Milne, “Surface texture measurement for additive manufacturing,”Surf Topogr: Metrol Prop , 2015. DOI https://doi.org/10.1088/2051-672X/3/2/024002
  37. B. B. Mandelbrot, D. E. Passoja and A. J. Paullay, “Fractal character of fracture surfaces of metals,” Nature , vol. 308, pp. 721–722, 1984. DOI https://doi.org/10.1038/308721a0
  38. B. B. Mandelbrot, “Fractal analysis and synthesis of fracture surface roughness and related forms of complexity and disorder,” Int J Fracture, vol. 138, pp. 13–17, 2006. DOI https://doi.org/10.1007/s10704-006-0037-z
  39. E. Bouchaud, “Scaling properties of cracks,” J Phys: Condens Matter , vol. 9, pp. 4319–4344, 1997. DOI https://doi.org/10.1088/0953-8984/9/21/002
  40. R. Jones, N. Matthews, C. A. Rodopoulos, K. Cairns and S. Pitt, “On the use of supersonic particle deposition to restore the structural integrity of damaged aircraft structures,” Int J Fatigue, vol. 33, pp. 1257-1267, 2011. DOI https://doi.org/10.1016/j.ijfatigue.2011.03.013
  41. R. Jones, F. Chen, S. Pitt, M. Paggi and A. Carpinteri, “From NASGRO to fractals: Representing crack growth in metals,” Int J Fatigue, vol. 82, pp. 540-549, 2016. DOI https://doi.org/10.1016/j.ijfatigue.2015.09.009
  42. J. Liu, M. K. Chaudhury, D. H. Berry, J. E. Seebergh, J. H. Osborne and K. Y. Blohowiak, “Effect of Surface Morphology on Crack Growth at a Sol-Gel Reinforced Epoxy/Aluminum Interface,” The Journal of Adhesion , vol. 82, pp. 487–516, 2006. DOI https://doi.org/10.1080/00218460600713725
  43. C. B. Finfrock, A. Exil, J. D. Carroll and L. Deibler, “Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg,” Metallography, Microstructure, and Analysis , vol. 7, pp. 443-456, 2018. DOI https://doi.org/10.1007/s13632-018-0456-z
  44. A. du Plessis, S. G. le Roux, J. Els, G. Booysen and D. C. Blaine, “Application of micro CT to the non-destructive testing of an additive manufactured titanium component,” Case Studies in Nondestructive Testing and Evaluation, vol. 4, pp. 1–7, 2015. DOI http://dx.doi.org/10.1016/j.csndt.2015.09.001
  45. S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd and P. B. Prangnell, “XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting,”Materials Characterization, vol. 102, pp. 47-61, 2015. DOI http://dx.doi.org/10.1016/j.matchar.2015.02.008
  46. F. Léonard, S. Tammas-Williams, P. B. Prangnell, I. Todd and P. J. Withers, “Assessment by X-ray CT of the effects of geometry and build direction on defects in titanium ALM parts,” Conf. Industrial Computed Tomograpy (iCT) (Wels: Austria: Shaker Verlag) 85-93, 2015.
  47. W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu and P. Peng, “Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy,”Surface & Coatings Technology, vol. 349, pp. 503-510, 2018. DOI https://doi.org/10.1016/j.surfcoat.2018.06.020
  48. J. P. Kruth, G. Levy, F. Klocke and T. H. C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing,” Annals of the CIRP vol. 56/2/2007, pp. 730-759, 2007. DOI https://doi.org/10.1016/j.cirp.2007.10.004
  49. J. Mardaras, P. Emile and A. Santgerma, “Airbus approach for F&DT stress justification of Additive Manufacturing parts,” Procedia Structural Integrity, vol. 7, pp. 109–115, 2017. DOI https://doi.org/10.1016/j.prostr.2017.11.067
  50. D. Jeulin, W. Li and M. Ostoja-Starzewski, “On the geodesic property of strain field patterns in elastoplastic composites,” Proc. R. Soc. A , vol. 464, pp. 1217-1227, 2008. DOI https://doi.org/10.1098/rspa.2007.0192
  51. S. Li, “General unit cells for micromechanical analyses of unidirectional composites,”Composites: Part A , vol. 32, pp. 815-826, 2001. DOI https://doi.org/10.1016/S1359-835X(00)00182-2
  52. S. Li, “Boundary conditions for unit cells from periodic microstructures and their implications,”Composites Science and Technology , vol. 68, pp. 1962-1974, 2008. DOI https://doi.org/10.1016/j.compscitech.2007.03.035
  53. C. A. Rodopoulos and G. Chliveros, “Fatigue damage in polycrystals – Part 1: The numbers two and three,” Theoretical and Applied Fracture Mechanics, vol. 49, pp. 61-76, 2008. DOI https://doi.org/10.1016/j.tafmec.2007.10.007
  54. C. A. Rodopoulos and G. Chliveros, “Fatigue damage in polycrystals – Part 2: Intrinsic scatter of fatigue life,” Theoretical and Applied Fracture Mechanics, vol. 49, pp. 77-97, 2008. DOI https://doi.org/10.1016/j.tafmec.2007.10.001
  55. A. Brückner-Foit and X. Huang, “Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading,” Int J Fatigue. Vol. 28, pp. 963-971, 2006. DOI https://doi.org/10.1016/j.ijfatigue.2005.08.011
  56. A. J. McMillan, “Material strength knock-down resulting from multiple randomly positioned voids,” J Rein Plastics Composites, vol. 31, pp. 13-28, 2012. DOI https://doi.org/10.1177/0731684411422614
  57. A. J. McMillan, “Defect identification and characterization algorithms for assessing effect on component strength,” Proc 15th European Conf. Composite Materials, Venice, Italy, 24-28 June 2012.
  58. A. J. McMillan, “Geometry generation challenges for modelling and analysis of micro-structured materials,” IOP Conf Ser: Mater Sci Eng, 2015. DOI https://doi.org/10.1088/1757-899X/74/1/012010
  59. W. D. Pilkey and D. F. Pilkey, Peterson’s Stress Concentration Factors, 3rd Ed, John Wiley & Sons, Hoboken, New Jersey, 2008.
  60. M, Gorelik, “Additive manufacturing in the context of structural integrity,” Int J Fatigue . Vol. 94, pp. 168–77, 2017. DOI https://doi.org/10.1016/j.ijfatigue.2016.07.005
  61. M. A. Wiśniewska, “The ISO 25178 standards for areal surface texture measurements: a critical appraisal,” In Gajadhur M, Markowski K, Badyda AJ (Eds) The challenges of contemporary science: Theory and applications, Fundacja na rzecz młodych naukowców, pp. 165-166, 2014.
  62. M. Bramowicz, S. Kulesza, T. Lipiński, P. Szabracki and P. Piatkowski, “Fractal Analysis of AFM Data Characterizing Strongly Isotropic and Anisotropic Surface Topography,” Solid State Phenomena, vol. 203-204, pp. 86-89, 2013. DOI https://doi.org/10.4028/www.scientific.net/SSP.203-204.86
  63. A. McMillan, R. Jones, D. Peng, G. A. Chechkin, “A computational study of the influence of surface roughness on material strength,” Meccanica, vol. 53, pp. 2411-2436, 2018. DOI https://doi.org/10.1007/s11012-018-0830-6
  64. A. J. McMillan, D. Peng, R. Jones, N. Pham and J. G. Michopoulos, “Additive manufacturing: implication of surface finish on component life,” Proc. SAMPE Europe Conference, Southampton, UK, 11-13 September 2018.
  65. P. A. Kobryn and S. L. Semiatin, “The laser additive manufacture of Ti-6Al-4V,” JOM, vol. 53, pp. 40-2, 2001. DOI https://doi.org/10.1007/s11837-001-0068-x
  66. R. Jones, L. Molent and S. Barter, “Calculating crack growth from small discontinuities in 7050-T7451 under combat aircraft spectra,”Int J Fatigue, vol. 55, pp. 178-82, 2013. DOI https://doi.org/10.1016/j.ijfatigue.2013.06.009
  67. R. Jones, R. K. Singh Raman, A. P. Iliopoulos, J. G. Michopoulos, N. Phan and D. Peng, “Additively manufactured Ti-6Al-4V replacement parts for military aircraft,”Int J Fatigue, vol. 124, pp. 227-235, 2019. DOI https://doi.org/10.1016/j.ijfatigue.2019.02.041
  68. ASTM, Measurement of Fatigue Crack Growth Rates, ASTM E647-13, USA, 2013.
  69. Abaqus Manuals, Dassault Systèmes Simulia Corporation, Providence.
  70. The Python Software Foundation, https://www.python.org/
  71. A. J. C. B. Saint-Venant, “Memoire sur la Torsion des Prismes,” Mem Divers Savants, vol. 14, pp. 233–560, 1855.