References
(1) N. A. I. Watson, J. A. Black, T. M. Stonelake, P. J. Knowles, J. M. Beames, An Extended Computational Study of Criegee Intermediate - Alcohol Reactions, J. Phys. Chem. A. 123 (2019) 218-229.
(2) C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field, M. C. McCarthy, Observation of the Simplest Criegee Intermediate CH2OO in the Gas-Phase Ozonolysis of Ethylene. Sci. Adv. 1 (2015) e1400105.
(3) R. Asatryan, J. W. Bozzelli, Formation of a Criegee Intermediate in the Low-Temperature Oxidation of Dimethyl Sulfoxide. Phys. Chem. Chem. Phys. 10 (2008) 1769–1780.
(4) Y. Changa, H. Chang, J. J Lina, Kinetics of the simplest Criegee intermediate reaction with ozone studied by mid-infrared quantum cascade laser spectrometer, Phys. Chem. Chem. Phys. 20 (2018) 97-102.
(5) R. Criegee, Mechanism of Ozonolysis. Angew. Chem. Int. Ed. 14 (1975) 745-752.(6) C. A. Taatjes, D. E. Shallcross, C. J. Percival, Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis, Phys. Chem. Chem. Phys., 16 (2014) 1704. (7) D. L. Osborn, C. A. Taatjes, The physical chemistry of Criegee intermediates in the gas phase, Int. Rev. Phys. Chem. , 34 (2015) 309. (8) P.-L. Luo, C. –A. Chung, Y. –P. Lee, Rate coefficient of the reaction CH2OO + NO2 probed with a quantum cascade laser near 11 µm, Phys. Chem. Chem. Phys. 21 (2019) 17578-17583.
(9) M. Svanberg, J. B. C. Pettersson, K. Bolton, J. Phys. Chem. A. 104 (2000) 5787-5798.
(10)(a) M. A. Tolbert, M. A. Science. 272 (1996) 1597. (b) T. Peter, Annu. ReV. Phys. Chem. 48 (1997) 785. (c) J. Schreiner, C. Voigt, A. Kohlmann, F. Arnold, K. Mauersberger, N. Larsen, Science. 283 (1999) 968.
(11) L. Vereecken, The Reaction of Criegee Intermediates with Acids and Enols, Phys. Chem. Chem. Phys. , 19 (2017) 28630.
(12) O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. Anwar, H. Khan, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications; Angew. Chem. Int. Ed., 126 (2014) 4635–4638.
(13) M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V. M. Kerminen, T. Petäjä, Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpeneozonolysis toward SO2 and organic acids, Atmos. Chem. Phys. , 14 (2014) 12143–12153.
(14) R. Chhantyal-Pun, M. R. McGillen, J. M. Beames, M. A. H. Khan, C. J. Percival, D. E. Shallcross, A. J. Orr-Ewing, Temperature Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angew. Chem. Int. Ed. , 56 (2017) 9044–9047.
(15) E. S. Foreman, K. M. Kapnas, C. Murray, Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications, Angew. Chem. Int. Ed., 55 (2016) 10419-10422
(16) L. Vereecken, H. Harder, A. Novelli, The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides. Phys. Chem. Chem. Phys., 16 (2014) 4039–4049.
(17) L. Vereecken, H. Harder, A. Novelli, The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere, Phys. Chem. Chem. Phys. , 14 (2012) 14682–14695.
(18) M. Wang, L. Yao, J. Zheng, X. Wang, J. Chen, X. Yang, D. R. Worsnop, N. M. Donahue and L. Wang,Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. Environ. Sci. Technol. , 50 (2016) 5702–5710.
(19) L. Yao, Y. Ma, L. Wang, J. Zheng, A. Khalizov, M. Chen, Y. Zhou, L. Qi, F. Cui, Atmos. Environ. , 94 (2014) 448–457.
(20) D. Johnson, G. Marston, The Gas-Phase Ozonolysis of Unsaturated Volatile Organic Compounds in the Troposphere. Chem. Soc. Rev. 37 (2008) 699–716.
21. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.
22. S. Dapprich, I. Komaromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct. (Theochem) 461-462 (1999) 1-21. (b) L. W. Chung, W. M. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H. Li, L. Ding, K. Morokuma, Chem. Rev. 115 (2015) 5678-5796.
23. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.