Literature cited

Ansebo, L., Ignell, R., Löfqvist, J. and Hansson, B. S. 2005. Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology 51:1066-1074. (doi:10.1016/j.jinsphys.2005.05.003)

Arguello JR, Cardoso-Moreira M, Grenier JK, Gottipati S, Clark AG, Benton R (2016). Extensive local adaptation within the chemosensory system following Drosophila melanogaster’s global expansion. Nature Communications 7:11855. (doi:10.1038/ncomms11855)

Arn H, Schwarz C, Limacher H, Mani E (1974). Sex attractant inhibitors of the codling moth Laspeyresia pomonella L. Experientia 30:1142-1144. (doi:10.1007/BF01923655)

Arn H, Städler E, Rauscher S (1975). The electroantennographic detector - a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift für Naturforschung 30c:722-725. (doi:10.1515/znc-1975-11-1204)

Arn H, Rauscher S, Schmid A (1979). Sex attractant formulations and traps for the grape moth Eupoecilia ambiguella Hb. Mitteilungen der Schweizer Entomologischen Gesellschaft 52:49-55.

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research 40:W597-W603. (doi:10.1093/nar/gks400)

Bäckman A-C, Bengtsson M, Witzgall P. 1997. Pheromone release by individual females of codling moth,Cydia pomonella L. (Lepidoptera: Tortricidae). Journal of Chemical Ecology 23:807-815. (doi:10.1023/B:JOEC.0000006412.16914.09)

Bäckman A-C, Anderson P, Bengtsson M, Löfqvist J, Unelius CR, Witzgall P (2000). Antennal response of codling moth males, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate. Journal of Comparative Physiology A 186:513-519. (doi:10.1007/s003590000)

Baker TC (2002). Mechanism for saltational shifts in pheromone communication systems. Proceedings of the National Acadademy of Science USA 99:13368-13370. (doi:10.1073/pnas.222539799)

Bengtsson M, Liljefors T, Hansson BS, Löfstedt C, Copaja SV (1990). Structure-activity relationships for chain-shortened analogs of (Z )-5-decenyl acetate, a pheromone component of the turnip moth, Agrotis segetum . Journal of Chemical Ecology 16:667-684. (doi:10.1007/BF01016478)

Bengtsson JM, Trona F, Montagne N, Anfora G, Ignell R, Witzgall P, Jacquin-Joly E (2012). Putative chemosensory receptors of the codling moth, Cydia pomonella , identified by antennal transcriptome analysis. PLoS One 7(2):e31620. (doi:10.1371/journal.pone.0031620)

Bengtsson JM, Gonzalez F, Cattaneo AM, Montagne N, Walker WB, Bengtsson M, Anfora G, Ignell R, Jacquin-Joly E, Witzgall P (2014). A predicted sex pheromone receptor of codling mothCydia pomonella detects the plant volatile pear ester. Front Ecol Evol 2:33 (doi:10.3389/fevo.2014.00033)

Bengtsson M, Jaastad G, Knudsen G, Kobro S, Bäckman A-C, Pettersson E, Witzgall P (2006). Plant volatiles mediate attraction to host and non-host plant in apple fruit moth,Argyresthia conjugella . Entomolgia Experimentalis et Applicata 118:77–85. (doi:10.1111/j.1570-7458.2006.00359.x)

Borrero-Echeverry F, Bengtsson M, Nakamuta K, Witzgall P (2018). Plant odour and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72:2225-2233. (doi:10.1111/evo.13571)

Boughman JW (2002). How sensory drive can promote speciation. Trends in Ecology and Evolution 17:571-577. (doi:10.1016/S0169-5347(02)02595-8)

Bradley JD, Tremewan WG, Smith A (1979). British tortricoid moths. Tortricidae: Olethreutinae. London, UK, The Ray Society.

Bruce TJA, Pickett JA (2011). Perception of plant volatile blends by herbivorous insects - finding the right mix. Phytochemistry 72:1605-1611. (doi:10.1016/j.phytochem.2011.04.011)

Cao D, Liu Y, Wei J, Liao X, Walker WB, Li J, Wang G (2014). Identification of candidate olfactory genes inChilo suppressalis by antennal transcriptome analysis. International Journal of Biological Science 10:846-860. (doi:10.7150/ijbs.9297))

Carde RT, Minks AK (1995). Control of moth pests by mating disruption: successes and constraints. Annual Review of Entomology 40:559-585. (doi:10.1146/annurev.en.40.010195.003015)

Carde AM, Baker TC, Carde RT (1979). Identification of a four-component sex pheromone of the female Oriental fruit moth, Grapholitha molesta (Lepidoptera: Tortricidae). Journal of Chemical Ecology 5:423-427. (doi:https://doi.org/10.1007/BF00987927)

Carson R (1962). Silent Spring. Houghton Mifflin, Boston.

Cattaneo AM, Gonzalez F, Bengtsson JM, Corey EA, Jacquin-Joly E, Montagne N, Salvagnin U, Walker WB, Witzgall P, Anfora G, Bobkov YV (2017). Candidate pheromone receptors from the insect pest Cydia pomonella respond to pheromone and kairomone components. Scientific Reports 7:41105 (doi:10.1038/srep41105)

Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B 366:1987-1998. (doi: doi:10.1098/rstb.2010.0390)

Chang XQ, Nie XP, Zhang Z, Zeng FF, Lv L, Zhang S, Wang MQ (2017). De novo analysis of the oriental armywormMythimna separata antennal transcriptome and expression patterns of odorant-binding proteins. Comparative Biochemistry and Physiology D 22:120-130. (doi:10.1016/j.cbd.2017.03.001)

Chmiel JA, Daisley BA, Burton JP, Reid G (2019). Deleterious effects of neonicotinoid pesticides onDrosophila melanogaster immune pathways. mBio 10:e01395-19. (doi:10.1128/mBio.01395-19)

Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors inDrosophila . Neuron 22:327-38. (doi:10.1016/S0896-6273(00)81093-4)

Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M (2019). Insect odorscapes: from plant volatiles to natural olfactory scenes. Frontiers in Physiology 10:972. (doi:10.3389/fphys.2019.00972)

Corcoran JA, Jordan MD, Thrimawithana AH, Crowhurst RN, Newcomb RD (2015). The peripheral olfactory repertoire of the lightbrown apple moth, Epiphyas postvittana . PLoS One 10:e0128596. (doi:10.1371/journal.pone.0128596)

Couto A, Alenius M, Dickson BJ (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology 15:1535-1547. (doi:10.1016/j.cub.2005.07.034)

Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018). Increase in crop losses to insect pests in a warming climate. Science 361:916-919. (doi:10.1126/science.aat3466)

Dietrich M (2003). Richard Goldschmidt: hopeful monsters and other ’heresies’. Nature Reviews Genetics 4:68-74. (doi:10.1038/nrg979)

Dobritsa AA, Van Naters WVDG, Warr CG, Steinbrecht RA, Carlson JR (2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827-841. (doi:10.1016/S0896-6273(03)00094-1)

Dong J, Song Y, Li W, Shi J, Wang Z (2016). Identification of putative chemosensory receptor genes from theAthetis dissimilis antennal transcriptome. PLoS One 11:e0147768. (doi:doi:10.1371/journal.pone.0147768)

Du L, Zhao X, Liang X, Gao X, Liu Y, Wang G (2018). Identification of candidate chemosensory genes inMythimna separata by transcriptomic analysis. BMC Genomics 19:518. (doi:10.1186/s12864-018-4898-0)

El-Sayed AM (2019). The pherobase: database of pheromones and semiochemicals. www.pherobase.com.

El-Sayed A, Unelius RC, Liblikas I, Löfqvist J, Bengtsson M, Witzgall P (1998). Effect of codlemone isomers on codling moth (Lepidoptera: Tortricidae) male attraction. Environmental Entomology 27:1250-1254. (doi:10.1093/ee/27.5.1250)

El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009). Potential of “lure and kill” in long-term pest management and eradication of invasive species. Journal of Economic Entomology 102:815-835. (doi:10.1603/029.102.0301)

Evenden ML, Silk PJ (2016). The influence of Canadian research on semiochemical-based management of forest insect pests in Canada. The Canadian Entomologist 148:S170–S209 (doi:10.4039/tce.2015.17)

Feng B, Guo Q, Zheng K, Qin Y, Du Y (2017). Antennal transcriptome analysis of the piercing mothOraesia emarginata (Lepidoptera: Noctuidae). PLoS One 12:e0179433. (doi:10.1371/journal.pone.0179433)

Fleischer J, Pregitzer P, Breer H, Krieger J (2018). Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences 75:485-508. (doi:10.1007/s00018-017-2627-5)

Frerot B, Priesner E, Gallois M (1979). A sex attractant for the green budworm moth, Hedya nubiferana . Zeitschrift für Naturforschung 34c:1248-1252. (doi:10.1515/znc-1979-1229)

Godfray HCJ, Blacquiere T, Field LM, Hails RS, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2015). A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B 282:20151821. (doi:10.1098/rspb.2015.1821)

Gonzalez F, Bengtsson JM, Walker WB, Rodrigues Sousa MF, Cattaneo AM, Montagné N, Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. (2015). A conserved odorant receptor detects the same 1-indanone analogs in a tortricid and a noctuid moth. Frontires in Ecology and Evolution 3:131 (doi: 10.3389/fevo.2015.00131)

Gonzalez F, Witzgall P, Walker WB. (2016). Protocol for heterologous expression of insect odourant receptors in Drosophila . Front Ecol Evol 4:24 (doi:10.3389/fevo.2016.00024)

Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S (2015). Digital in vivo 3D atlas of the antennal lobe ofDrosophila melanogaster . Journal of Comparative Neurology 523:530-544. (doi:10.1002/cne.23697)

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644-652. (doi:10.1038/nbt.1883)

Gregg PC, Del Socorro AP, Landolt PJ (2018). Advances in attract-and-kill for agricultural pests: beyond pheromones. Annual Review of Entomology 63:453-470. (doi:10.1146/annurev-ento-031616-035040)

Gonzalez F, Witzgall P, Walker WB. 2017. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Scientific Reports 7:41829 (doi:10.1038/srep41829)

Gonzalez F, Sousa M, Conchou L, Walker WB, Chakraborty A, Karlsson M, Birgersson G, Bengtsson M, Alsanius B, Knight A, Witzgall P (2020). An endophytic yeast odorant mediates codling moth attraction to apple (submitted).

Hallem EA, Ho MG, Carlson JR (2004). The molecular basis of odor coding in the Drosophila antenna. Cell 117:965-979. (doi:10.1016/j.cell.2004.05.012)

Hathaway DO, McGovern TP, Beroza M, Moffitt HR, McDonough LM, Butt BA (1974). An inhibitor of sexual attraction of male codling moths to a synthetic sex pheromone and virgin females in traps. Environmental Entomology 3:522–524. (doi:10.1093/ee/3.3.522)

Jactel H, Verheggen F, Thiéry D, Escobar-Gutiérrez AJ, Gachet E, Desneux N, Neonicotinoids Working Group (2019). Alternatives to neonicotinoids. Environment International 129:423-429. (doi:10.1016/j.envint.2019.04.045)

Jia X-J, Wang H-X, Yan Z-G, Zhang M-Z, Wei C-H, Qin X-C, Ji W-R, Falabella P, Du Y-L (2016). Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Scientific Reports 6:29067. (doi:10.1038/srep29067)

Jia X, Zhang X, Liu H, Wang R, Zhang T (2018). Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella . PLoS One 13:e0189889. (doi:10.1371/journal.pone.0189889)

Jiang XJ, Guo H, Di C, Yu S, Zhu L, Huang LQ, Wang CZ (2014). Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpaspecies. Insect Biochemistry and Molecular Biology 48:63-74. (doi:10.1016/j.ibmb.2014.02.010)

Jósvai JK, Koczor S, Tóth M (2016). Traps baited with pear ester and acetic acid attract both sexes of Hedya nubiferana (Lepidoptera: Tortricidae). Journal of Applied Entomology 140:81–90. (doi:10.1111/jen.12216)

Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA, Bruce TJA, Pickett JA (2014). Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philosophical Transactions of the Royal Society B 369:20120284. (doi:10.1098/rstb.2012.0284)

Knight AL, Light DM (2013). Adding microencapsulated pear ester to insecticides for control of Cydia pomonella (Lepidoptera: Tortricidae) in apple. Pest Managment Science 69:66-74. (doi:10.1002/ps.3363)

Knight AL, Stelinski LL, Hebert V, Gut L, Light D, Brunner J (2012). Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology 136:79-86. (doi:10.1111/j.1439-0418.2011.01633.x)

Knight A, Light D, Chebny V (2013). Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers. Journal of Applied Entomology 137:214-224. (doi:10.1111/j.1439-0418.2012.01715.x)

Knight AL, Mujica V, Herrera SL, Tasin M (2019). Addition of terpenoids to pear ester plus acetic acid increases catches of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology 143:942–947. (doi:10.1111/jen.12682)

Knudsen GK, Tasin M (2015). Spotting the invaders: A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards. Basic and Applied Ecology 16:354-364. (doi:10.1016/j.baae.2015.03.006)

Knudsen GK, Bengtsson M, Kobro S, Jaastad G, Hofsvang T, Witzgall P (2008). Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiological Entomology 33:1-6. (doi:10.1111/j.1365-3032.2007.00592.x)

Knudsen GK, Norli HR, Tasin M (2017). The ratio between field attractive and background volatiles encodes host-plant recognition in a specialist moth. Frontiers in Plant Science 8:2206. (doi:10.3389/fpls.2017.02206)

Krieger J, Große‐Wilde E, Gohl T, Breer H (2005). Candidate pheromone receptors of the silkmoth Bombyx mori . European Journal of Neuroscience 21:2167-2176. (doi:10.1111/j.1460-9568.2005.04058.x)

Krieger J, Gondesen I, Forstner M, Gohl T, Dewer Y, Breer H (2009). HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of maleHeliothis virescens . Chemical Senses 34:469-477. (doi:10.1093/chemse/bjp010)

Koenig C, Hirsh A, Bucks S, Klinner C, Vogel H, Shukla A, Mansfield JH, Morton B, Hansson BS, Grosse-Wilde E (2015). A reference gene set for chemosensory receptor genes ofManduca sexta . Insect Biochemistry and Molecular Biology 66:51-63. (doi:10.1016/j.ibmb.2015.09.007)

Kovanci OB (2015). Co-application of microencapsulated pear ester and codlemone for mating disruption ofCydia pomonella . Journal of Pest Science 88:311-319. (doi:10.1007/s10340-014-0619-x)

Langmead B, Trapnell C, Pop M, Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25. (doi:10.1186/gb-2009-10-3-r25)

Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin E, Hedenström E, Hansson BS, Gustavsson A-L, Bengtsson M, Birgersson G, Walker WB, Dweck H, Becher PG, Witzgall P (2017). A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology 15:88 (doi:10.1186/s12915-017-0427-x)

Li B, Dewey CN (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. (doi:10.1186/1471-2105-12-323)

Li G, Du J, Li Y, Wu J (2015). Identification of putative olfactory genes from the oriental fruit mothGrapholita molesta via an antennal transcriptome analysis. PLoS One 10(11):e0142193. (doi:10.1371/journal.pone.0142193)

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R and 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25 :2078-2079. (doi:10.1093/bioinformatics/btp352)

Li W, Godzik A (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658-1659. (doi:10.1093/bioinformatics/btl158)

Liu Z, Smagghe G, Lei Z, Wang JJ (2016). Identification of male-and female-specific olfaction genes in antennae of the Oriental fruit fly (Bactrocera dorsalis ). PloS One 11:e0147783. (doi:10.1371/journal.pone.0147783)

Light DM (2016). Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester. Environmental Entomology 45:700-707. (doi: 10.1093/ee/nvw017)

Light DM, Beck JJ (2012). Behavior of codling moth (Lepidoptera: Tortricidae) neonate larvae on surfaces treated with microencapsulated pear ester. Environmental Entomology 41:603-611. (doi:10.1603/EN11273)

Light DM, Knight A (2005). Specificity of codling moth (Lepidoptera: Tortricidae) for the host plant kairomone, ethyl (2E ,4Z )-2,4-decadienoate: field bioassays with pome fruit volatiles, analogue, and isomeric compounds. Journal of Agricultural and Food Chemistry 53:4046-53. (doi:10.1021/jf040431r)

Light DM, Knight AL (2011). Microencapsulated pear ester enhances insecticide efficiacy in walnuts for codling moth (Lepidoptera: Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). Journal of Economic Entomology 104:1309-1315. (doi:10.1603/EC11058)

Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G, Roitman J, Campbell BC (2001). A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333-338. (doi:10.1007/s001140100243)

Longing SD, Peterson EM, Jewett CT, Rendon BM, Discua SA, Wooten KJ, Subbiah S, Smith PN, McIntyre NE (2020). Exposure of foraging bees (Hymenoptera) to neonicotinoids in the U.S. southern high plains. Environmental Entomology (in press). (doi:10.1093/ee/nvaa003)

Lu PF, Wang R, Wang CZ, Luo YQ, Qiao HL (2015). Sexual differences in electrophysiological and behavioral responses of Cydia molesta to peach and pear volatiles. Entomologia Experimentalis et Applicata 157:279-290. (doi:10.1111/eea.12362)

McBride CS, Arguello JR (2007). FiveDrosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177:1395-1416. (doi:10.1534/genetics.107.078683)

Menuz K, Larter NK, Park J, Carlson JR (2014). An RNA-seq screen of the Drosophila antenna identifies a transporter necessary for ammonia detection. PLoS Genetics 10:e1004810. (doi:10.1371/journal.pgen.1004810)

Muench D, Galizia CG (2016). DoOR 2.0-Comprehensive mapping of Drosophila melanogaster odorant responses. Scientific Reports 6:21841. (doi:10.1038/srep21841)

Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S (2010). Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. Journal of Experimental Biology 213:3388-3397. (doi:10.1242/jeb.046284)

Park KC, Withers TM, Suckling DM, and Better Border Biosecurity Collaboration. 2015. Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range. Journal of Insect Physiology 78:33-46. (doi:10.1016/j.jinsphys.2015.04.010)

Paterson, H. 1978. More evidence against speciation by reinforcement. South African Journal of Science 74:369-371

Phelan PL (1992). Evolution of sex pheromones and the role of assymetric tracking. Pp. 265-314 in Roitberg BD, Isman MB (eds) Insect Chemical Ecology: An evolutionary Approach. New York: Chapman and Hall.

Porcel M, Sjöberg P, Swiergiel W, Dinwiddie R, Rämert B, Tasin M (2015). Mating disruption ofSpilonota ocellana and other apple orchard tortricids using a multispecies reservoir dispenser. Pest Management Science 71:562-570. (doi:10.1002/ps.3844)

Ramdya P, Benton R (2010). Evolving olfactory systems on the fly. Trends in Genetics 26:307-316. (doi:10.1016/j.tig.2010.04.004)

Rauscher S, Arn H, Guerin P (1984). Effects of dodecyl acetate and Z-10-tridecenyl acetate on attraction ofEupoecilia ambiguella males to the main sex pheromone component, Z-9-Dodecenyl acetate. Journal of Chemical Ecology 10:253-264. (doi:10.1007/BF00987853)

Reddy GV, Guerrero A (2004). Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science 9:253-261. (doi:10.1016/j.tplants.2004.03.009)

Reddy GV, Guerrero A (2010). New pheromones and insect control strategies. Vitamins and Hormones 83:493-519. (doi:10.1016/S0083-6729(10)83020-1)

Regier JC, Brown JW, Mitter C, Baixeras J, Cho S, Cummings MP, Zwick A (2012). A molecular phylogeny for the leafroller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PloS One 7:e35574. (doi:10.1371/journal.pone.0035574)

Ridgway RL, Silverstein RM, Inscoe MN (1990). Behavior-modifying chemicals for insect management: applications of pheromones and other attractants. Marcel Dekker, New York.

Robertson HM (2019). Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology 64:227-242. (doi:10.1146/annurev-ento-020117-043322)

Rojas V, Jimenez H, Palma-Millanao R, Gonzalez-Gonzalez A, Machuca J, Godoy R, Ceballos R, Mutis A, Venthur H (2018). Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant-binding and chemosensory proteins. Comparative Biochemistry and Physiology D 27:1-12. (doi:10.1016/j.cbd.2018.04.003)

Rosenthal GG (2017). Mate choice: the evolution of sexual decision making from microbes to humans. Princeton Univ. Press, Princeton.

Rouyar A, Deisig N, Dupuy F, Limousin D, Wycke MA, Renou M, Anton S (2015). Unexpected plant odor responses in a moth pheromone system. Frontiers in Physiology 6:148. (doi:10.3389/fphys.2015.00148)

Schmidt S, Anfora G, Ioriatti C, Germinara GS, Rotundo G, De Cristofaro A (2007). Biological activity of ethyl (E,Z)-2,4-decadienoate on different tortricid species: electrophysiological responses and field tests. Environmental Entomology 36:1025-1031. (doi:10.1603/0046-225X(2007)36[1025:BAOEEO]2.0.CO;2)

Schmidt S, Tomasi C, Pasqualini E, Ioriatti C (2008). The biological efficacy of pear ester on the activity of granulosis virus for codling moth. Journal of Pest Science 81:29-34. (doi:10.1007/s10340-007-0181-x)

Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarli D, Ammer C, Bauhus J, Fischer M, Habel JC, Linsenmair KE, Nauss T, Penone C, Prati D, Schall P, Schulze E-D, Vogt J, Wöllauer S, Weisser WW (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671-674. (doi:10.1038/s41586-019-1684-3)

Steinwender B, Thrimawithana AH, Crowhurst RN, Newcomb RD (2015). Pheromone receptor evolution in the cryptic leafroller species, Ctenopseustis obliquana and C. herana . Journal of Molecular Evolution 80, 42-56. (doi:10.1007/s00239-014-9650-z)

Stenberg JA, Heil M, Åhman I, Björkman C (2015). Optimizing crops for biocontrol of pests and disease. Trends in Plant Science 20:698-712. (doi:10.1016/j.tplants.2015.08.007)

Suckling DM, Stringer LD, Stephens AE, Woods B, Williams DG, Baker G, El‐Sayed AM (2014). From integrated pest management to integrated pest eradication: technologies and future needs. Pest Management Science 70:179-189. (doi:10.1002/ps.3670)

Tamiru A, Khan ZR, Bruce TJ (2015). New directions for improving crop resistance to insects by breeding for egg induced defence. Current Opinion in Insect Science 9:51-55. (doi:10.1016/j.cois.2015.02.011)

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-2729. (doi:10.1093/molbev/mst197)

Tasin M, Bäckman A-C, Anfora G, Carlin S, Ioriatti C, Witzgall P (2010). Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chemical Senses 35:57-64. (doi:10.1093/chemse/bjp082)

Tian Z, Sun L, Li Y, Quan L, Zhang H, Yan W, Yue Q, Qiu G (2018). Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics 19:544 (doi:10.1186/s12864-018-4900-x)

Trapnell C (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511-515. (doi:10.1038/nbt.1621)

Trona F, Anfora G, Bengtsson M, Witzgall P, Ignell R (2010). Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella . Journal of Experimental Biology 213:4291-4303. (doi:10.1242/ jeb.047365)

Trona F, Anfora G, Balkenius A, Bengtsson M, Tasin M, Knight A, Janz N, Witzgall P, Ignell R (2013). Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proceedings of the Royal Society B 280:20130267. (doi:10.1098/rspb.2013.0267)

Varela N, Avilla J, Gemeno C, Anton S (2011). Ordinary glomeruli in the antennal lobe of male and female tortricid moth Grapholita molesta (Busck)(Lepidoptera: Tortricidae) process sex pheromone and host-plant volatiles. Journal of Experimental Biology 214:637-645. (doi:10.1242/jeb.047316)

Wagner DL (2020). Insect declines in the Anthropocene. Annual Review of Entomology 65:457-80 (doi:10.1146/annurev-ento-011019-025151

Walker WB, Gonzalez F, Garczynski SF, Witzgall P (2016). The chemosensory receptors of codling mothCydia pomonella - expression in larvae and adults. Scientific Reports 6:23518. (doi:10.1038/srep23518)

Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, … & Wang G (2019). A chromosome-level genome assembly ofCydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications 10:1-14. (doi:10.1038/s41467-019-12175-9)

Witzgall P, Bengtsson M, Unelius CR, Löfqvist J. (1993). Attraction of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) to female sex pheromone (E ,E )-8,10-dodecadien‑1‑yl acetate, is inhibited by geometric isomers (E ,Z ), (Z ,E ) and (Z ,Z ). Journal of Chemical Ecology 19:1917-1928. (doi:10.1007/BF00983796)

Witzgall P, Chambon J-P, Bengtsson M, Unelius CR, Appelgren M, Makranczy G, Muraleedharan N, Reed DW, Hellrigl K, Buser H-R, Hallberg E, Bergström G, Tóth M, Löfstedt C, Löfqvist J. (1996). Sex pheromones and attractants in the Eucosmini and Grapholitini (Lepidoptera, Tortricidae). Chemoecology 7:13-23. (doi:10.1007/BF01240633)

Witzgall P, Bengtsson M, Rauscher S, Liblikas I, Bäckman A-C, Coracini M, Anderson P, Löfqvist J (2001). Identification of further sex pheromone synergists in the codling moth,Cydia pomonella . Entomologia Experimentalis et Applicata 101:131-141. (doi:10.1046/j.1570-7458.2001.00898.x)

Witzgall P, Stelinski L, Gut L, Thomson D (2008). Codling moth management and chemical ecology. Annual Review of Entomology 53:503–522. (doi:10.1146/annurev.ento.53.103106.093323)

Witzgall P, Kirsch P, Cork A (2010a). Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36:80-100. (doi:10.1007/s10886-009-9737-y)

Witzgall P, Trematerra P, Liblikas I, Bengtsson M, Unelius CR. (2010b). Pheromone communication channels in tortricid moths: lower specificity of alcohol vs. acetate geometric isomer blends. Bulletin of Entomological Research 100:225-230. (doi: doi:10.1017/S0007485309990186)

Yamamuro M, Komuro T, Kamiya H, Kato T, Hasegawa H, Kameda Y (2019). Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366:620-623. (doi:10.1126/science.aax3442)

Yang S, Cao D, Wang G, Liu Y (2017). Identification of genes involved in chemoreception in Plutella xyllostella by antennal transcriptome analysis. Scientific Reports 7:1-16. (doi:10.1038/s41598-017-11646-7)

Zeng F-F, Zhao Z-F, Yan M-J, Zhou W, Zhang Z, Zhang A, Lu Z-X, Wang M-Q (2015). Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder,Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS One 10:e0144267. (doi:10.1371/journal.pone.0144267)

Zhang Y-N, Jin J-Y, Jin R, Xia Y-H, Zhou J-J, Deng J-Y, Dong S-L (2013). Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS One 8:e69715. (doi:10.1371/journal.pone.0069715)

Zhang S, Zhang Z, Wang H, Kong X (2014). Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). Insect Biochemistry and Molecular Biology 52:69-81. (doi:10.1016/j.ibmb.2014.06.006)

Zhang J, Wang B, Dong S, Cao D, Dong J, Walker WB, Liu Y, Wang G (2015). Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H .assulta . PloS One 10:e0117054. (doi:10.1371/journal.pone.0117054)

Zhang S-F, Liu H-H, Kong X-B, Wang H-B, Liu F, Zhang Z (2017). Identification and expression profiling of chemosensory genes in Dendrolimus punctatus Walker. Frontiers in Physiology 8:471. (doi:10.3389/fphys.2017.00471)