Literature cited
Ansebo, L., Ignell, R., Löfqvist, J. and
Hansson, B. S. 2005. Responses to sex pheromone and plant odours by
olfactory receptor neurons housed in sensilla auricillica of the codling
moth, Cydia pomonella (Lepidoptera: Tortricidae). Journal of
Insect Physiology 51:1066-1074.
(doi:10.1016/j.jinsphys.2005.05.003)
Arguello JR, Cardoso-Moreira M, Grenier
JK, Gottipati S, Clark AG, Benton R (2016). Extensive local adaptation
within the chemosensory system following Drosophila
melanogaster’s global expansion. Nature Communications 7:11855.
(doi:10.1038/ncomms11855)
Arn H, Schwarz C, Limacher H, Mani E
(1974). Sex attractant inhibitors of the codling moth Laspeyresia
pomonella L. Experientia 30:1142-1144.
(doi:10.1007/BF01923655)
Arn H, Städler E, Rauscher S (1975). The
electroantennographic detector - a selective and sensitive tool in the
gas chromatographic analysis of insect pheromones. Zeitschrift für
Naturforschung 30c:722-725.
(doi:10.1515/znc-1975-11-1204)
Arn H, Rauscher S, Schmid A (1979). Sex
attractant formulations and traps for the grape moth Eupoecilia
ambiguella Hb. Mitteilungen der Schweizer Entomologischen Gesellschaft
52:49-55.
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G,
de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A,
Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir
K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012). ExPASy: SIB
bioinformatics resource portal. Nucleic Acids Research 40:W597-W603.
(doi:10.1093/nar/gks400)
Bäckman A-C, Bengtsson M, Witzgall P.
1997. Pheromone release by individual females of codling moth,Cydia pomonella L. (Lepidoptera: Tortricidae). Journal of
Chemical Ecology 23:807-815.
(doi:10.1023/B:JOEC.0000006412.16914.09)
Bäckman A-C, Anderson P, Bengtsson M,
Löfqvist J, Unelius CR, Witzgall P (2000). Antennal response of codling
moth males, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to
the geometric isomers of codlemone and codlemone acetate. Journal of
Comparative Physiology A 186:513-519.
(doi:10.1007/s003590000)
Baker TC (2002). Mechanism for saltational shifts in
pheromone communication systems. Proceedings of the National Acadademy
of Science USA 99:13368-13370.
(doi:10.1073/pnas.222539799)
Bengtsson M, Liljefors T, Hansson BS,
Löfstedt C, Copaja SV (1990). Structure-activity relationships for
chain-shortened analogs of (Z )-5-decenyl acetate, a pheromone
component of the turnip moth, Agrotis segetum . Journal of
Chemical Ecology 16:667-684.
(doi:10.1007/BF01016478)
Bengtsson JM, Trona F, Montagne N, Anfora
G, Ignell R, Witzgall P, Jacquin-Joly E (2012). Putative chemosensory
receptors of the codling moth, Cydia pomonella , identified by
antennal transcriptome analysis. PLoS One 7(2):e31620.
(doi:10.1371/journal.pone.0031620)
Bengtsson JM, Gonzalez F, Cattaneo AM,
Montagne N, Walker WB, Bengtsson M, Anfora G, Ignell R, Jacquin-Joly E,
Witzgall P (2014). A predicted sex pheromone receptor of codling mothCydia pomonella detects the plant volatile pear ester. Front Ecol
Evol 2:33
(doi:10.3389/fevo.2014.00033)
Bengtsson M, Jaastad G, Knudsen G, Kobro
S, Bäckman A-C, Pettersson E, Witzgall P (2006). Plant volatiles mediate
attraction to host and non-host plant in apple fruit moth,Argyresthia conjugella . Entomolgia Experimentalis et Applicata
118:77–85.
(doi:10.1111/j.1570-7458.2006.00359.x)
Borrero-Echeverry F, Bengtsson M, Nakamuta K, Witzgall P
(2018). Plant odour and sex pheromone are integral elements of specific
mate recognition in an insect herbivore. Evolution 72:2225-2233.
(doi:10.1111/evo.13571)
Boughman JW (2002). How sensory drive can promote
speciation. Trends in Ecology and Evolution 17:571-577.
(doi:10.1016/S0169-5347(02)02595-8)
Bradley JD, Tremewan WG, Smith A
(1979). British tortricoid moths. Tortricidae: Olethreutinae.
London, UK, The Ray
Society.
Bruce TJA, Pickett JA (2011). Perception of plant
volatile blends by herbivorous insects - finding the right mix.
Phytochemistry 72:1605-1611.
(doi:10.1016/j.phytochem.2011.04.011)
Cao D, Liu Y, Wei J, Liao X, Walker WB,
Li J, Wang G (2014). Identification of candidate olfactory genes inChilo suppressalis by antennal transcriptome analysis.
International Journal of Biological Science 10:846-860.
(doi:10.7150/ijbs.9297))
Carde RT, Minks AK (1995). Control of moth pests by
mating disruption: successes and constraints. Annual Review of
Entomology 40:559-585.
(doi:10.1146/annurev.en.40.010195.003015)
Carde AM, Baker TC, Carde RT (1979).
Identification of a four-component sex pheromone of the female Oriental
fruit moth, Grapholitha molesta (Lepidoptera: Tortricidae).
Journal of Chemical Ecology 5:423-427.
(doi:https://doi.org/10.1007/BF00987927)
Carson R (1962). Silent Spring. Houghton Mifflin,
Boston.
Cattaneo AM, Gonzalez F, Bengtsson JM,
Corey EA, Jacquin-Joly E, Montagne N, Salvagnin U, Walker WB, Witzgall
P, Anfora G, Bobkov YV (2017). Candidate pheromone receptors from the
insect pest Cydia pomonella respond to pheromone and kairomone
components. Scientific Reports 7:41105
(doi:10.1038/srep41105)
Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves
J, Grant WP (2011). The development, regulation and use of biopesticides
for integrated pest management. Philosophical Transactions of the Royal
Society of London B 366:1987-1998. (doi:
doi:10.1098/rstb.2010.0390)
Chang XQ, Nie XP, Zhang Z, Zeng FF, Lv L,
Zhang S, Wang MQ (2017). De novo analysis of the oriental armywormMythimna separata antennal transcriptome and expression patterns
of odorant-binding proteins. Comparative Biochemistry and Physiology D
22:120-130.
(doi:10.1016/j.cbd.2017.03.001)
Chmiel JA, Daisley BA, Burton JP, Reid G
(2019). Deleterious effects of neonicotinoid pesticides onDrosophila melanogaster immune pathways. mBio 10:e01395-19.
(doi:10.1128/mBio.01395-19)
Clyne PJ, Warr CG, Freeman MR, Lessing D,
Kim J, Carlson JR (1999). A novel family of divergent
seven-transmembrane proteins: candidate odorant receptors inDrosophila . Neuron 22:327-38.
(doi:10.1016/S0896-6273(00)81093-4)
Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou
M (2019). Insect odorscapes: from plant volatiles to natural olfactory
scenes. Frontiers in Physiology 10:972.
(doi:10.3389/fphys.2019.00972)
Corcoran JA, Jordan MD, Thrimawithana AH,
Crowhurst RN, Newcomb RD (2015). The peripheral olfactory repertoire of
the lightbrown apple moth, Epiphyas postvittana . PLoS One
10:e0128596.
(doi:10.1371/journal.pone.0128596)
Couto A, Alenius M, Dickson BJ (2005). Molecular,
anatomical, and functional organization of the Drosophila olfactory
system. Current Biology 15:1535-1547.
(doi:10.1016/j.cub.2005.07.034)
Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS,
Merrill SC, Huey RB, Naylor RL (2018). Increase in crop losses to insect
pests in a warming climate. Science 361:916-919.
(doi:10.1126/science.aat3466)
Dietrich M (2003). Richard Goldschmidt: hopeful monsters
and other ’heresies’. Nature Reviews Genetics 4:68-74.
(doi:10.1038/nrg979)
Dobritsa AA, Van Naters WVDG, Warr CG,
Steinbrecht RA, Carlson JR (2003). Integrating the molecular and
cellular basis of odor coding in the Drosophila antenna. Neuron
37:827-841.
(doi:10.1016/S0896-6273(03)00094-1)
Dong J, Song Y, Li W, Shi J, Wang Z
(2016). Identification of putative chemosensory receptor genes from theAthetis dissimilis antennal transcriptome. PLoS One 11:e0147768.
(doi:doi:10.1371/journal.pone.0147768)
Du L, Zhao X, Liang X, Gao X, Liu Y, Wang
G (2018). Identification of candidate chemosensory genes inMythimna separata by transcriptomic analysis. BMC Genomics
19:518.
(doi:10.1186/s12864-018-4898-0)
El-Sayed AM (2019). The pherobase: database of pheromones
and semiochemicals.
www.pherobase.com.
El-Sayed A, Unelius RC, Liblikas I, Löfqvist J, Bengtsson
M, Witzgall P (1998). Effect of codlemone isomers on codling moth
(Lepidoptera: Tortricidae) male attraction. Environmental Entomology
27:1250-1254.
(doi:10.1093/ee/27.5.1250)
El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH
(2009). Potential of “lure and kill” in long-term pest management and
eradication of invasive species. Journal of Economic Entomology
102:815-835.
(doi:10.1603/029.102.0301)
Evenden ML, Silk PJ (2016). The influence of Canadian
research on semiochemical-based management of forest insect pests in
Canada. The Canadian Entomologist 148:S170–S209
(doi:10.4039/tce.2015.17)
Feng B, Guo Q, Zheng K, Qin Y, Du Y
(2017). Antennal transcriptome analysis of the piercing mothOraesia emarginata (Lepidoptera: Noctuidae). PLoS One
12:e0179433.
(doi:10.1371/journal.pone.0179433)
Fleischer J, Pregitzer P, Breer H, Krieger J (2018).
Access to the odor world: olfactory receptors and their role for signal
transduction in insects. Cellular and Molecular Life Sciences
75:485-508.
(doi:10.1007/s00018-017-2627-5)
Frerot B, Priesner E, Gallois M (1979). A
sex attractant for the green budworm moth, Hedya nubiferana .
Zeitschrift für Naturforschung 34c:1248-1252.
(doi:10.1515/znc-1979-1229)
Godfray HCJ, Blacquiere T, Field LM, Hails RS, Potts SG,
Raine NE, Vanbergen AJ, McLean AR (2015). A restatement of recent
advances in the natural science evidence base concerning neonicotinoid
insecticides and insect pollinators. Proceedings of the Royal Society B
282:20151821.
(doi:10.1098/rspb.2015.1821)
Gonzalez F, Bengtsson JM, Walker WB, Rodrigues Sousa MF,
Cattaneo AM, Montagné N, Fouchier A, Anfora G, Jacquin-Joly E, Witzgall
P, Ignell R, Bengtsson M. (2015). A conserved odorant receptor detects
the same 1-indanone analogs in a tortricid and a noctuid moth. Frontires
in Ecology and Evolution 3:131 (doi:
10.3389/fevo.2015.00131)
Gonzalez F, Witzgall P, Walker WB.
(2016). Protocol for heterologous expression of insect odourant
receptors in Drosophila . Front Ecol Evol 4:24
(doi:10.3389/fevo.2016.00024)
Grabe V, Strutz A, Baschwitz A, Hansson
BS, Sachse S (2015). Digital in vivo 3D atlas of the antennal lobe ofDrosophila melanogaster . Journal of Comparative Neurology
523:530-544.
(doi:10.1002/cne.23697)
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA,
Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E,
Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C,
Lindblad-Toh K, Friedman N, Regev A (2011). Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nature
Biotechnology 29:644-652.
(doi:10.1038/nbt.1883)
Gregg PC, Del Socorro AP, Landolt PJ (2018). Advances in
attract-and-kill for agricultural pests: beyond pheromones. Annual
Review of Entomology 63:453-470.
(doi:10.1146/annurev-ento-031616-035040)
Gonzalez F, Witzgall P, Walker WB. 2017. Antennal
transcriptomes of three tortricid moths reveal putative conserved
chemosensory receptors for social and habitat olfactory cues. Scientific
Reports 7:41829
(doi:10.1038/srep41829)
Gonzalez F, Sousa M, Conchou L, Walker WB, Chakraborty A,
Karlsson M, Birgersson G, Bengtsson M, Alsanius B, Knight A, Witzgall P
(2020). An endophytic yeast odorant mediates codling moth attraction to
apple
(submitted).
Hallem EA, Ho MG, Carlson JR (2004). The
molecular basis of odor coding in the Drosophila antenna. Cell
117:965-979.
(doi:10.1016/j.cell.2004.05.012)
Hathaway DO, McGovern TP, Beroza M, Moffitt HR, McDonough
LM, Butt BA (1974). An inhibitor of sexual attraction of male codling
moths to a synthetic sex pheromone and virgin females in traps.
Environmental Entomology 3:522–524.
(doi:10.1093/ee/3.3.522)
Jactel H, Verheggen F, Thiéry D, Escobar-Gutiérrez AJ,
Gachet E, Desneux N, Neonicotinoids Working Group (2019). Alternatives
to neonicotinoids. Environment International 129:423-429.
(doi:10.1016/j.envint.2019.04.045)
Jia X-J, Wang H-X, Yan Z-G, Zhang M-Z,
Wei C-H, Qin X-C, Ji W-R, Falabella P, Du Y-L (2016). Antennal
transcriptome and differential expression of olfactory genes in the
yellow peach moth, Conogethes punctiferalis (Lepidoptera:
Crambidae). Scientific Reports 6:29067.
(doi:10.1038/srep29067)
Jia X, Zhang X, Liu H, Wang R, Zhang T
(2018). Identification of chemosensory genes from the antennal
transcriptome of Indian meal moth Plodia interpunctella . PLoS One
13:e0189889.
(doi:10.1371/journal.pone.0189889)
Jiang XJ, Guo H, Di C, Yu S, Zhu L, Huang
LQ, Wang CZ (2014). Sequence similarity and functional comparisons of
pheromone receptor orthologs in two closely related Helicoverpaspecies. Insect Biochemistry and Molecular Biology 48:63-74.
(doi:10.1016/j.ibmb.2014.02.010)
Jósvai JK, Koczor S, Tóth M (2016). Traps
baited with pear ester and acetic acid attract both sexes of Hedya
nubiferana (Lepidoptera: Tortricidae). Journal of Applied Entomology
140:81–90.
(doi:10.1111/jen.12216)
Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA,
Bruce TJA, Pickett JA (2014). Achieving food security for one million
sub-Saharan African poor through push-pull innovation by 2020.
Philosophical Transactions of the Royal Society B 369:20120284.
(doi:10.1098/rstb.2012.0284)
Knight AL, Light DM (2013). Adding
microencapsulated pear ester to insecticides for control of Cydia
pomonella (Lepidoptera: Tortricidae) in apple. Pest Managment Science
69:66-74.
(doi:10.1002/ps.3363)
Knight AL, Stelinski LL, Hebert V, Gut L, Light D,
Brunner J (2012). Evaluation of novel semiochemical dispensers
simultaneously releasing pear ester and sex pheromone for mating
disruption of codling moth (Lepidoptera: Tortricidae). Journal of
Applied Entomology 136:79-86.
(doi:10.1111/j.1439-0418.2011.01633.x)
Knight A, Light D, Chebny V (2013). Monitoring codling
moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and
sex pheromone combo dispensers. Journal of Applied Entomology
137:214-224.
(doi:10.1111/j.1439-0418.2012.01715.x)
Knight AL, Mujica V, Herrera SL, Tasin M (2019). Addition
of terpenoids to pear ester plus acetic acid increases catches of
codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology
143:942–947.
(doi:10.1111/jen.12682)
Knudsen GK, Tasin M (2015). Spotting the invaders: A
monitoring system based on plant volatiles to forecast apple fruit moth
attacks in apple orchards. Basic and Applied Ecology 16:354-364.
(doi:10.1016/j.baae.2015.03.006)
Knudsen GK, Bengtsson M, Kobro S, Jaastad
G, Hofsvang T, Witzgall P (2008). Discrepancy in laboratory and field
attraction of apple fruit moth Argyresthia conjugella to host
plant volatiles. Physiological Entomology 33:1-6.
(doi:10.1111/j.1365-3032.2007.00592.x)
Knudsen GK, Norli HR, Tasin M (2017). The ratio between
field attractive and background volatiles encodes host-plant recognition
in a specialist moth. Frontiers in Plant Science 8:2206.
(doi:10.3389/fpls.2017.02206)
Krieger J, Große‐Wilde E, Gohl T, Breer H
(2005). Candidate pheromone receptors of the silkmoth Bombyx
mori . European Journal of Neuroscience 21:2167-2176.
(doi:10.1111/j.1460-9568.2005.04058.x)
Krieger J, Gondesen I, Forstner M, Gohl
T, Dewer Y, Breer H (2009). HR11 and HR13 receptor-expressing neurons
are housed together in pheromone-responsive sensilla trichodea of maleHeliothis virescens . Chemical Senses 34:469-477.
(doi:10.1093/chemse/bjp010)
Koenig C, Hirsh A, Bucks S, Klinner C,
Vogel H, Shukla A, Mansfield JH, Morton B, Hansson BS, Grosse-Wilde E
(2015). A reference gene set for chemosensory receptor genes ofManduca sexta . Insect Biochemistry and Molecular Biology
66:51-63.
(doi:10.1016/j.ibmb.2015.09.007)
Kovanci OB (2015). Co-application of
microencapsulated pear ester and codlemone for mating disruption ofCydia pomonella . Journal of Pest Science 88:311-319.
(doi:10.1007/s10340-014-0619-x)
Langmead B, Trapnell C, Pop M, Salzberg SL (2009).
Ultrafast and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biology 10:R25.
(doi:10.1186/gb-2009-10-3-r25)
Lebreton S, Borrero-Echeverry F, Gonzalez
F, Solum M, Wallin E, Hedenström E, Hansson BS, Gustavsson A-L,
Bengtsson M, Birgersson G, Walker WB, Dweck H, Becher PG, Witzgall P
(2017). A Drosophila female pheromone elicits species-specific
long-range attraction via an olfactory channel with dual specificity for
sex and food. BMC Biology 15:88
(doi:10.1186/s12915-017-0427-x)
Li B, Dewey CN (2011). RSEM: accurate transcript
quantification from RNA-Seq data with or without a reference genome. BMC
Bioinformatics 12:323.
(doi:10.1186/1471-2105-12-323)
Li G, Du J, Li Y, Wu J (2015).
Identification of putative olfactory genes from the oriental fruit mothGrapholita molesta via an antennal transcriptome analysis. PLoS
One 10(11):e0142193.
(doi:10.1371/journal.pone.0142193)
Li H, Handsaker B, Wysoker A, Fennell T,
Ruan J, Homer N, Marth G, Abecasis G, Durbin R and 1000 Genome Project
Data Processing Subgroup (2009). The sequence alignment/map format and
SAMtools. Bioinformatics 25 :2078-2079.
(doi:10.1093/bioinformatics/btp352)
Li W, Godzik A (2006). Cd-hit: a fast program for
clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics 22:1658-1659.
(doi:10.1093/bioinformatics/btl158)
Liu Z, Smagghe G, Lei Z, Wang JJ (2016).
Identification of male-and female-specific olfaction genes in antennae
of the Oriental fruit fly (Bactrocera dorsalis ). PloS One
11:e0147783.
(doi:10.1371/journal.pone.0147783)
Light DM (2016). Control and monitoring of codling moth
(Lepidoptera: Tortricidae) in walnut orchards treated with novel
high-load, low-density “meso” dispensers of sex pheromone and pear
ester. Environmental Entomology 45:700-707. (doi:
10.1093/ee/nvw017)
Light DM, Beck JJ (2012). Behavior of codling moth
(Lepidoptera: Tortricidae) neonate larvae on surfaces treated with
microencapsulated pear ester. Environmental Entomology 41:603-611.
(doi:10.1603/EN11273)
Light DM, Knight A (2005). Specificity of
codling moth (Lepidoptera: Tortricidae) for the host plant kairomone,
ethyl (2E ,4Z )-2,4-decadienoate: field bioassays with pome
fruit volatiles, analogue, and isomeric compounds. Journal of
Agricultural and Food Chemistry 53:4046-53.
(doi:10.1021/jf040431r)
Light DM, Knight AL (2011). Microencapsulated pear ester
enhances insecticide efficiacy in walnuts for codling moth (Lepidoptera:
Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). Journal of
Economic Entomology 104:1309-1315.
(doi:10.1603/EC11058)
Light DM, Knight AL, Henrick CA,
Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G,
Roitman J, Campbell BC (2001). A pear-derived kairomone with pheromonal
potency that attracts male and female codling moth, Cydia
pomonella (L.). Naturwissenschaften 88:333-338.
(doi:10.1007/s001140100243)
Longing SD, Peterson EM, Jewett CT, Rendon BM, Discua SA,
Wooten KJ, Subbiah S, Smith PN, McIntyre NE (2020). Exposure of foraging
bees (Hymenoptera) to neonicotinoids in the U.S. southern high plains.
Environmental Entomology (in press).
(doi:10.1093/ee/nvaa003)
Lu PF, Wang R, Wang CZ, Luo YQ, Qiao HL
(2015). Sexual differences in electrophysiological and behavioral
responses of Cydia molesta to peach and pear volatiles.
Entomologia Experimentalis et Applicata 157:279-290.
(doi:10.1111/eea.12362)
McBride CS, Arguello JR (2007). FiveDrosophila genomes reveal nonneutral evolution and the signature
of host specialization in the chemoreceptor superfamily. Genetics
177:1395-1416.
(doi:10.1534/genetics.107.078683)
Menuz K, Larter NK, Park J, Carlson JR
(2014). An RNA-seq screen of the Drosophila antenna identifies a
transporter necessary for ammonia detection. PLoS Genetics 10:e1004810.
(doi:10.1371/journal.pgen.1004810)
Muench D, Galizia CG (2016). DoOR
2.0-Comprehensive mapping of Drosophila melanogaster odorant
responses. Scientific Reports 6:21841.
(doi:10.1038/srep21841)
Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S (2010).
Behavioral and neurophysiological responses of an insect to changing
ratios of constituents in host plant-derived volatile mixtures. Journal
of Experimental Biology 213:3388-3397.
(doi:10.1242/jeb.046284)
Park KC, Withers TM, Suckling DM, and
Better Border Biosecurity Collaboration. 2015. Identification of
olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae)
and its implications for host range. Journal of Insect Physiology
78:33-46.
(doi:10.1016/j.jinsphys.2015.04.010)
Paterson, H. 1978. More evidence against speciation by
reinforcement. South African Journal of Science 74:369-371
Phelan PL (1992). Evolution of sex pheromones and the
role of assymetric tracking. Pp. 265-314 in Roitberg BD, Isman MB (eds)
Insect Chemical Ecology: An evolutionary Approach. New York: Chapman and
Hall.
Porcel M, Sjöberg P, Swiergiel W,
Dinwiddie R, Rämert B, Tasin M (2015). Mating disruption ofSpilonota ocellana and other apple orchard tortricids using a
multispecies reservoir dispenser. Pest Management Science 71:562-570.
(doi:10.1002/ps.3844)
Ramdya P, Benton R (2010). Evolving olfactory systems on
the fly. Trends in Genetics 26:307-316.
(doi:10.1016/j.tig.2010.04.004)
Rauscher S, Arn H, Guerin P (1984).
Effects of dodecyl acetate and Z-10-tridecenyl acetate on attraction ofEupoecilia ambiguella males to the main sex pheromone component,
Z-9-Dodecenyl acetate. Journal of Chemical Ecology 10:253-264.
(doi:10.1007/BF00987853)
Reddy GV, Guerrero A (2004). Interactions of insect
pheromones and plant semiochemicals. Trends in Plant Science 9:253-261.
(doi:10.1016/j.tplants.2004.03.009)
Reddy GV, Guerrero A (2010). New pheromones and insect
control strategies. Vitamins and Hormones 83:493-519.
(doi:10.1016/S0083-6729(10)83020-1)
Regier JC, Brown JW, Mitter C, Baixeras J, Cho S,
Cummings MP, Zwick A (2012). A molecular phylogeny for the leafroller
moths (Lepidoptera: Tortricidae) and its implications for classification
and life history evolution. PloS One 7:e35574.
(doi:10.1371/journal.pone.0035574)
Ridgway RL, Silverstein RM, Inscoe MN (1990).
Behavior-modifying chemicals for insect management: applications of
pheromones and other attractants. Marcel Dekker, New
York.
Robertson HM (2019). Molecular evolution of the major
arthropod chemoreceptor gene families. Annual Review of Entomology
64:227-242.
(doi:10.1146/annurev-ento-020117-043322)
Rojas V, Jimenez H, Palma-Millanao R, Gonzalez-Gonzalez
A, Machuca J, Godoy R, Ceballos R, Mutis A, Venthur H (2018). Analysis
of the grapevine moth Lobesia botrana antennal transcriptome and
expression of odorant-binding and chemosensory proteins. Comparative
Biochemistry and Physiology D 27:1-12.
(doi:10.1016/j.cbd.2018.04.003)
Rosenthal GG (2017). Mate choice: the evolution of sexual
decision making from microbes to humans. Princeton Univ. Press,
Princeton.
Rouyar A, Deisig N, Dupuy F, Limousin D, Wycke MA, Renou
M, Anton S (2015). Unexpected plant odor responses in a moth pheromone
system. Frontiers in Physiology 6:148.
(doi:10.3389/fphys.2015.00148)
Schmidt S, Anfora G, Ioriatti C, Germinara GS, Rotundo G,
De Cristofaro A (2007). Biological activity of ethyl
(E,Z)-2,4-decadienoate on different tortricid species:
electrophysiological responses and field tests. Environmental Entomology
36:1025-1031.
(doi:10.1603/0046-225X(2007)36[1025:BAOEEO]2.0.CO;2)
Schmidt S, Tomasi C, Pasqualini E, Ioriatti C (2008). The
biological efficacy of pear ester on the activity of granulosis virus
for codling moth. Journal of Pest Science 81:29-34.
(doi:10.1007/s10340-007-0181-x)
Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J,
Ambarli D, Ammer C, Bauhus J, Fischer M, Habel JC, Linsenmair KE, Nauss
T, Penone C, Prati D, Schall P, Schulze E-D, Vogt J, Wöllauer S, Weisser
WW (2019). Arthropod decline in grasslands and forests is associated
with landscape-level drivers. Nature 574:671-674.
(doi:10.1038/s41586-019-1684-3)
Steinwender B, Thrimawithana AH,
Crowhurst RN, Newcomb RD (2015). Pheromone receptor evolution in the
cryptic leafroller species, Ctenopseustis obliquana and C.
herana . Journal of Molecular Evolution 80, 42-56.
(doi:10.1007/s00239-014-9650-z)
Stenberg JA, Heil M, Åhman I, Björkman C (2015).
Optimizing crops for biocontrol of pests and disease. Trends in Plant
Science 20:698-712.
(doi:10.1016/j.tplants.2015.08.007)
Suckling DM, Stringer LD, Stephens AE, Woods B, Williams
DG, Baker G, El‐Sayed AM (2014). From integrated pest management to
integrated pest eradication: technologies and future needs. Pest
Management Science 70:179-189.
(doi:10.1002/ps.3670)
Tamiru A, Khan ZR, Bruce TJ (2015). New directions for
improving crop resistance to insects by breeding for egg induced
defence. Current Opinion in Insect Science 9:51-55.
(doi:10.1016/j.cois.2015.02.011)
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S
(2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Molecular Biology and Evolution 30:2725-2729.
(doi:10.1093/molbev/mst197)
Tasin M, Bäckman A-C, Anfora G, Carlin S, Ioriatti C,
Witzgall P (2010). Attraction of female grapevine moth to common and
specific olfactory cues from 2 host plants. Chemical Senses 35:57-64.
(doi:10.1093/chemse/bjp082)
Tian Z, Sun L, Li Y, Quan L, Zhang H, Yan
W, Yue Q, Qiu G (2018). Antennal transcriptome analysis of the
chemosensory gene families in Carposina sasakii (Lepidoptera:
Carposinidae). BMC Genomics 19:544
(doi:10.1186/s12864-018-4900-x)
Trapnell C (2010). Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nature Biotechnology 28:511-515.
(doi:10.1038/nbt.1621)
Trona F, Anfora G, Bengtsson M, Witzgall
P, Ignell R (2010). Coding and interaction of sex pheromone and plant
volatile signals in the antennal lobe of the codling moth Cydia
pomonella . Journal of Experimental Biology 213:4291-4303. (doi:10.1242/
jeb.047365)
Trona F, Anfora G, Balkenius A, Bengtsson M, Tasin M,
Knight A, Janz N, Witzgall P, Ignell R (2013). Neural coding merges sex
and habitat chemosensory signals in an insect herbivore. Proceedings of
the Royal Society B 280:20130267.
(doi:10.1098/rspb.2013.0267)
Varela N, Avilla J, Gemeno C, Anton S
(2011). Ordinary glomeruli in the antennal lobe of male and female
tortricid moth Grapholita molesta (Busck)(Lepidoptera:
Tortricidae) process sex pheromone and host-plant volatiles. Journal of
Experimental Biology 214:637-645.
(doi:10.1242/jeb.047316)
Wagner DL (2020). Insect declines in the Anthropocene.
Annual Review of Entomology 65:457-80
(doi:10.1146/annurev-ento-011019-025151
Walker WB, Gonzalez F, Garczynski SF,
Witzgall P (2016). The chemosensory receptors of codling mothCydia pomonella - expression in larvae and adults. Scientific
Reports 6:23518.
(doi:10.1038/srep23518)
Wan F, Yin C, Tang R, Chen M, Wu Q, Huang
C, … & Wang G (2019). A chromosome-level genome assembly ofCydia pomonella provides insights into chemical ecology and
insecticide resistance. Nature Communications 10:1-14.
(doi:10.1038/s41467-019-12175-9)
Witzgall P, Bengtsson M, Unelius CR,
Löfqvist J. (1993). Attraction of pea moth Cydia nigricana F.
(Lepidoptera: Tortricidae) to female sex pheromone
(E ,E )-8,10-dodecadien‑1‑yl acetate, is inhibited by
geometric isomers (E ,Z ), (Z ,E ) and
(Z ,Z ). Journal of Chemical Ecology 19:1917-1928.
(doi:10.1007/BF00983796)
Witzgall P, Chambon J-P, Bengtsson M, Unelius CR,
Appelgren M, Makranczy G, Muraleedharan N, Reed DW, Hellrigl K, Buser
H-R, Hallberg E, Bergström G, Tóth M, Löfstedt C, Löfqvist J. (1996).
Sex pheromones and attractants in the Eucosmini and Grapholitini
(Lepidoptera, Tortricidae). Chemoecology 7:13-23.
(doi:10.1007/BF01240633)
Witzgall P, Bengtsson M, Rauscher S,
Liblikas I, Bäckman A-C, Coracini M, Anderson P, Löfqvist J (2001).
Identification of further sex pheromone synergists in the codling moth,Cydia pomonella . Entomologia Experimentalis et Applicata
101:131-141.
(doi:10.1046/j.1570-7458.2001.00898.x)
Witzgall P, Stelinski L, Gut L, Thomson D (2008). Codling
moth management and chemical ecology. Annual Review of Entomology
53:503–522.
(doi:10.1146/annurev.ento.53.103106.093323)
Witzgall P, Kirsch P, Cork A (2010a). Sex pheromones and
their impact on pest management. Journal of Chemical Ecology 36:80-100.
(doi:10.1007/s10886-009-9737-y)
Witzgall P, Trematerra P, Liblikas I, Bengtsson M,
Unelius CR. (2010b). Pheromone communication channels in tortricid
moths: lower specificity of alcohol vs. acetate geometric isomer blends.
Bulletin of Entomological Research 100:225-230. (doi:
doi:10.1017/S0007485309990186)
Yamamuro M, Komuro T, Kamiya H, Kato T, Hasegawa H,
Kameda Y (2019). Neonicotinoids disrupt aquatic food webs and decrease
fishery yields. Science 366:620-623.
(doi:10.1126/science.aax3442)
Yang S, Cao D, Wang G, Liu Y (2017).
Identification of genes involved in chemoreception in Plutella
xyllostella by antennal transcriptome analysis. Scientific Reports
7:1-16.
(doi:10.1038/s41598-017-11646-7)
Zeng F-F, Zhao Z-F, Yan M-J, Zhou W,
Zhang Z, Zhang A, Lu Z-X, Wang M-Q (2015). Identification and
comparative expression profiles of chemoreception genes revealed from
major chemoreception organs of the rice leaf folder,Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS One
10:e0144267.
(doi:10.1371/journal.pone.0144267)
Zhang Y-N, Jin J-Y, Jin R, Xia Y-H, Zhou
J-J, Deng J-Y, Dong S-L (2013). Differential expression patterns in
chemosensory and non-chemosensory tissues of putative chemosensory genes
identified by transcriptome analysis of insect pest the purple stem
borer Sesamia inferens (Walker). PLoS One 8:e69715.
(doi:10.1371/journal.pone.0069715)
Zhang S, Zhang Z, Wang H, Kong X (2014).
Antennal transcriptome analysis and comparison of olfactory genes in two
sympatric defoliators, Dendrolimus houi and Dendrolimus
kikuchii (Lepidoptera: Lasiocampidae). Insect Biochemistry and
Molecular Biology 52:69-81.
(doi:10.1016/j.ibmb.2014.06.006)
Zhang J, Wang B, Dong S, Cao D, Dong J,
Walker WB, Liu Y, Wang G (2015). Antennal transcriptome analysis and
comparison of chemosensory gene families in two closely related
noctuidae moths, Helicoverpa armigera and H .assulta . PloS One 10:e0117054.
(doi:10.1371/journal.pone.0117054)
Zhang S-F, Liu H-H, Kong X-B, Wang H-B,
Liu F, Zhang Z (2017). Identification and expression profiling of
chemosensory genes in Dendrolimus punctatus Walker. Frontiers in
Physiology 8:471.
(doi:10.3389/fphys.2017.00471)