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Abstract

The Distributed Hydrology Soil Vegetation Model (DHSVM) code was parallelized for
distributed memory computers using the Global Arrays (GA) programming model. To
analyze parallel performance, DHSVM was used to simulate the hydrology in two river
basins of significant size located in the northwest continental United States and south-
west Canada at 90 m resolution: the (1) Clearwater (25,000 km2) and (2) Columbia
(668,000 km2) River basins. Meteorological forcing applied to both basins was dy-
namically down-scaled from a regional reanalysis using the Weather Research and
Forecasting (WRF) model and read into DHSVM as 2D maps for each time step.

Parallel code speedup was significant. Run times for 1-year simulations were re-
duced by an order of magnitude for both test basins. A maximum parallel speedup
of 105 was attained with 480 processors while simulating the Columbia River basin.
Speedup was limited by input-dominated tasks, particularly the input of meteorological
forcing data.

Keywords: watershed hydrology, distributed hydrology model, high-performance
computing, parallel computing, Columbia River basin, Clearwater River basin

Highlights

• The well established Distributed Hydrology Vegetation Soil Model (DHSVM)
was parallelized for distributed memory platforms.

• The Global Arrays (GA) partitioned global address space (PGAS) library for
distributed arrays was used for inter-process communication.

• Parallel DHSVM was used to simulate the hydrology of two large river basins,
with areas of 25000 and 668000 square kilometers, at a 90 meter resolution.

• Maximum parallel speed up of 105 was measured using 480 processors with the
Columbia River simulation.
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Software Availability

Program Title: Parallel DHSVM
Description: Distributed Hydrology Vegetation Soil Model (DHSVM)
Platform: Linux, Mac OS X
Source Language: C, C++

Cost: Free
License: public domain
Availability: Source code available on Github (https://github.com/pnnl/DHSVM-PNNL),
“parallel” branch

1. Introduction

The Distributed Hydrology Vegetation Soil Model (DHSVM, Wigmosta et al.,
1994) is a spatially distributed, physics-based hydrology model that simulates the over-
land and subsurface hydrological processes influenced by climate, topography, soil,
and vegetation. DHSVM is composed of a two-layer canopy model, an energy-balance
two-layer snow model, a multi-layer soil model, and three-dimensional surface and
subsurface flow-routing models. These models allow for characterization of hydrolog-
ical processes including canopy and topographic shading, canopy interception, evapo-
transpiration, snow accumulation and melt, and water movement overland and through
the soil to streams and rivers. In an extensive review of 30 hydrological models (Beck-
ers et al., 2009), DHSVM was identified to be best suited for modeling mountain hy-
drology in forested environments.

Initially developed in the early 1990s (Wigmosta et al., 1994), DHSVM has been
applied extensively, particularly in forested, mountainous, snowfall-dominated regions,
to characterize the hydrologic regime and project potential changes with changing cli-
mate and landscape (Storck et al., 1998; Storck and Lettenmaier, 1999; Leung and
Wigmosta, 1999; Thyer et al., 2004; Cuo et al., 2009; Cristea et al., 2014; Livneh et al.,
2015; Cao et al., 2016; Sun et al., 2018). Subsequent adaptations have extended the ca-
pability of DHSVM to represent urban landscapes with impervious surfaces and runoff

detention (Cuo et al., 2008), glacio-hydrological dynamics (Naz et al., 2014; Frans
et al., 2015, 2018), river thermal dynamics (Sun et al., 2015; Cao et al., 2016), urban
water quality (Sun et al., 2016), and forest-snow interactions in canopy gaps (Sun et al.,
2018).

With the increasing availability of high-resolution satellite products, e.g., Light De-
tecting and Ranging and advances in high-performance computing systems and data
storage, there is evolving interest in exploring hydrologic fluxes and state variables at
progressively higher spatial resolutions for applications ranging from regional to global
scales (Lettenmaier et al., 2015). High-resolution, spatially distributed modeling capa-
bilities are particularly important for representing complex mountain hydrology that is
highly affected by heterogeneous terrain and strong climate gradients with elevation.
A spatially lumped modeling approach with sparsely distributed observation networks
can limit our ability to understand and predict the implications of changing climate
and landscape on available water for extreme runoff events, regional water supplies,
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and associated reservoir operations for hydropower and other water allocations (Bales
et al., 2006).

While DHSVM has been under constant development since its inception, it has
always been a serial code. Its computational performance has been tied to the perfor-
mance of a single processor. Parallelization is a good strategy for helping meet these
and future simulations needs. A number of examples in the literature describe parallel
hydrological models. The majority (e.g., Hwang et al., 2014; Liu et al., 2014, 2016)
seem to favor small shared memory platforms using OpenMP (Dagum and Menon,
1998). A few (Vivoni et al., 2011; Kumar and Duffy, 2016) target distributed memory
systems using the Message Passing Interface (MPI; MPI Forum, 2018).

In this work, DHSVM was made into a parallel code while maintaining most of
its existing capability. The parallel code development was aimed at large distributed
memory clusters, but portability to smaller multiprocessor, shared memory systems,
such as desktops and laptops, was maintained. An alternate interprocess communica-
tion programming model, Global Arrays (GA, Nieplocha et al., 2006; Manojkumar
et al., 2012) was used. GA provides a partitioned global address space (PGAS) and
implements one-sided communication protocols.

To demonstrate its utility and scalability, the parallel DHSVM was used to simulate
runoff from two basins of significant size. This work is limited to demonstrating the
performance of parallel DHSVM.

2. Methods

2.1. Hydrologic Process Representation

The DHSVM domain is divided into an array of rectangular cells (Figure 1). Cell
size is determined by the resolution of the Digital Elevation Model (DEM) used. A
mask is used to denote which cells in the domain are active, typically encompassing
a watershed that drains to a single point. Within each cell, a water mass and energy
balance is maintained. Excess surface water is routed down slope overland; excess
drainage to the subsoil layer is routed downgradient to neighboring cells until reaching
the channel network.

As much as possible, DHSVM uses physically based representations to compute
the movement of water and energy through the domain. The details of DHSVM hy-
drologic process representation are presented elsewhere (e.g., Wigmosta et al., 1994;
Wigmosta and Lettenmaier, 1999; Wigmosta et al., 2002; Cuo et al., 2009; Naz et al.,
2014; Frans et al., 2018; Sun et al., 2018). Brief descriptions of some processes impor-
tant to code parallelization are presented here.

2.1.1. Cell Energy/Water Balance
A DHSVM cell consists of a set of soil layers, a set of snowpack layers (when

present) and a multi-level vegetation canopy. Meteorological forcing data are used to
drive the energy balances in the snowpack, resulting in melt and/or accumulation, and
in the vegetation canopy, resulting in evapotranspiration.

Movement of water in the cell’s soil layers is simulated. This includes infiltration
or exfiltration, evaporation from the soil surface, evapotranspiration from soil layers in
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Figure 1: Schematic representation of water movement in the DHSVM domain. The DHSVM domain is di-
vided into rectangular cells in which water and energy balance is maintained. Excess surface and subsurface
water is routed to a channel network. LAI is leaf area index, FC stands for fractional cover of forest canopy,
and h is canopy height.

which vegetation has roots, vertical saturated and unsaturated water movement between
layers, and drainage to a subsurface soil layer.

All of these calculations take place within the cell, independent of its neighbors.
The results are volumes of water in each soil and snow layer and on the surface.

2.1.2. Surface and Subsurface Routing
The surface and subsurface volumes computed in the cell energy/water balance

are routed to neighboring cells. The DHSVM routing schemes are documented by
Wigmosta et al. (1994), Wigmosta and Lettenmaier (1999), and Wigmosta et al. (2002).
Both surface and subsurface routing work with a similar algorithm.

A gradient, based on the ground surface or water (table) surface, is used to deter-
mine the direction and magnitude of flow for each cell. In a cell, discharge to each
neighboring cell is computed and stored. Surface water flux from active cell i j to its
kth down slope neighbor is computed as

qoi jk
= wi jk vi jk yi j (1)

where wi jk is the flow width in the k direction, vi jk is the overland flow velocity, and yi j

is the overland flow depth. Subsurface flow from active cell i j to its kth downgradient
neighbor is computed as

qsi jk
= wi jkβi jk Ti j (z,D) (2)

where βi jk is the cell water table or land slope and Ti j (z,D) is the soil transmissivity,
computed as

Ti j (z,D) =
Ki j

fi j

(
e− fi jzi j − e− fi jDi j

)

4



where Ki j is the cell lateral saturated hydraulic conductivity, zi j is the depth to the water
table, fi j is a decay coefficient, and Di j is the cell soil thickness.

These fluxes are computed for every cell in the domain. Each cell accumulates the
inflow from its upgradient neighbors, discharges to adjacent down gradient cells, and
adjusts surface and subsurface volumes accordingly.

2.1.3. Stream Channel Network
DHSVM uses a stream channel network to route excess surface water and inter-

cepted subsurface flow to the watershed outlet. The stream channel network is repre-
sented by a cascade of linear reservoirs (Wigmosta et al., 2002).

After surface and subsurface routing is complete, computed stream channel inter-
ception of surface and subsurface flow is accumulated for each cell in which a stream
channel lies. The intercepted water volume is summed and used as lateral inflow for
each stream segment. The lateral inflow is then routed through the network.

The outflow rate of segment i at time t + 1 is given by

Ot+1
i =

(
It+1
i + Lt+1

i

)
−

(
S t+1

i − S t
i

) 1
∆t

(3)

where It
i is the inflow rate at time t to segment i from upstream segment(s), Lt

i is the
lateral inflow at time t into segment i, ∆t is the time step between t and t + 1, and S t

i is
the segment storage at time t, computed using

S t+1
i =

1
K

(
It+1
i + Lt+1

i

)
+ X

[
S t

i −
1
K

(
It+1
i + Lt+1

i

)]
(4)

in which

K =

√
S oR

2
3

nl

and

X = e−K∆t

where S o is the channel slope, n is Manning’s coefficient, l is the channel length, R is
the hydraulic radius, which is assumed to be a constant 75% of the bank height, and ∆t
is the time step.

2.2. Code Parallelization
The multiple instruction, multiple data (MIMD, Wilkinson and Allen, 1998) paral-

lel model was used. This approach targets large, distributed memory systems (i.e. clus-
ters), but the approach should work fine for smaller, shared memory systems (multi-
processor desktops and laptops) without modification. In the MIMD model, each pro-
cessor is assigned its own data to work on and some communication layer is required
to exchange data between processors when needed.

The goal was to make DHSVM as fast as practical while retaining as much of
its existing behavior as possible. DHSVM is a relatively large and complicated code.
Resources were not available to design and code a parallel DHSVM from the ground
up. This in some ways limited the parallelization approach and results.
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2.2.1. Interprocess Communication
Inter-process communication in DHSVM was implemented through the use of GA

(Nieplocha et al., 2006; Manojkumar et al., 2012). GA is a “partitioned global address
space library for distributed arrays”. GA provides a distributed, random access, multi-
dimensional array data structure. Such an array is consistent with the internal DHSVM
data structures, so most of the serial code structure could be retained. In addition,
nearly all of the required interprocess communication consists of floating point values,
which simplifies coding.

In general, DHSVM interprocess communication is all cell-based numeric values
(i.e., rectangular arrays). In a typical communication scenario, a GA structure is cre-
ated. Transfers of values are made from local memory to the GA (put) and from the
GA to local memory (get). Other operations are available, like “accumulate” where
values in local memory are summed into the GA.

GA can use several underlying communication protocols, depending on the under-
lying hardware. The most commonly used are based on MPI and can be used on almost
any platform that supports MPI. These range from large clusters to laptops—any shared
or distributed memory system for which MPI is available (Dinan et al., 2012). DHSVM
relies entirely on the GA application programming interface (API). There are no direct
calls to any other parallel communication interface.

2.2.2. Domain Decomposition
The most straightforward approach to parallelization was to distribute cell-based

calculations across processors. A divide and conquer strategy was implemented that
has some similarity to the strategy used by Hwang et al. (2014). Each process was
assigned a non-overlapping rectangular region of the original domain. As shown in
Figure 2, the region assigned to a process may be a collection of rows (STRIPEY) or a
collection of columns (STRIPEX).

An algorithm similar to Simeone’s (1986) is used to evenly distribute the active
cells among the processors. When splitting the domain by rows, for example, the
number of active cells in each row are summed and summed again into a cumulative
histogram. If the rows are to be divided into p groups, the cumulative histogram is
searched for the splits closest to 1/p, 2/p, . . . , p−1/p. A similar search of the columns’
active cell cumulative histogram is done to split the columns.

2.2.3. Input/Output Strategy
A distributed hydrology model like DHSVM requires considerable input data and

can produce simulation results of considerable size. The choice of how the data are
input and output can significantly affect parallel performance.

The input/output (I/O) strategy used here was relatively simple and largely em-
phasized maintaining existing behavior, such that the serial code structure was mostly
maintained. When I/O bottlenecks are identified in future applications, a more complex
strategy may be deployed.

All processes read the configuration file, so that, at startup, all processes have a
complete description of the simulation without further communication. Other text files,
like the stream network description, are also read by all processes. These files are
typically small in size, and the time to read them is usually inconsequential.
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(a) (b)

Figure 2: DHSVM domain decomposition methods applied to a sample basin for 12 processors: splitting
the domain into (a) groups of rows (STRIPEY) or (b) columns (STRIPEX). The default method is chosen
depending on which global dimension is larger.

DHSVM requires several input data sets that vary cell by cell. These data sets
are input in the form of a two-dimensional (2D) raster map. In the parallel DHSVM,
2D map data are input through the root process (serially) then distributed via a global
array. At the time of this writing, parallel I/O was not used, but may be supported in
the future. For this work, DHSVM required considerable reworking of 2D data I/O to
be able to work efficiently over a wide range of computational resources.

Two 2D map resolutions are necessary. The first is at the resolution of the DHSVM
cell size and contain a single value for each cell. Data sets input at this resolution
include the DEM, soil type, and vegetation type. Maps of this resolution are partitioned
and distributed to processes according to the domain decomposition. The second map
resolution is much coarser and not necessarily aligned with DHSVM cell boundaries.
This was used for input of meteorological data fields. For data sets at this coarser
resolution, the entire 2D map is mirrored on all processes, i.e., all processes receive
an identical copy of the map. Mirroring the entire map in this way avoids a more
complicated decomposition that would require overlapping sub-domains.

Figure 3 shows a schematic of I/O for 2D maps that are partitioned as they are dis-
tributed. A global array is created with a size to store values for the entire domain. The
root process opens and reads a 2D map for the entire domain into local memory. The
root process then puts1 those data in the global array. Each compute process, including
the root process, then gets that portion of the global array it has been assigned.

Figure 4 shows a schematic of the input of maps that are mirrored across all pro-
cesses. The input process is nearly the same as in Figure 3 except that each compute
process gets the entire map and loads it into local memory.

In this work, meteorological data were supplied as a series of 2D maps of each
required fields (as discussed in more detail below). At the beginning of each time step,
the maps for that time step are read as described above.

All output, both 2D map data and text files, is through the root process. Writing

1Here “put” and “get” are operations defined by the GA API. Another operation, “accumulate”, is men-
tioned below.
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2D map data is the reverse of reading (Figure 3). Each process puts its local values in
the global array, the root process gets the entire set of values and writes them to a file.
Output other than 2D maps, (e.g., mass balance summary) requires a more traditional
MPI-like all-reduce operation (using the GA API though).

Full 2D Map
In

Local Memory

Local Parts of 
2D Map

2D Map in Shared
Global Array

Root Process

p2

Put
(Get)

Get
(Put)

Read
(Write)

All Processes Compute
Processes

p1

Figure 3: Schematic depicting the reading (writing) of partitioned 2D map data and their distribution to
(from) compute processes. See text for further details.

Full 2D Map
In

Local Memory

2D Map in Shared
Global Array

Root Process

Put Get

Read

All Processes Compute
Processes

Full 2D Map
In

Local Memory

p1

p2

Figure 4: Schematic depicting the reading of mirrored 2D map data and their distribution to compute pro-
cesses. See text for further details.

2.2.4. Hydrologic Processes Adaptation
Figure 5 shows a simplified depiction of the parallel algorithm for a single simu-

lation time step. Each simulation time step starts with time-step initialization (TSI).
Several things are initialized at the beginning of a time step. Each process prepares the
cells it owns for the next time step. The most important part of TSI is the assignment
of meteorological data to individual cells. DHSVM has several available approaches
to make this assignment, but each of eight meteorological data fields were read as mir-
rored 2D maps (Section 3.2.3). This is a significant amount of data that needs to be
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read every time step.
Once cells are initialized, energy/water balance (EWB) calculations proceed. Each

process updates the hydrologic and thermal state of the snowpack, vegetation canopy,
and soil layers (Section 3.1.1) within the active cells assigned to it. The computations
for a single cell do not require any communication with its neighbors, so this part of
the simulation is most amenable to parallelization.

Unlike the EWB, subsurface and surface routing (SSR and SR) calculations (Sec-
tion 3.1.2) require interaction with neighboring cells, and that interaction needed to
extend between processors when neighboring cells were not owned by the same proces-
sor. Surface and subsurface routing have very similar algorithms, so the parallelization
of those processes is handled in a similar manner. The key issue with these processes
is that a cell assigned to one processor may drain to a cell on another processor. This
is handled by extending the calculated local domain by one cell. A temporary array
is created on a local processor to hold the results of SR or SSR routing (Equations (1)
and (2), respectively). The array is sized to be one cell larger, in all (valid) directions,
than the domain assigned to the processor. That extra cell captures SSR or SR flux to
the off-processor cell(s). As routing calculations proceed, surface water is routed to a
cell outside the processor’s domain, and the result is stored on the edge of the array.

After all processes complete the routing calculations, a global array for the entire
domain is initialized to zero. Each process accumulates the local array of routing
results into the global array. In this way, water routed outside of the processors local
domain is correctly captured and delivered to the neighboring domain.

The simulation time step ends with channel routing (CR, Section 3.1.3). Equa-
tions (3) and (4) require that a segment can only be routed after all upstream segments
have been routed. Consequently, it was decided to keep CR a serial algorithm and
that all processes would carry out identical computations. Part of the SR algorithm is
to compute the lateral inflow (L in Equations (3) and (4)) into each channel segment.
However, each processor computes the lateral inflow contribution only from the cells
it owns. An all-reduce summation, typically an expensive operation, is used to sum
lateral inflow over all processors. After the all-reduce, all processes have an identical
array of lateral inflow to all segments. All processes then perform CR on the same net-
work with the same inflow producing identical results. Only the root process outputs
CR results.

An alternate approach would be to have the root process alone do the CR calcula-
tions, then distribute the CR results back to the other processors with a broadcast. The
chosen approach avoids this second, possibly expensive, communication.

Other calculations are performed during a time step that are not depicted in Fig-
ure 5. The most important is a mass balance check. This requires each process to
accumulate the mass balance components of its cells, then an all-reduce operation is
used to sum the components over the domain.

2.3. Case Studies

The parallel DHSVM code has been applied to several basins. Two basins of differ-
ent size were chosen to measure parallel DHSVM performance. Minimal simulation
results are presented here, because the focus of this work is parallel performance. The
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Figure 5: Simplified activity diagram for a single time step in parallel DHSVM. The dashed boxes indicate
specific tasks discussed in the text: time-step initialization (TSI), energy/water balance (EWB), subsurface
routing (SSR), surface routing (SR), and channel routing (CR).
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calibration, validation, and use of these cases will be documented in more detail in
future publications.

The Columbia River basin is located in the northwest continental United States
and southern British Columbia, Canada (Figure 6) and it drains an area of 668,000 km2

(Table 1). DHSVM was configured to simulate the Columbia River basin at a resolution
of 90 m resulting in about 83 million active cells and 20,800 stream segments.

The Columbia River basin DEM (Figure 7) was derived from U.S. Geological Sur-
vey DEM data (USGS, 2017) in the United States and from the Canada DEM (CDEM;
NRC, 2015). Soils (Figure 8) were reclassified into U.S. Department of Agriculture soil
texture classes from the Soil Survey Geographic Database (SSURGO, NRCS, 2019a)
and Digital General Soil Map of the United States (STATSGO2, NRCS, 2019b),
where SSURGO data were not available in the United States. In Canada, a combi-
nation of the Detailed Soil Survey, Soil Landscapes of Canada, and Land Potential
Database, all parts of the National Soil Database (CanSIS, 2014), was used. Vegeta-
tion land cover (Figure 9) was derived from the National Land Cover Data set (USGS,
2014) in the United States and the Earth Observation for Sustainable Development of
Forests (EOSD; Wood et al., 2002) forest cover map in Canada. The Columbia River
basin stream network (Figure 10) was generated using the Python-based DHSVM pre-
processing module, which calculates and extracts accumulated flow lines based on flow
direction as derived from the DEM.

The Columbia River basin was simulated in two ways. In addition to complete
simulation mode, DHSVM’s “snow-only” mode was also used. In snow-only mode,
DHSVM does not perform runoff-related computations, but instead concentrates on
snowpack accumulation and melt. This is useful in snow-dominated applications be-
cause it allows calibration and validation of the snowpack simulation at a significantly
lower computational cost.

The Clearwater River is an upland tributary in the Columbia River basin located
in northern Idaho, USA (Figure 6). The basin area is 25,000 km2, about 4% of the
Columbia River basin (Table 1), and it produces about 7.5% of the Columbia River
basin’s average annual discharge. The Clearwater River basin DHSVM application
was extracted as a subset of the Columbia River basin, so it has the same computational
resolution, 90 m. The Clearwater application consisted of about 3 million active cells
and 2,600 stream segments.

Table 1: Case study basin and DHSVM application statistics.

Drainage Annual DHSVM Region Active Stream
Basin Name Area Disch. Res. Rows x Cols Cells Segments

(km2) (m3/s) (m) (cells)
Columbia 668,000 5,850 90 14,599 x 12,654 83M 20,800
Clearwater 25,000 433 90 2,042 x 2,371 3M 2,600

2.3.1. Meteorological Forcing
In the case studies described above, meteorological forcings were generated using

the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008). WRF is
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Figure 6: Locations of the Columbia River basin and the Clearwater River basin. Simulations of these two
basins were used to assess DHSVM parallel performance.
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Figure 7: Map of elevation data used for the Columbia River basin. Source: U.S. Geological Survey (USGS,
2017) for the United States and National Resources Canada (NRC, 2015) for Canada

Figure 8: Map of soil classifications used for the Columbia River basin. Source: Soil Survey Geographic
Database (NRCS, 2019a) and Digital General Soil Map of the United States (NRCS, 2019b) for the United
States and the National Soil Database (CanSIS, 2014) for Canada
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Figure 9: Map of vegetation canopy classifications used for the Columbia River basin. Source: National Land
Cover Data set (USGS, 2014) for the United States and Earth Observation for Sustainable Development of
Forests (Wood et al., 2002) for Canada.

Figure 10: Columbia River basin stream network used in DHSVM, consisting of about 20,800 stream seg-
ments. The network was generated using the DHSVM stream network preprocessing module.
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a next-generation mesoscale numerical weather prediction system designed for both at-
mospheric research and operational forecasting applications across scales ranging from
large-eddy to global simulations. The Advanced Research WRF (ARW) used here fea-
tures a dynamical core that solves the fully compressible non-hydrostatic equations us-
ing terrain-following hydrostatic-pressure vertical coordinates and the Arakawa C-grid
staggered spatial discretization for variables. ARW also features a wide collection of
parameterization schemes for various atmospheric and land-surface physical processes,
making it adaptive to various climate regions. ARW Version 3.8 is used in this study,
and the model is configured using physics options identical to those used by Gao et al.
(2017).

Figure 11 shows the spatial extent of the simulation domain, which covers the west-
ern United States between 29° -54° N and 132° 93° W at 6 km horizontal grid spacing
with 35 vertical sigma levels from the surface to 100 hPa. The historical climate sim-
ulation covered the period of 1981–2015, and WRF was driven by the large-scale cir-
culations of the North American Regional Reanalysis (Mesinger et al., 2006) at 32 km
grid resolution. Meteorological forcings for the hydrological models (precipitation, air
temperature, wind speed, shortwave and long wave radiation) were archived hourly.
The details of this simulation are provided by Chen et al. (2018).

Figure 11: WRF simulation domain and the major river basins in the western continental United States

WRF model results are based on a spherical Earth model, while standard geo-
graphic datums for hydrological models, such as WGS84, are ellipsoid. Therefore,
these data were re-projected using the spherical latitude/longitude information assum-
ing a WGS84 datum and transformed to the projection used by DHSVM. The WRF
grid center points were first identified in the WGS84 and then transformed to the same
coordinate system as the other spatial inputs of DHSVM. Because the original WRF
grids are curvilinear, the projected grid centers show a curvilinear trend as well. Hence,
the grids were further re-gridded to a new set of linear 6 km grid in the desired projec-
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tion system using nearest neighbor interpolation. The results of the interpolation were
saved in a set of binary files, one for each variable, with one 2D raster map for each
simulation time step.

Within DHSVM, all data fields were assumed to be spatially constant over each
6 km cell with the exception of temperature and precipitation. Despite relatively
high-resolution WRF data, the 6 km grids were still insufficient to capture some of
the spatial variance of precipitation inside a WRF grid given the DHSVM resolution of
90 m. Therefore, WRF precipitation was down-scaled by introducing a monthly adjust-
ment ratio at each DHSVM grid cell based on the Parameter-elevation Regressions on
Independent Slopes Model (PRISM; PCG, 2004) precipitation data. We projected and
re-sampled 800 m average monthly precipitation of 30-year normal data from PRISM
to DEM projection and resolution. Within each WRF grid, the mean monthly precip-
itation for the grid was computed and used as a baseline to calculate the adjustment
ratio for each DHSVM grid. Temperature was lapsed over each 6 km cell based on
the elevation at each DHSVM grid cell. WRF temperature was distributed from the
6 km WRF cell to the 90 m DHSVM grid by lapsing based on elevation differences
between the WRF terrain elevation and the local grid DEM. For a DHSVM cell i j that
lies within a WRF cell,

Ti j = TWRF +
(
Zi j − ZWRF

)
LT

where Ti j and TWRF are air temperature in the DHSVM and WRF cells, respectively, Zi j

is the elevation of the DHSVM cell, ZWRF is the terrain elevation in the WRF cell, and
LT is the lapse rate. The lapse rate is used as a calibration parameter, within physically
reasonabl bounds. It varies spatially at the same spatial resolution as the WRF domain.

WRF model results were prepared for a region large enough to encompass the entire
Columbia River basin (220×191 6×6 km cells). From those results, a subset was also
extracted that covered the Clearwater River basin (32×37 6×6 km cells).

2.4. Parallel Performance
The two basins were simulated repeatedly for the 1982 water year with varying

numbers of processors and the execution time was recorded. The simulations were car-
ried out on the Pacific Northwest National Laboratory Institutional Computing (PIC)
Constance cluster. This cluster consists of 528 compute nodes each having 24 cores
(Intel Haswell E5-2670) and 64 GB of RAM. The nodes use FDR Infiniband connec-
tivity. DHSVM and GA were built with Intel version 15 compilers and Intel MPI im-
plementation. GA was built to use Infiniband connectivity directly (rather than MPI).
At the time of this writing, this was considered to be the fastest transport layer for GA
on systems using Infiniband interconnect.2 The main disk storage system PIC cluster
is a Lustre file system consisting of 42 Lustre object storage server (OSS) nodes with
one object storage target per OSS and a capacity of 3.5 petabytes.

Simulation times were used to compute parallel speedup, defined as

s =
Ts

TN
(5)

2Bruce Palmer, lead GA developer, personal communication.
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where Ts is the execution time for a given problem on a single processor and TN is
the execution time for the same problem on N processors. Also computed was parallel
efficiency,

e =
Ts

NTN
(6)

To provide key diagnostics, DHSVM was instrumented to report execution times
of important tasks (some of these tasks are described in detail in Section 3.2.4):

Startup (SU): The SU task is all activity prior to simulating the first time step. The
computational cost consists of memory allocation and initialization of the do-
main state. During this task, considerable input, including the DEM and re-
lated data and initial model state, is read and distributed among processors as
partitioned 2D maps (Section 3.2.3). Domain decomposition (Section 3.2.2) is
carried out during this task.

Time-Step Initialization (TSI): The TSI task performs all necessary preparation for
a new time step, the most costly of which, in this case, was the reading and
distribution of meteorological data as mirrored 2D maps (Section 3.2.3).

Energy/Water Balance (EWB): EWB is the main computational task and was easily
parallelized. Little or no interprocess communication or I/O happens during this
task.

Subsurface Routing (SSR): The SSR task should be a mostly computational, where
cell subsurface fluxes (Equation (2)) are computed for the cells a processor owns.
The communication cost is the accumulation of a flux array over all processors.

Surface Routing (SR): As with SSR, SR computational cost is flux computation (Equa-
tion (1)) and communication cost is flux accumulation.

Channel Routing (CR): In the CR task, all processes perform identical routing cal-
culations on the entire network, which means that the routing has a fixed com-
putational cost regardless of the number of processors used. The main commu-
nication cost of this task is an all-reduce operation required to sum lateral inflow
to the channel network across all processors.

Output (OUT): This task includes all significant output, except stream flow. Minimal
output was specified for these simulations. Output of 2D maps was not specified.
Consequently, the major cost of this task was the computation and output of an
overall mass balance.

For the purposes of discussion, these tasks are grouped into primarily compu-
tational tasks (EWB, SSR, SR, CR) that are dominated by numerical computations.
Communication tasks (SU, TSI, OUT) are those dominated by I/O and/or interprocess
communication.
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3. Results

3.1. Hydrologic Simulation
At the time of this writing, calibration and validation were under way for the

Columbia River basin, of which the Clearwater River basin is a significant part. That
will be documented in subsequent publications. The original serial DHSVM was not
able to simulate either the cases, mainly because of the problem size, but also because
of some alterations that were not back-ported to the serial code. However, several other
smaller cases were used to ensure that the serial and parallel codes produced identical
results. For this work, which focuses on computational performance, sufficient hy-
drological results are presented here to demonstrate that parallel DHSVM simulations
show acceptable agreement with observations.

The Columbia River and nearly all of its larger tributaries have some kind of reg-
ulation and/or irrigation withdrawals. Because DHSVM, at this time, cannot represent
this regulation, DHSVM is being calibrated and validated against estimates of no reg-
ulation, no irrigation (NRNI) streamflow for various locations in the Columbia River
basin (BPA, 2011).

Figures 12 and 13 compare preliminary simulated discharge with NRNI from the
Clearwater and Willamette Rivers, respectively, for water years 1982–1989. The Willamette
is a large tributary in western Oregon. Figure 14 shows simulated snow water equiva-
lent (SWE) depths over the entire Columbia River basin on April 1, 1982.

Figure 12: Preliminary comparison of no regulation, no irrigation adjusted streamflow (BPA, 2011, labeled
Observed) and simulated streamflow from the Clearwater River basin.

Figure 13: Preliminary comparison of no regulation, no irrigation adjusted streamflow (BPA, 2011, labeled
Observed) and simulated runoff from the Willamette River basin.
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Figure 14: Simulated snow water-equivalent (SWE) at 90 m resolution for the Columbia River basin.

3.2. Parallel Performance

With the Clearwater simulation, a maximum speedup of about 32 was attained us-
ing 128 processors (Figure 18), about 23,000 active cells per processor. One year’s
simulation time was reduced from almost 4 hours using a single processor to 8 min-
utes using 128 processors (Table 2). With one processor, run time was dominated by
computational tasks: EWB (70%), SR (7%), and SSR (13%) (Table 2, Figure 15).
Computational tasks took a similar fraction of run time until about 32 processors were
used. At this point, I/O tasks, specifically SU and TSI, started to take a larger fraction.
This is the point at which parallel efficiency dropped quickly (Figure 19). At maxi-
mum speedup (128 processors), run time was split with about 40% for computational
and 60% for I/O tasks.

The Columbia River basin simulations required a minimum of four nodes to run,
due to the large memory requirements of the application. The smallest number of cores
we could use was four. Run time for one processor was assumed to be four times that
of four processors, so that between one and four processors speedup assumed to be
ideal and parallel efficiency was assumed to be 1.0.

With the Columbia snow-only simulation, the maximum speedup was about 93
using 480 processors, at about 173,000 active cells per processor (Figure 18). The 1-
year simulation time was reduced from about 10 days using one processor (estimated)
to 2.5 hours using 480 processors. With four processors, the run time was dominated
by EWB (80%), and that task dominates until 120 processors are used (56%) when the
main I/O tasks (SU and TSI) begin to dominate. At maximum speedup, EWB takes
about 29% and SU and TSI take about 63% of the simulation time (Table 2, Figure 16).

Maximum speedup for the full Columbia simulation, which included the water
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routing tasks, was about 105 also using 480 processors (Figure 18). The 1-year sim-
ulation time was reduced from about 19 days with one processor (estimated) to about
4 hours (Table 2) with 480 processors. With four processors, run time was domi-
nated by computational tasks (90%), with EWB dominating that (67%). At maximum
speedup (480 processors), the run time was split with about 60% for computational
and 40% for I/O tasks. This is the reverse of the split for the Clearwater at maximum
speedup. Note that CR took a much larger part of the simulation time for the Columbia
(21%) than for the Clearwater (5%).
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Figure 15: DHSVM timing results, including specific tasks, for a 1-year simulation of the Clearwater River
basin. See the text for descriptions of timed tasks.

4. Discussion

In this work, we modified DHSVM to run in parallel using GA for interprocess
communication targeting large, distributed memory systems. Simulation run times for
our test cases were reduced enough to make long-term (decades), high-spatial resolu-
tion simulations of significantly sized basins manageable. As expected, the run times
with low numbers of processes were dominated by the computational tasks, namely
EWB, SR, and SSR. IO-intensive tasks, namely SU and TSI, become dominant at
higher core counts, indicating more interprocess communication.

It was not straightforward to compare our results with those in the literature. Differ-
ent models use different methods that have different computational and communication
costs. Our speedup was on par with that measured by Vivoni et al. (2011) and not nearly
as good as that of Kumar and Duffy (2016), the only other examples we could find us-
ing a parallel, distributed hydrology model running on 100s of processors. The Kumar
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Table 2: DHSVM run times for a 1-year simulation using varying numbers of processors. Timed tasks are
described in the text: startup (SU), time-step initialization (TSI), energy/water balance (EWB), subsurface
routing (SSR), surface routing (SR), channel routing (CR), and output (OUT). s and e are parallel scale up
(Equation (5)) and efficiency (Equation (6)), respectively.

Run
Time Percent Run Time per Task

NP (min) SU TSI EWB SR SSR CR OUT s e
Clearwater

1 228.5 0.1 3.6 67.9 7.1 13.7 2.2 5.4 1.0 1.00
2 132.8 0.1 3.4 68.0 7.0 13.7 2.7 5.2 1.7 0.86
4 63.4 0.2 4.7 68.4 6.3 12.4 2.8 5.1 3.6 0.90
8 32.5 0.3 6.1 66.2 6.9 11.2 3.8 5.4 7.0 0.88

16 18.7 0.8 8.4 60.0 7.7 12.0 5.1 6.0 12.2 0.76
32 12.1 3.0 11.9 49.2 8.3 13.3 6.7 7.7 18.9 0.59
64 8.6 13.8 19.0 34.7 6.9 11.3 7.4 6.8 26.5 0.41
96 8.3 23.4 24.9 24.7 5.4 8.7 7.4 5.4 27.4 0.29

128 8.0 24.3 32.4 19.6 4.7 7.1 7.5 4.6 28.5 0.22
160 9.2 33.2 33.6 14.4 3.5 5.2 6.7 3.5 24.9 0.16
192 11.5 42.7 33.3 9.7 2.6 3.6 5.6 2.5 19.9 0.10
256 13.9 43.2 39.6 6.3 1.7 2.4 5.0 1.7 16.4 0.06

Columbia, Snow-Only Mode
4 3498.9 0.1 10.7 81.3 0.0 0.0 0.0 8.0 4.0 1.00
8 2038.6 0.1 12.8 79.2 0.0 0.0 0.0 7.8 6.9 0.86

16 1173.1 0.3 16.7 75.3 0.0 0.0 0.0 7.8 11.9 0.75
32 707.3 0.3 20.3 71.5 0.0 0.0 0.0 7.9 19.8 0.62
64 436.1 2.5 24.2 64.3 0.0 0.0 0.0 9.0 32.1 0.50

120 281.9 4.4 28.8 56.4 0.0 0.0 0.0 10.5 49.6 0.41
240 169.2 3.1 38.0 48.7 0.0 0.0 0.0 10.2 82.7 0.34
480 150.3 12.8 50.4 28.5 0.0 0.0 0.0 8.3 93.1 0.19
720 165.5 14.5 60.4 17.7 0.0 0.0 0.0 7.4 84.6 0.12
960 187.5 13.7 66.2 12.4 0.0 0.0 0.0 7.7 74.6 0.08

Columbia
4 6713.3 0.0 5.6 66.5 7.0 13.0 3.5 4.5 4.0 1.00
8 3710.4 0.1 7.1 64.0 6.7 12.4 4.7 5.1 7.2 0.90

16 2136.7 0.1 9.1 58.2 7.4 12.9 6.6 5.8 12.6 0.79
32 1236.9 0.2 11.7 54.9 7.5 13.3 6.8 5.6 21.7 0.68
64 800.4 0.3 13.3 46.9 8.4 14.6 9.6 6.9 33.5 0.52

120 530.2 0.8 15.4 39.6 8.6 13.7 14.3 7.7 50.6 0.42
240 335.4 2.5 19.2 32.0 7.5 13.7 17.6 7.5 80.1 0.33
480 255.1 3.8 30.1 21.6 6.0 10.5 20.9 7.1 105.3 0.22
720 272.3 6.0 37.1 14.3 5.3 9.5 20.6 7.2 98.6 0.14
960 291.4 10.0 43.7 10.0 3.9 6.7 18.3 7.3 92.2 0.10
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Figure 16: DHSVM simulation timing results, including specific tasks, for the Columbia River basin in
snow-only mode. See the text for descriptions of timed tasks.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 4  8  16  32  64  128  256  512

R
un

 T
im

e,
 m

in

Columbia 1-year Simulation
Start Up (SU)

Time Step Initialization (TSI)
Energy/Water Balance (EWB)

Surface Routing (SR)
Suburface Routing (SSR)

Channel Routing (CR)
Output (OUT)

Total

 0
 20
 40
 60
 80

 100

 4  8  16  32  64  128  256  512

P
er

ce
nt

 R
un

 T
im

e

Processors

Figure 17: DHSVM simulation timing results, including specific tasks, for the Columbia River basin in
normal simulation mode. See the text for descriptions of timed tasks.
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and Duffy application appears to be designed and implemented as a parallel applica-
tion, as opposed to our retrofit of DHSVM. Our speedup was also comparable to some
others (e.g., Liu et al., 2014, 2016) that used 10–20 processors, and had significantly
smaller-sized problems.

Our approach is distinct from other approaches in two ways. The first is exclusive
reliance on the GA one-sided communication API. Other parallel distributed hydrology
models tend to use MPI on distributed memory platforms (e.g., Vivoni et al., 2011;
Kumar and Duffy, 2016) or OpenMP on shared memory systems (e.g., Li et al., 2010,
2011; Hwang et al., 2014; Liu et al., 2014, 2016). DHSVM has an advantage here, in
that it has a rectangular domain, which fits the data structure model of GA nicely. The
use of GA expands the range of computational platforms that can be brought to bear
on these hydrologic problems.

The second distinction is the straightforward domain decomposition technique.
DHSVM domain decomposition simply divides rows or columns of the rectangular
domain, unlike other approaches that divide the domain by drainage network (Apos-
tolopoulos and Georgakakos, 1997; Grbsch and David, 2001; Li et al., 2011; Liu et al.,
2016). The triangular cell networks used by Vivoni et al. (2011) and Kumar and Duffy
(2016) required more complicated algorithms to decompose the domain. Our approach
is simple and requires very little computational effort, but could perhaps be improved.
While not explicitly investigated here, load balancing likely plays a significant role in
DHSVM parallel performance and should be examined as part of further code improve-
ments.

DHSVM parallel efficiency falls off as more processors are used (Figure 19). This
indicates that running DHSVM at the point of maximum speedup may not be ideal.
Run time needs to be balanced with the availability and cost of computational re-
sources. For example, the Columbia simulation had a maximum speedup with 480
processors with a simulation time of about 4 hours. If the same simulation is run with
120 processors, it would take 8 hours. While the run time would be doubled, the com-
putational cost would only be one quarter. Additionally, a set of 480 processors is
most likely less available than 120, which may lead to longer job queue times. It may
also be more efficient to simulate a case like the Columbia River basin in several large
subbasins, particularly for calibration and validation. Once calibrated, the parameters
could be used in a “production” simulation of the entire Columbia Basin.

In this initial parallel version of DHSVM, we emphasized maintenance of current
capabilities and avoiding large structural changes to the code. Parallel performance
may have been limited by the emphasis on limiting code changes. This is particularly
true with the input of 2D maps.

5. Future Work

The authors are generally pleased with the performance improvements attained
with this work. DHSVM’s parallel performance was good enough to tackle the task
at hand, namely the entire Columbia River basin. However, a larger application at this
ultra-fine 90 m resolution still may be challenging at this time.

The timings clearly indicate that the way meteorological forcing was read and ap-
plied was the largest single obstacle to higher parallel performance. Several ideas may
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be investigated to reduce this load, but they would probably require significant struc-
tural changes to the current DHSVM code. Reading the meteorological data in larger
blocks, a day or month at a time, say, rather than one time step at a time, may re-
duce input time. Reading 2D map data in parallel, instead of through the root process
(Section 3.2.3), may also be a solution.

Stream routing took a significant part of the total run time for the Columbia sim-
ulation. The choice to keep this a serial process, executed by all processes, may be
acceptable for smaller basins, and was acceptable for the cases here, but may become
a barrier with larger applications. Parallel methods to perform channel routing will be
investigated in future work.

We have used a straightforward and relatively simple domain decomposition scheme
here. A more extensive investigation of domain decomposition would likely yield fur-
ther performance improvements. We have assumed that the simulation of each “active”
cell has an equivalent computational cost. This is not strictly true. Cells with snow
definitely have a higher computational cost than cells without snow. Such an investi-
gation would require some detailed analysis of run times and how snow increases the
computational cost of an active cell.
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