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Abstract15

Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet16

there are methodological challenges in taxonomic and phylogenetic placement of fungi from17

environmental sequences. To address such challenges we investigated spatio-temporal struc-18

ture of a fungal community using soil metabarcoding with four different sequencing strategies:19

short amplicon sequencing of the ITS2 region (300–400 bp) with Illumina MiSeq, Ion Tor-20

rent Ion S5, and PacBio RS II, as well as long amplicon sequencing of the full ITS and21

partial LSU regions (1200–1600 bp) with PacBio RS II. Resulting community structure and22

diversity depended more on statistical method than sequencing technology. The use of long-23

amplicon sequencing enables construction of a phylogenetic tree from metabarcoding reads,24

which facilitates taxonomic identification of sequences. However, long reads present issues25

for denoising algorithms in diverse communities. We present a solution that splits the reads26

into shorter homologous regions prior to denoising, and then reconstructs the full denoised27

reads. In the choice between short and long amplicons, we suggest a hybrid approach using28

short amplicons for sampling breadth and depth, and long amplicons to characterize the local29

species pool for improved identification and phylogenetic analyses.30

1 Introduction31

Fungi are key drivers of nutrient cycling in terrestrial ecosystems. One important guild of32

fungi form ectomycorrhizas (ECM), a symbiosis between fungi and plants in which fungal33

hyphae enclose the plant’s fine root tips. The fungi provide nutrients and protection from34

pathogens in exchange for carbon from the plant (Smith & Read, 2010). Approximately 8%35

of described fungal species are thought to take part in ECM symbiosis (Ainsworth, 2008;36

Rinaldi et al., 2008). Although only about 2% of land plant species form ECM, these include37
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ecologically and economically important stand-forming trees belonging to both temperate and38

boreal groups such as Pinaceae and Fagaceae, and tropical groups such as Dipterocarpaceae,39

Uapaca (Phyllanthaceae) and Fabaceae tr. Amherstieae (Brundrett, 2017).40

Although ECM fungi form many well-known mushrooms (e.g., Amanita, Cantharellus, Bo-41

letus), some instead produce inconspicuous (e.g., Tomentella) or no (e.g., Cenococcum) fruit42

bodies. Even when fruitbodies are large, they are ephemeral, so study of ECM communi-43

ties is facilitated by looking at vegetative structures (Horton & Bruns, 2001). Unlike many44

saprotrophic fungi which grow easily in axenic culture, ECM fungi are usually difficult to45

culture, so DNA barcoding is increasingly used to investigate vegetative structures in the46

field. The advent of high-throughput sequencing (HTS) has facilitated such studies by pro-47

viding enough sequencing depth for metabarcoding of bulk environmental samples such as48

soils (Lindahl et al., 2013).49

As additional techniques and methods are developed for HTS, there is an increasing array50

of choices for researchers investigating fungal communities. Fungal metabarcoding studies51

using short-read HTS technologies have targeted the ITS1 or ITS2 regions, which provide52

sufficient resolution to distinguish fungal species in many groups, and which are usually short53

enough for HTS (Lindahl et al., 2013; Schoch et al., 2012). The resulting sequencing reads54

are clustered by sequence similarity to form operational taxonomic units (OTUs), which are55

then used as the units for further community analysis (Lindahl et al., 2013). If taxonomic56

identification is desired in order to put OTUs in a wider context and associate functional57

information, it has usually been performed by database searches using BLAST (Altschul et al.,58

1990; Lindahl et al., 2013). However, this approach comes with some potential weaknesses.59

While ITS1 and ITS2 often have suitable variation to distinguish species, they cannot be60

reliably aligned over the fungal kingdom (Lindahl et al., 2013; Tedersoo, Tooming-Klunderud,61

et al., 2018). Additionally, the wide range of length variation of these regions may introduce62
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bias in recovery of different taxa. Further bias is introduced by variation in the 5.8S region63

which separates the two ITS regions, as well as in the 5’ end of LSU, which makes it difficult64

to design primers that are suitable for all fungi (Tedersoo et al., 2015).65

Distance-based clustering conflates intra-species variation and sequencing error, and results66

are dataset-specific. In contrast, more recent denoising methods such as DADA2 (Callahan67

et al., 2017), Deblur (Amir et al., 2017), and UNOISE2 (Edgar, 2016b) utilize read quality68

information to control for sequencing error while preserving intra-species variation. The69

resulting units are known as amplicon sequence variants (ASVs) or exact sequence variants70

(ESVs), as they should represent true amplicon sequences from the sample. Unlike cluster-71

based OTUs, ASVs can capture variation of as little as one base pair, and are less dataset72

specific (Callahan et al., 2017).73

Assignment of taxonomic identities using BLAST requires a priori choice of thresholds for74

different taxonomic ranks. Several algorithms specifically designed for taxonomic assignment75

have been published which use information about variability within different taxa in the76

reference database to assign unknown sequences, along with confidence estimates for these77

assignments (e.g., Wang et al., 2007; Edgar, 2016a; Murali et al., 2018a). In addition,78

methods have been published which integrate predictions from multiple algorithms to increase79

the reliability of assignments (Gdanetz et al., 2017; Somervuo et al., 2016).80

Recent long-read HTS technologies such as Pacific Biosciences Single Molecule Real Time81

sequencing (PacBio) enable sequencing longer amplicons which include both the ITS re-82

gions and the flanking, more highly conserved SSU and/or LSU regions (Tedersoo, Tooming-83

Klunderud, et al., 2018). This can potentially improve taxonomic placement of sequences that84

lack close database matches and allow the alignment of metabarcoding reads for subsequent85

phylogenetic analysis. Information from phylogenetic trees produced from long-amplicon86

metabarcoding has the potential to both improve taxonomic assignment and provide al-87
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ternative measures of community alpha and beta diversity. Because OTU clustering may88

both “clump” different species into a single OTU, and “split” a single species into multiple89

OTUs (Ryberg, 2015), diversity measures based on counting species within a community or90

shared species between two communities may give different results depending on the cluster-91

ing threshold. In contrast, phylogenetic community distance measures (Wong et al., 2016)92

are relatively insensitive to species/OTU delimitation, but require a phylogenetic tree. Phy-93

logenetic placement algorithms have been developed to place short amplicon reads onto a94

reference tree (Berger et al., 2011; Matsen et al., 2010), but are not easy to apply to ITS95

sequences because they require that the query sequences be aligned to a reference alignment.96

Additionally, methods exist to place OTUs on a simplified tree based on taxonomic assign-97

ments (Tedersoo, Sánchez-Ramírez, et al., 2018). However, long amplicon sequencing allows98

the inclusion of alignable regions for construction of more fully resolved phylogenetic trees99

directly from metabarcoding reads. However, long-read technologies are currently more ex-100

pensive per read compared to short-read sequencing, and so their use entails a trade-off with101

sequencing depth and/or sample number (Kennedy et al., 2018).102

Here we investigated the effects of different sequencing strategies and post-analysis on bi-103

ological conclusions using measurement of the spatiotemporal turnover rate of the fungal104

community in an ECM-dominated Soudanian woodland in Benin by metabarcoding of bulk105

soil, sampled at narrow intervals, over two years. We compare three different sequencing106

platforms (PacBio RS II, Illumina MiSeq, Ion Torrent Ion S5), long and short amplicons,107

three different taxonomic assignment algorithms (RDP classifier, SINTAX, IDTAXA) and108

reference databases (Unite, Warcup, RDP), and two different community distance measures109

(Bray-Curtis vs. weighted UNIFRAC). We also present new algorithms for dividing the rDNA110

into regions, combining denoising results from multiple regions, and incorporating phyloge-111

netic information into taxonomic assignments.112
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2 Materials and Methods113

2.1 Sampling114

Sampling was conducted at two sites (Ang: N 9.75456° W 2.14064°; Gan: N 9.75678° W115

2.31058 °) approximately 30 km apart in the Forêt Classée de l’Ouémé Supérieur (Upper116

Ouémé Forest Reserve) in central Benin. Both sites were located in woodlands dominated117

by the ECM host tree Isoberlinia doka (Caesalpinioideae). At each site, 25 soil samples were118

collected along a linear transect at intervals of 1 m in May 2015. One third of the sam-119

ple locations (3 m spacing) were resampled one year later in June 2016. For each sample,120

any coarse organic debris was removed from the soil surface and a sample of approximately121

5cm×5cm×5cm was extracted with a sterilized knife blade. Each sample was sealed in a122

plastic zipper bag and homogenized by shaking and manually breaking apart soil aggrega-123

tions. Approximately 50 mg total of soil was collected from two locations in the homogenized124

soil sample and placed into a separate 2.0 mL microtube containing 750 mL of lysis buffer125

and lysis beads (XpeditionTM Soil/Fecal DNA miniprep, Zymo Research Corporation, Irvine,126

California, USA) and lysed in the field using a handheld bead-beater (TerraLyserTM; Zymo127

Research Corporation).128

An additional sample was collected at every sampling location (1-m spacing) in 2016 us-129

ing LifeGuardTM Soil Preservation Solution (MO BIO, Carlsbad, CA; USA) for preserva-130

tion, without field lysis. Sequencing results for these samples differed significantly (PER-131

MANOVA with 9999 permutations, 𝑝 < 0.0001, 𝑅2 = 0.06) from samples preserved using132

the XpeditionTM lysis buffer (Figures S1, S2, and S3); as such these samples were excluded133

from our spatial analyses. However, reads from these samples were included in the full134

bioinformatics workflow, including ASV calling, OTU clustering, and phylogenetic trees.135
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2.2 DNA extraction, amplification, and sequencing136

After field lysis, DNA was extracted using the XpeditionTM Soil/Fecal Prep kit (see above).137

Samples preserved using LifeGuard were first centrifuged at 10000 g for 1 minute, after138

which the supernatant was removed and DNA was extracted from the remaining soil using139

the Soil/Fecal Prep kit as for the other samples. DNA was quantified using fluorometrically140

using Quant-iTTM PicoGreenTM dsDNA (Thermo Fisher Scientific, Waltham, MA, USA)141

fluorescent indicator dye on a Infinite F200 plate spectrofluorometer (Tecan Trading AG,142

Männedorf, Switzerland) according to the manufacturer’s protocol.143

Two different fragments of the nuclear rDNA were amplified (Figure S4). The short amplicon144

(approximately 300 bp) targeted the full ITS2 region as well as parts of the flanking 5.8S145

and large subunit (LSU) rDNA, using gITS7 (Ihrmark et al., 2012) as the forward primer146

and a mix of ITS4 (White et al., 1990) and ITS4a (Urbina et al., 2016) as the reverse primer147

(hereafter, ITS4m). The long amplicon (approximately 1500 bp) targeted the full ITS region148

including the 5.8S rDNA and approximately 950 bp at the 5’ end of the LSU, including the149

first three variable regions (Figure S4), using ITS1 (White et al., 1990) as the forward primer150

and LR5 (Vilgalys & Hester, 1990) as the reverse primer. Each PCR run also included a151

blank sample and a positive control consisting of freshly extracted DNA from a commercially152

purchased fruitbody of Agaricus bisporus.153

The gITS7 primers for the short amplicon were indexed for multiplexing (Supplementary154

File 1). Amplification was performed by polymerase chain reaction (PCR) in 20µl reactions155

containing 200 µM dNTP mix, 250 µM indexed gITS7 primer, 150µM ITS4m, 2mM MgCl2,156

0.1 U Taq polymerase (Dream Taq, Thermo Fisher Scientific, Waltham, MA, USA) and157

3–7 ng purified DNA in Dream Taq buffer. The reaction conditions were 10 min at 95°,158

followed by 35 cycles of 60 s at 95°, 45 s at 56°, and 50 s at 72°, and finally 3 min at159

72°. Each reaction was conducted in three technical replicates to reduce the effect of PCR160
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stochasticity, which were pooled after amplification.161

Both primers for the long amplicon were indexed for multiplexing (Supplementary File 2).162

PCR was performed as for the short amplicons, but with 500 µM of each of the two primers.163

Reaction conditions were 10 min at 95°, 30 cycles of 45 s at 95°, 45 s at 59°, and 90 s at 72°,164

and finally 10 min at 72°. Each reaction was performed in three technical replicates as for165

short amplicons.166

Amplicons were purified using SPRI beads (Vesterinen et al., 2016) and quantified fluoromet-167

rically as above. An aliquot of 100 ng of DNA from each sample (or the total PCR product168

if less than 100 ng) was pooled into two libraries each for long and short amplicons. Each169

library was sequenced using Single Molecule Real Time (SMRT) sequencing on a Pacific Bio-170

sciences (PacBio) RS II sequencer at the Uppsala Genome Center (UGC; Uppsala Genome171

Center, Science for Life Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala172

University, BMC, Box 815, SE-752 37 UPPSALA, Sweden). Short amplicon libraries were173

sequenced on two SMRT cells each, while long amplicon libraries were sequenced on four174

SMRT cells each.175

Additionally, the short amplicon libraries were combined and sequenced using an Ion S5 (Ion176

Torrent) sequencer using one 520 chip at UGC, and a MiSeq (Illumina Inc.) sequencer using177

v3 chemistry with a paired-end read length of 300 bp at the SNP&SEQ Technology Platform178

(Dept. of Medical Sciences, Uppsala University, BMC, Box 1432, SE-751 44 UPPSALA,179

Sweden). The Illumina library was pooled with samples for another project, with half of the180

reads from one lane devoted to the current study.181

2.3 Bioinformatics182

Circular consensus sequence (CCS) basecalls for PacBio sequences were made using ccs183

version 3.4 (Pacific Biosciences, 2016, July 13/2019) using the default settings. The resulting184
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sequences, as well as the paired-end Illumina sequences, were demultiplexed and sequencing185

primers were removed using cutadapt version 2.8 (Martin, 2011). Sequencing primers were186

similarly removed from the Ion Torrent sequences, but interference between the tagged gITS7187

primers and the Ion XPress tags used in library prep made full demultiplexing of the Ion188

Torrent sequences impossible, and these reads were thus only analyzed as a pool. For Ion189

Torrent and PacBio, reads were discarded if they did not have the appropriate primers on190

both ends. Reads were searched in both directions, and reads where the primers were found191

in the reverse direction were reverse complemented before further analysis. For Illumina192

sequences, read pairs were only retained when PCR primers were detected at the 5’ ends193

of both the forward and reverse read. Primers were also searched for and removed on the194

3’ ends of the reads, in case of readthrough with short amplicons. Read pairs where the195

primers were found in reverse orientation were kept in separate files, but were retained in196

their original orientation until after denoising.197

2.3.1 Denoising198

We attempted to denoise both long and short PacBio amplicons using DADA2 according to199

the steps outlined in the supplementary information in Callahan et al. (2019). However, only200

38 amplicon sequence variants (ASVs) were obtained for the long amplicons, representing 12%201

of the trimmed reads. We conclude that this poor performance was due to a combination202

of long read length and low sequencing depth relative to community diversity. The DADA2203

algorithm requires that the seed sequence of each ASV be represented by at least two error-204

free reads (Callahan et al., 2016). If sequencing errors are uniformly distributed, then the205

probability that a given read will be error-free is (1 − 𝜖)𝐿, where 𝜖 is the sequencing error206

rate and 𝐿 is the read length in base pairs. Then the number of reads of a given sequence207

that would be required to obtain two error-free reads in expectation is 2/(1 − 𝜖)𝐿. For208

the combination of long reads (median 𝐿 = 1509 bp after trimming) and moderate error209
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rate (mean 𝜖 = 0.0073 based on ccs quality scores) for the long amplicon in this study, the210

expected number of reads required to achieve two error-free reads is 126,659. Given the211

high diversity relative to sequencing depth in this study (501 ASVs based on PacBio short212

amplicons, 108,598 trimmed long amplicon reads), this requirement could not have been met213

for the long amplicons except by the most abundant sequences. In comparison, the equivalent214

requirement for the short amplicon (𝐿 = 265 bp, 𝜖 = 0.0024) is only 3.8 reads. We therefore215

developed a new workflow to assemble ASVs from the long amplicons, as follows:216

Raw reads were divided into shorter regions by matching to covariance models (CM), which217

are similar to stochastic hidden markov models (HMM), but account for both nucleotide218

sequence and RNA secondary structure (Eddy & Durbin, 1994). First, the 5.8S rDNA219

was located in each read by searching for Rfam model RF0002 (Kalvari et al., 2018) using220

cmsearch from Infernal 1.1.2 (Nawrocki & Eddy, 2013), and all bases before the 5.8S were221

assigned to ITS1. No attempt was made to remove the approximately 12 bp fragment of the222

SSU from the 5’ end of ITS1 in the long amplicons; it was too short to be reliably detected by223

a CM or the HMMs employed by ITSx (Bengtsson‐Palme et al., 2013). A reference alignment224

including conserved RNA base pairing between and within the 5.8S and relevant portions225

of LSU was generated from the fungal 28S RNA seed alignment from the Ribosomal Data226

Project (RDP) release 11.5 (Cole et al., 2014; Glöckner et al., 2017) by truncating after the227

LR5 primer site and using the reference line to annotate the variable regions sensu Michot228

et al. (1984) and Raué et al. (1988). A CM was generated from the alignment using cmbuild229

from Infernal. The fragment of each read beginning with the 5.8S rDNA was then aligned to230

the CM using cmalign from Infernal. The annotation line in the CM alignment for each read231

was then used to split the reads into alternating more-conserved and less-conserved regions232

as shown in Figure S4, where LSU1-4 represent the conserved regions of LSU flanking the233

variable D1-3 regions (Michot et al., 1984). For short amplicons, only (partial) 5.8S, ITS2,234

and (partial) LSU1 were extracted. Code to extract the regions, including annotated seed235
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alignments and CMs, is available in the new R package LSUx.236

Each of the extracted regions was independently filtered for length (Supplementary Table S1)237

and a maximum of three expected errors. Sequences were then dereplicated and denoised238

into amplicon sequencing variants (ASVs) using DADA2 version 1.12.1 (Callahan et al.,239

2016; Callahan et al., 2019). The error model for DADA2 denoising was fit using the 5.8S240

region for long amplicons, and using the entire read for short amplicons. Independent er-241

ror models were fit for each sequencing run (i.e., long vs. short amplicons, different se-242

quencing technologies). For PacBio libraries, DADA2 was run with complete pooling and243

a band size of 16. For Ion Torrent libraries, pseudo-pooling and a band size of 32 were244

used, and the homopolymer gap penalty was set to -1, as recommended by the DADA2 FAQ245

(https://benjjneb.github.io/dada2/faq.html). Chimeras within each region were removed246

using removeBimeraDenovoTable from DADA2.247

For each ITS2 ASV from the long amplicon data set, the denoised sequences for the other248

regions corresponding to the same sequencing reads were concatenated to form a set of full-249

length reads. For reads which were not assigned a denoised sequence for each region, the250

raw read for the region was used instead. Because ITS2 is the most variable of the amplified251

regions (Figure S5), reads with identical ITS2 regions are expected to have highly similar252

sequences in the other regions, unless the amplicon was chimeric. The concatenated ASVs253

representing each long read were aligned in R using the DECIPHER package (Wright, 2015).254

Outlier sequences, as determined by mean pairwise distance from the rest of the alignment,255

were removed from each alignment using the odseq package (Jehl et al., 2015), using the256

default threshold of 0.025. The consensus of the remaining aligned sequences was assigned as257

the full-length ASV sequence. Full-length ASV sequences with more than three ambiguous258

bases (i.e., no nucleotide >50% at a given position) were removed. The count and sample259

distribution of reads assigned to each full-length ASV were calculated in order to form a260

sample × ASV community matrix. A similar process was used to generate a consensus ITS261
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(ITS1–5.8S–ITS2) and LSU (LSU1–D1–LSU2–D2–LSU3–D3–LSU4) sequence for each ASV.262

The process of assigning consensus full-length ASVs was carried out using the new tzara263

package for R.264

Because the Illumina dataset consisted of paired-end reads, regions were not extracted prior265

to denoising. ASVs were instead generated according to a standard workflow for DADA2.266

Demultiplexed reads were truncated after the first base with quality score <= 10, and then267

reads with more than 3 expected errors in either read were discarded. Forward and reverse268

reads were denoised using DADA2 version 1.12.1 (Callahan et al., 2016) using separate error269

models and pseudo-pooling, and then forward and reverse reads were merged. The ITS2270

region was extracted from the ASVs using LSUx for comparison to the other technologies.271

2.3.2 Taxonomy assignment272

Taxonomic annotations of the Ribosomal Data Project’s LSU fungal training set (RDP) ver-273

sion 11.5 (Cole et al., 2014) and Warcup ITS training set (Deshpande et al., 2016) were274

mapped to the taxonomic classification system used in the Unite database version 8 (Nilsson275

et al., 2019). In particular, the classification for fungi was according to Tedersoo, Sánchez-276

Ramírez, et al. (2018), and for non-fungal eukaryotes was according to the proposed system277

of Tedersoo (2017a) as described in (Tedersoo, 2017b). Although the latter system is not278

formally published, it is consistent with the annotations for non-fungal eukaryotes in the279

Unite database. Additionally, it is a system with both purportedly monophyletic taxa and280

a uniform set of taxon ranks, which make it more appropriate for sequence-based taxonomic281

assignment algorithms than more accepted classification systems such as that of the Inter-282

national Society of Protistologists (Adl et al., 2019), which utilizes hierarchical nameless283

ranks.284

Taxonomic assignment was performed to genus level separately on the ITS region using Unite285
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and Warcup and on the LSU region using RDP, respectively, as taxonomic references. For286

each region/reference combination, taxonomy was assigned using three algorithms: the RDP287

Naïve Bayesian Classifier (RDPC, Wang et al., 2007) as implemented in DADA2; SINTAX288

(Edgar, 2016a) as implemented in VSEARCH v2.9.1 (Rognes et al., 2016); and IDTAXA289

(Murali et al., 2018b). Each full-length ASV was thus given up to nine preliminary taxonomic290

assignments (three references × three algorithms). ASVs from the short-amplicon datasets for291

which no matching long-amplicon ASV could be reconstructed were taxonomically assigned292

using Unite and Warcup on the full length of the short amplicon.293

Sequences were assigned as ECM based on taxonomic assignments using the FUNGuild294

database (Nguyen et al., 2016) via the R package FUNGuildR (https://github.com/brendanf/295

FUNGuildR). All taxa which included “Ectomycorrhiza” in the guild assignment at any level296

of confidence were included.297

2.3.3 Clustering298

For comparison with clustering-based methods, ASVs were clustered into operational taxo-299

nomic units (OTUs) at 97% similarity using VSEARCH v2.9.1 (Rognes et al., 2016).300

2.3.4 Alignment and phylogenetic inference301

Full length long amplicon ASVs were aligned using DECIPHER (Wright, 2015) with up to302

10 iterations of progressive alignment and conserved RNA secondary structure calculation303

and 10 refinement iterations. This alignment was truncated at a position after the D3 region304

corresponding to base 907 of the Saccharomyces cerevisiae S288C reference sequence for LSU,305

because several sequences had introns after this position, as also observed in several fungal306

species by Holst-Jensen et al. (1999).307

An ML tree was produced using RAxML version 8.2.12 (Stamatakis, 2014) using the308
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GTR+GAMMA model and rapid bootstrapping with the MRE_IGN stopping criterion.309

The tree was rooted outside the kingdom Fungi by using the most abundant ASV which310

was confidently assigned to a non-fungal kingdom by all 6 applicable taxonomic assignment311

methods. Assignments based on Warcup were not used at this step because non-Fungi are312

not included in the dataset. The kingdom Fungi was identified as the minimal clade con-313

taining all ASVs which were confidently identified (consensus of at least 6 of 9 assignments)314

to a fungal phylum. ASVs falling outside this clade were not included in downstream fungal315

community analysis.316

Taxonomic assignments of ASVs from the long amplicon dataset were refined using the phy-317

logenetic tree (Figure S6). A taxon at a particular rank was assigned to a node and all its318

descendants if that taxon was consistent with the reference-based taxonomic assignments for319

each of the descendants. A taxon assignment was considered to be consistent if at least one320

algorithm assigned that taxon at greater than 50% confidence, or if no algorithm successfully321

classified the sequence at greater than 50% confidence. The result of this process is twofold.322

First, it gives a taxonomic assignment to ASVs which were previously unassigned if they323

are nested within a clade which is consistently given an assignment. Second, it clarifies the324

assignment of ASVs where different algorithms had resulted in different assignments, but325

only one of these is consistent with the assignments of other ASVs in the same clade. This326

refinement algorithm is referred to as “PHYLOTAX”.327

ASVs from the short amplicon datasets were refined using only the final strict consensus step,328

i.e., an assignment at a given rank was accepted if there was no conflict between the different329

assignment algorithms at greater than 50% confidence. This refinement method is referred to330

as “Consensus”. Additionally, a hybrid method, was applied to the short amplicon datasets,331

in which assignments from PHYLOTAX were used for ASVs which could be linked by an332

identical ITS2 region to a long amplicon, and assignments from Consensus were used for the333

remaining ASVs.334
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2.4 Community comparison335

The fungal communities recovered by the three sequencing strategies that were successfully336

demultiplexed (Illumina, PacBio Short, PacBio Long) were compared by PERMANOVA. In337

order to detect bias at larger taxonomic scales, ASVs were clustered according to the as-338

signed taxonomic class. Only samples where all three strategies yielded at least 100 fungal339

reads (34 samples), and classes which represented at least 1% of reads in at least one sample340

(14 classes), were included. PERMANOVA included three terms: an indicator for soil sam-341

ple, comprising all spatiotemporal effects; amplicon length (long vs. short); and sequencing342

technology (Illumina MiSeq vs. PacBio RS II). The marginal significance of each term for343

explaining variation in the Bray-Curtis community dissimilarity matrix was performed using344

the adonis2 function in the R package vegan (Oksanen et al., 2019), with 9999 permuta-345

tions. Partial Principal Coordinates Analysis (PPCoA) was applied to the same dissimilarity346

matrix using the capscale function in vegan (Oksanen et al., 2019). Spatiotemporal effects347

were partialled out in order to visualize effects due to sequencing technology and amplicon348

length.349

A similar analysis was also applied to only fungi classified as ECM, clustered at the family350

level.351

2.5 Spatiotemporal analysis352

Turnover scale is the distance at which two communities can be considered to be independent353

samples of the local species pool. Knowledge of turnover scale is import when planning studies354

of local diversity and its environmental correlates. It varies between different ecosystems355

and taxonomic groups. Turnover scale is often measured by the range at which a Mantel356

correlogram indicates significant autocorrelation, or by fitting a function to an empirical357

distance-decay curve of community dissimilarity vs. distance (Legendre & Legendre, 2012).358
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Ecological community dissimilarity matrices were calculated using the ASV/OTU based359

Bray-Curtis metric (both long and short amplicons) and the phylogenetically based weighted360

UNIFRAC method (only long amplicons) in phyloseq version 1.26.0. Each of these distance361

matrices was used to calculate a Mantel correlogram for distances of 0–12 m. Separate cor-362

relograms were drawn for samples taken during the same year, and samples separated in363

time by one year, in order to assess the degree to which the soil community changes over the364

course of one year.365

Additionally, empirical distance-decay curves were generated by plotting mean community366

dissimilarity as a function of spatial distance, and fit to an exponential model of the form367

given by Legendre and Legendre (2012) using the nls function in R. Points in the empirical368

distance-decay curve were weighted by the number of comparisons within the distance class369

and the inverse of the distance for the purposes of model fitting. For datasets where the370

Mantel correlogram indicated spatial correlation between samples taken in separate years,371

the model was re-fit with an additional term to represent temporal correlation:372

𝐷 = 𝐶0 + 𝐶1 [1 − exp (−3 ( 𝑑
𝑎𝑑

+ 𝑡
𝑎𝑡

))]

where 𝐷, 𝑑, and 𝑡 represent the community dissimilarity, spatial distance, and time lag373

between samples, respectively, and the parameters are 𝐶0, the community dissimilarity from374

replicate samples (“nugget”); 𝐶0 +𝐶1, the community dissimilarity at long distances (“sill”);375

𝑎𝑑 the spatial range at which the community dissimilarity has moved 95% of the way from376

“nugget” to “sill”; and 𝑎𝑡, the equivalent temporal range. The 95% confidence intervals were377

calculated for the spatial and temporal range parameters by profiling using the MASS package378

in R.379
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3 Results380

DNA concentrations after extraction and PCR, as well as sequencing reads for PacBio and381

Illumina, are shown per sample in Figure S7. Samples from Ang in 2015 yielded low quantities382

of DNA, poor PCR performance, and ultimately very few sequencing reads, especially in the383

long amplicon library, where only one sample produced more than 100 reads. Consequently,384

Ang samples were excluded from spatial analysis, although they were retained for denoising,385

phylogenetic reconstruction, and taxonomic assignment.386

The number of sequencing reads and ASVs at each stage in the bioinformatics pipeline are387

shown in Table S2. Sequencing with PacBio RS II yielded more than twice as many raw reads388

for long amplicons as for short amplicons, with approximately 125 thousand and 50 thou-389

sand reads, respectively. Ion Torrent Ion S5 and Illumina MiSeq yielded substantially more390

reads, with 20.7 million and 10.8 million, respectively. Demultiplexing, primer trimming,391

and quality filtering reduced these totals by 63% for PacBio long reads, but only by 17%392

for PacBio short reads, resulting in a similar number of filtered reads for the two strategies.393

Losses in demultiplexing, trimming, and quality filtering were intermediate for Ion Torrent394

and Illumina, with 41% and 28% loss, respectively. In contrast, extraction of only the ITS2395

region before quality filtering resulted in the loss of 27% of trimmed long amplicon PacBio396

reads, 19% of trimmed short amplicon PacBio reads, and 34% of trimmed Ion Torrent reads.397

This represented greater loss of PacBio short reads, but less loss of PacBio long reads and398

Ion Torrent reads.399

Almost all of the short amplicons from all three technologies were between 240 and 375 bp long400

(Figure S8a). Although the length profile of the three sequencing runs were similar, Illumina401

MiSeq had the largest fraction of reads near the top of the range, followed by Ion Torrent Ion402

S5 and PacBio RS II (Figure S8b). The difference in length distributions was statistically403

significant due to the large sample size (Kruskal-Wallis statistic = 8.5976571 × 104, 𝑝 <404
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2.2 × 10−16), but the difference between means was fairly small, with mean amplicon lengths405

of 274, 281, and 286 bp for PacBio, Ion Torrent, and Illumina, respectively. In contrast, the406

length of the long amplicon reads varied widely, from 696 to 1638 bp, with a mean of 1432407

bp.408

The length distribution of the different regions extracted from the long amplicon are shown409

in Figure S9. ITS1 showed the greatest length variability (mean ± standard deviation: 193410

± 55 bp), followed by ITS2 (184 ± 41 bp) and the variable regions in LSU (D2: 227 ± 36 bp;411

D3: 108 ± 10 bp; D1: 159 ± 5 bp). Approximately 2% of reads included an intron of 40–60412

bp in the LSU4 region, not visible in Figure S9 due to rarity. Except for these sequences,413

all conserved regions of LSU, as well as 5.8S, displayed very little size variation, as expected,414

with standard deviations < 2 bp.415

Agaricus bisporus, the positive control, was represented by a single ASV in the positive control416

samples for both long- and short-amplicon PacBio datasets, and in the Ion Torrent dataset.417

A. bisporus was represented by two ASVs in the Illumina dataset, which differed at one base418

pair (99.5% similarity in ITS2). The abundance of the second ASV was 1.1% and 1.0% that419

of the primary A. bisporus ASV in the two Illumina positive controls. The consistency of this420

ratio across replicate positive controls suggests that it represents true inter-copy variation421

within the specimen, rather than sequencing or PCR error. Despite higher total sequencing422

depth, this ASV was not identified from the Ion Torrent dataset.423

A. bisporus sequences represented 0.11%, 0.08%, 0.10%, and 0.09% of non-control reads,424

in the PacBio long, PacBio short, Illumina, and Ion Torrent datasets, respectively, giving425

similar estimates for the rate of tag-switching for all technologies. These reads were excluded426

from community analyses.427
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3.1 Reproducibility of sequence capture using different technolo-428

gies429

The majority of abundant ASVs and OTUs were captured by all sequencing strategies used430

(Figure 1). ASVs shared between all datasets represented 56–79% of the reads for the long431

and short PacBio datasets, Illumina dataset, and Ion Torrent dataset, respectively. These432

fractions increased to 73–88% when differences at the intra-species scale were removed by433

clustering the ASVs into 97% OTUs. In particular, 99%, 92%, and 89% of reads in the434

PacBio, Illumina, and Ion Torrent short-amplicon datasets belonged to OTUs shared be-435

tween all three datasets. In contrast, 21% of reads in the long PacBio dataset belonged to436

ASVs which were unique to that dataset, and the fraction only reduced to 20% after OTU437

clustering. Complete tabulations of the number of ASVs and OTUs shared between the438

different sequencing strategies are shown in Supplementary Tables S3 and S4, respectively.439

Figure 2 shows the correspondence between the read count for different ASVs (2a) and440

OTUs(2b) in the different technologies, where shared ASVs/OTUs are plotted as circles, and441

unshared OTUs are plotted as lines along the axes. In all cases, the read counts for shared442

ASVs and OTUs were correlated, with a minimum 𝑅2 value of 0.46. Correlations between443

read counts for the three technologies using the short amplicon library were increased by OTU444

clustering (0.68 to 0.75, 0.49 to 0.78, and 0.73 to 0.87, for PacBio vs. Illumina, PacBio vs. Ion445

Torrent, and Illumina vs. Ion Torrent, respectively), but not between the long amplicon446

library and short amplicon library (0.65 to 0.61, 0.59 to 0.58, and 0.46 to 0.49, for PacBio447

long amplicon reads vs. PacBio, Illumina, and Ion Torrent short reads, respectively).448
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3.2 Taxonomic assignment449

For all sequencing datasets and taxonomic assignment protocols, a higher proportion of reads450

was assigned than of ASVs, indicating that common ASVs were more likely to be identified451

than rare ASVs (Figure 3). A greater fraction of ITS reads and ASVs were assigned using452

the Unite database than the Warcup database across sequencing technologies, amplicons,453

algorithms, and taxonomic ranks. At most taxonomic ranks, the RDPC algorithm assigned454

the greatest fraction of reads and ASVs, followed by SINTAX, and then IDTAXA.455

Taxonomic composition of the sequenced soil fungal community at the class level is is summa-456

rized in Figure 4 and as a heat tree (Foster et al., 2017) in Figure S10. The ML tree for fungal457

ASVs, along with taxonomic assignments, is shown in Supplementary File 3. According to the458

PHYLOTAX assignments, Fungi represented 76% of the ASVs and 90% of the reads in the459

long amplicon library, compared to 89.7%–94.7% of the ASVs and 98.4%–98.9% of the reads460

in the short amplicon library. Measured fungal community composition at the class level461

varied significantly between amplicons (PERMANOVA with 9999 permutations, 𝑝 < 0.0001,462

𝑅2 = 0.046), but only marginally between sequencing technologies (𝑝 = 0.0613, 𝑅2 = 0.001).463

The majority of variation was spatiotemporal (i.e., between samples; 𝑝 < 0.0001, 𝑅2 = 0.90),464

but once this variation was removed, the remaining effect consisted of a clear bias against465

Sordariomycetes in the long amplicon dataset (Figures 4 and S12).466

Fungi categorized as ECM made up 8.2% of ASVs and 39.0% of reads in the long amplicon467

library, and 6.2%–13.3% of the ASVs and 36.1%–47.0% of the reads in the short amplicon468

library (Figure S11). Although amplicon length had a significant effect on ECM community469

composition at the family level, the explained variation was very low (PERMANOVA with470

9999 permutations, 𝑝 = 0.0009, 𝑅2 = 0.002), and the majority of variation was again471

spatiotemporal (𝑝 < 0.0001, 𝑅2 = 0.98). Variation between sequencing technologies was not472

significant (𝑝 = 0.47, 𝑅2 = 0.0004).473
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3.3 Spatial analysis474

Results of spatial analysis based on the Bray-Curtis dissimilarity were qualitatively similar475

between the two amplicon libraries and between PacBio and Illumina sequencing, with sig-476

nificant autocorrelation at 𝑝 < 0.05 for ranges of up to 2–3 m for the total fungal community,477

and 1–2 m for the ECM fungal community (Figure S13). In both cases, the greatest corre-478

lation magnitudes were found with Illumina, followed by long amplicon PacBio. The least479

spatial structure was detected with PacBio short amplicon sequencing.480

The Bray-Curtis metric showed significant (𝑝 < 0.05) positive correlation when resampling481

at the same locations one year later (i.e., spatial distance of 0 m, time lag of 1 year), for both482

the total fungal and ECM fungal communities in the long amplicon library. For the short483

amplicon library, although the general profile of the correlograms was similar, correlation at484

0 m and 1 year was not significant, but there was a negative correlation at time lag of 1 year485

and a distance of 1 m for both sequencing technologies. This puzzling negative correlation was486

significant in all correlograms based on short amplicon sequencing irrespective of technology.487

In contrast to the Bray-Curtis distance, the weighted UNIFRAC distance showed very little488

spatial structure, with only the total fungal community in the 1 m distance class showing489

a significant correlation at 𝑝 < 0.05. No temporal correlation was found for the weighted490

UNIFRAC distance.491

The best fit spatial ranges based on distance-decay curves vary between the different datasets492

by a factor of about 3, but there is overlap of the 95% confidence intervals for all of the Bray-493

Curtis spatial ranged in both the total fungal and ECM fungal communities, across amplicon494

libraries and sequencing technologies (Figure 5, Table S5). Although a distance-decay model495

was fit for the weighted UNIFRAC distance applied to the total fungal community, the result496

was very poorly constrained, and a range of 0 m, indicating no spatial structure, was included497

in the 95% confidence interval.498
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4 Discussion499

4.1 Reconstruction of long amplicons from denoised subregions500

ASV recovery for long amplicons using DADA2 was dramatically improved (12% to 75% of501

reads) by denoising homologous subregions independently using the LSUx and tzara pack-502

ages. Although newer sequencing platforms from PacBio (Sequel and Sequel II) feature503

increased sequencing depth and lower error rate compared to the RS II, long sequences504

inherently require much more sampling depth to identify ASVs. Thus, tzara should in-505

crease ASV recovery from these platforms as well. It may also be adaptable to Oxford506

Nanopore sequencing, which has hitherto posed difficulties for application to complex com-507

munity metabarcoding (Loit et al., 2019).508

4.2 Comparison of sequencing strategies509

The three sequencing technologies gave similar results for the short amplicon library, the510

major difference being in sequencing depth. Although a greater fraction of PacBio raw reads511

were ultimately mapped to ASVs (76%) compared to Illumina (63%) or Ion Torrent (65%),512

the latter two technologies provided much greater sequencing depth for a similar cost, allowing513

a greater diversity of rare ASVs to be recovered.514

DADA2 denoising may perform differently on different technologies (or perhaps sequencing515

runs), indicated by the fact that clustering ASVs at 97% led to substantially higher corre-516

spondence between both the set of sequences recovered from the same library by different517

technologies (Figure 1) and the read counts for each sequence (Figure 2). The large num-518

ber of ASVs unique to Ion Torrent, while only the Illumina dataset recovered an apparent519

intragenomic variant in the positive control sample, suggests that DADA2 may not con-520

trol sequencing error as effectively in Ion Torrent sequences as in Illumina, for which it was521
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developed (Callahan et al., 2016).522

Although the longer read length capabilities of PacBio would allow recovery of longer ITS2523

sequences than the other two technologies, PacBio did not recover any ITS2 fragments longer524

than those recovered by Illumina and Ion Torrent. Notably, neither long nor short amplicon525

sequencing recovered any sequences identifiable to Cantharellus, an ECM genus which is526

commonly observed at the study sites as fruitbodies (personal observation), but which is527

also known to have accelerated evolution in the rDNA (Moncalvo et al., 2006) and longer528

ITS regions than other fungi (Feibelman et al., 1994), making it an especially difficult target529

for metabarcoding. Contrary to expectations, Illumina showed a slightly higher fraction of530

longer ITS2 sequences than Ion Torrent, which in turn showed slightly longer sequences than531

PacBio (Figures S8 and S14).532

Of long amplicon reads, 21% belonged to ASVs which occurred only in the long amplicon533

dataset, and clustering at 97% similarity only reduced this fraction to 20%. Additionally,534

ITS2 sequences extracted from the long amplicon dataset included some sequences that were535

much shorter than those recovered from the short amplicon datasets (Figure S14). Taxonomic536

assignments revealed that the majority of these non-shared sequences fall outside kingdom537

Fungi (Figure S15), and that in particular the short ITS2 sequences are mostly Alveolates538

(Figure S16). Within Fungi, the short amplicon datasets recovered more Sordariomycetes539

(Figures 4, S12, and S15). Additionally, several smaller groups showed increased detection540

in either the long or short datasets, such as Tulasnellaceae and Pyronemataceae in the long541

amplicon dataset, and Myerozyma in the short amplicon datasets (Figures S15 and S17).542

These differences may be due to primer mismatches in these taxa.543
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4.3 Taxonomic identification544

The RDP fungal training set and Unite performed comparably at taxonomic placement of545

long amplicon sequences. The Warcup database placed notably fewer sequences at all tax-546

onomic levels for all datasets, probably in part due to the fact that only fungal sequences547

are included. However, even with this considered, IDTAXA performed very poorly with the548

Warcup database, placing <25% of ASVs to kingdom in all datasets. IDTAXA placed fewer549

sequences than RDPC or SINTAX even with the other databases, but this is expected given550

its more conservative assignment of confidence scores (Murali et al., 2018a).551

Gdanetz et al. (2017) showed that a majority-rule consensus of three assignment algorithms552

can improve the fraction of sequences assigned as well as decrease the false assignment rate.553

Strict consensus rejects assignments whenever there is conflict between methods and should554

therefore provide more conservative taxonomic assignments than majority-rule consensus.555

Here, we found that strict consensus also usually increases the number of assigned sequences556

relative to any single method, except at family and genus level identifications. This sug-557

gests that different assignment algorithms and databases bring mostly complementary, non-558

contradictory information at higher taxonomic levels. However, contradictory assignments559

between different methods is more common at lower taxonomic levels, which can be prob-560

lematic because accurate assignment at the family or genus level is generally required for561

ecological guild assignment using FUNGuild.562

For ASVs where a long amplicon sequence is available, PHYLOTAX uses phylogenetic re-563

lationships to resolve these disagreements in a principled manner. For instance, 56% and564

83% of Illumina reads were assigned to genus and family, respectively, by the strict consen-565

sus of methods, but PHYLOTAX increased this fraction to 77% and 94%. This led to a566

corresponding increase in the fraction of reads assigned to a functional guild (Figure S11).567
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4.4 Turnover rate568

Weighted UNIFRAC did not reliably detect spatial structure within this relatively ecologi-569

cally homogeneous community. Although the Mantel test did show a small but significant570

positive autocorrelation in the fungal community at the smallest size category (1 m; Fig-571

ure S13), the distance-decay plot in Figure 5 does not show any clear relationship. The572

functional fit showed poor convergence, with a 95% confidence interval for spatial range of573

0–5700 m, indicating little evidence of spatial structure. This is probably due to the ma-574

jority of weighted branch length in the community being between the Pezizomycotina and575

Agaricomycetes (Figure S10), which are both well represented in the majority of samples.576

UNIFRAC would be more suited at larger spatial scales and/or larger ecological gradients.577

Mantel correlograms based on the Bray-Curtis dissimilarity (Figure S13) revealed spatial578

autocorrelation in the soil fungal community at distance classes ≤ 3 m for both Illumina and579

PacBio using long and short amplicons, and in the ECM fungal community at distance classes580

≤ 2 m for Illumina and PacBio long amplicons, and ≤ 1 m for the PacBio short amplicons.581

These results are similar to autocorrelation ranges found in previous work based on ECM582

root tips in temperate forests (Lilleskov et al., 2004; Pickles et al., 2012). Lilleskov et al.583

(2004) found autocorrelation only at ranges <2.6 m at most sites using Sanger sequencing.584

Similarly, Pickles et al. (2012) found autocorrelation at distances <3.4 m based on T-RFLP585

analysis. However, previous work in Miombo woodland, a similar ecosystem to the Soudanian586

woodland in this study, found autocorrelation at ranges <10 m using Sanger sequencing of587

ECM root tips (Tedersoo et al., 2011), which was their smallest distance class.588

Distance-decay plots (Figure 5, Table S5) gave substantially longer autocorrelation distances.589

There was little variation in the results between the Illumina and long-amplicon PacBio590

datasets for both the total fungal community and the ECM community, with best fit esti-591

mates ranging from 13–19 m. The 95% confidence interval was substantially wider than this592
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variation, generally covering a range of 6–44 m. All of these values are smaller than the593

65 m reported by Bahram et al. (2013), also based on distance-decay curves from an ECM594

woodland habitat in Benin.595

The PacBio short amplicon dataset shows a longer spatial range, of 31 m for the total596

fungal community and 42–42 m for the ECM community, in both cases with wide confidence597

intervals spanning 15–203 m. It is possible that the weaker fit for this dataset, which also598

showed weaker autocorrelation in the Mantel correlogram, is due to low sequencing depth.599

The Bray-Curtis Mantel correlogram for both the total fungal and ECM communities from600

the long amplicon dataset show a significant positive correlation at 0 m and 1 year. The601

spatiotemporal distance-decay fit estimated the temporal turnover range as 3.1 years for602

the total fungal community and 4.0 years for the ECM community, but with overlapping603

confidence intervals. Both datasets from the short amplicon library showed a puzzling pattern604

with no autocorrelation at 0 m and 1 year, but a weak negative correlation at 1 m and 1 year.605

The general shape of the correlograms were similar for long and short amplicon datasets. We606

hypothesize that two different processes may be at work with differing spatiotemporal scales,607

whose superposition result in this pattern.608

4.5 Conclusion609

The choice of amplicon and sequencing technology did not seem to affect the results of the610

spatial analysis, provided sufficient sequencing depth. However, the addition of long amplicon611

reads did allow the construction of a phylogenetic tree from the metabarcoding reads, which612

allowed refinement of taxonomic assignments. DADA2 ASV yield was initially poor for613

long reads, but this was improved by developing a workflow for extraction of subregions,614

separate denoising, and then reconstruction of full-length unique sequences. Together these615

approaches provide a hybrid approach using long-read sequencing to acquire long amplicon616
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sequences for the local species pool, and cost-effective short-read sequencing to provide high617

sampling depth and sample number.618

Acknowledgements619

This project was funded by the Swedish research council FORMAS grant number 2014-01109.620

Laboratory work including PCR and library pooling was performed by Dr. Ylva Strid.621

The authors would like to acknowledge support of the National Genomics Infrastructure622

(NGI) / Uppsala Genome Center and UPPMAX for providing assistance in massive parallel623

sequencing and computational infrastructure. Work performed at NGI / Uppsala Genome624

Center has been funded by RFI / VR and and Science for Life Laboratory, Sweden.625

Sequencing was performed by the SNP&SEQ Technology Platform in Uppsala. The facility is626

part of the National Genomics Infrastructure (NGI) Sweden and Science for Life Laboratory.627

The SNP&SEQ Platform is also supported by the Swedish Research Council and the Knut628

and Alice Wallenberg Foundation.629

References630

Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney,631

C., Brown, M. W., Burki, F., Cárdenas, P., Čepička, I., Chistyakova, L., Campo, J. del,632

Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., … Zhang, Q. (2019).633

Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. Journal634

of Eukaryotic Microbiology, 66(1), 4–119. https://doi.org/10.1111/jeu.12691635

Ainsworth, G. C. (2008). Ainsworth & Bisby’s dictionary of the fungi. Cabi.636

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local637

alignment search tool. Journal of Molecular Biology, 215(3)pmid 2231712, 403–410.638

https://doi.org/10.1016/S0022-2836(05)80360-2639

Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Xu, Z. Z., Kight-640

ley, E. P., Thompson, L. R., Hyde, E. R., Gonzalez, A., & Knight, R. (2017). De-641

blur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems,642

2(2)pmid 28289731, e00191–16. https://doi.org/10.1128/mSystems.00191-16643

27

https://doi.org/10.1111/jeu.12691
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1128/mSystems.00191-16


Bahram, M., Koljalg, U., Courty, P.-E., Diedhiou, A. G., Kjøller, R., Polme, S., Ryberg, M.,644

Veldre, V., & Tedersoo, L. (2013). The distance decay of similarity in communities of645

ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 101(5),646

1335–1344.647

Bengtsson‐Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., Wit,648

P. D., Sánchez‐García, M., Ebersberger, I., Sousa, F. de, Amend, A., Jumpponen,649

A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K.,650

Eriksson, K. M., Vik, U., … Nilsson, R. H. (2013). Improved software detection and651

extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukary-652

otes for analysis of environmental sequencing data. Methods in Ecology and Evolution,653

4(10), 914–919. https://doi.org/10.1111/2041-210X.12073654

Berger, S. A., Krompass, D., & Stamatakis, A. (2011). Performance, Accuracy, and Web655

Server for Evolutionary Placement of Short Sequence Reads under Maximum Likeli-656

hood. Systematic Biology, 60(3), 291–302. https://doi.org/10.1093/sysbio/syr010657

Brundrett, M. C. (2017). Global Diversity and Importance of Mycorrhizal and Nonmycor-658

rhizal Plants. In L. Tedersoo (Ed.), Biogeography of Mycorrhizal Symbiosis (pp. 533–659

556). Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-660

56363-3_21661

Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should662

replace operational taxonomic units in marker-gene data analysis. The ISME Journal,663

11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119664

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes,665

S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data.666

Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869667

Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati, A. S., McGill, S. K., &668

Dougherty, M. K. (2019). High-throughput amplicon sequencing of the full-length 16S669

rRNA gene with single-nucleotide resolution. Nucleic Acids Research, 47 (18), e103–670

e103. https://doi.org/10.1093/nar/gkz569671

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T.,672

Porras-Alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project:673

Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(D1),674

D633–D642. https://doi.org/10.1093/nar/gkt1244675

Deshpande, V., Wang, Q., Greenfield, P., Charleston, M., Porras-Alfaro, A., Kuske, C. R.,676

Cole, J. R., Midgley, D. J., & Tran-Dinh, N. (2016). Fungal identification using a677

Bayesian classifier and the Warcup training set of internal transcribed spacer se-678

quences. Mycologia, 108(1), 1–5. https://doi.org/10.3852/14-293679

Eddy, S. R., & Durbin, R. (1994). RNA sequence analysis using covariance models. Nucleic680

Acids Research, 22(11), 2079–2088. https://doi.org/10.1093/nar/22.11.2079681

Edgar, R. C. (2016a). SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS682

sequences. bioRxiv, 074161. https://doi.org/10.1101/074161683

Edgar, R. C. (2016b). UNOISE2: Improved error-correction for Illumina 16S and ITS ampli-684

con sequencing. bioRxiv, 081257. https://doi.org/10.1101/081257685

28

https://doi.org/10.1111/2041-210X.12073
https://doi.org/10.1093/sysbio/syr010
https://doi.org/10.1007/978-3-319-56363-3_21
https://doi.org/10.1007/978-3-319-56363-3_21
https://doi.org/10.1007/978-3-319-56363-3_21
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/nar/gkz569
https://doi.org/10.1093/nar/gkt1244
https://doi.org/10.3852/14-293
https://doi.org/10.1093/nar/22.11.2079
https://doi.org/10.1101/074161
https://doi.org/10.1101/081257


Feibelman, T., Bayman, P., & Cibula, W. G. (1994). Length variation in the internal tran-686

scribed spacer of ribosomal DNA in chanterelles. Mycological Research, 98(6), 614–687

618. https://doi.org/10.1016/s0953-7562(09)80407-3688

Foster, Z. S. L., Sharpton, T. J., & Grünwald, N. J. (2017). Metacoder: An R package689

for visualization and manipulation of community taxonomic diversity data. PLOS690

Computational Biology, 13(2), e1005404. https : / /doi . org/10 . 1371/ journal . pcbi .691

1005404692

[Dataset] Furneaux, B., Bahram, M., Rosling, A., Yorou, N. S., & Ryberg, M. (2020). Data693

for ”Long- and short-read metabarcoding reveal similar spatio-temporal structures in694

fungal communities”. Dryad. https://doi.org/XXXX695

Gdanetz, K., Benucci, G. M. N., Vande Pol, N., & Bonito, G. (2017). CONSTAX: A tool for696

improved taxonomic resolution of environmental fungal ITS sequences. BMC Bioin-697

formatics, 18(1), 538. https://doi.org/10.1186/s12859-017-1952-x698

Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns, G., Yarza,699

P., Peplies, J., Westram, R., & Ludwig, W. (2017). 25 years of serving the community700

with ribosomal RNA gene reference databases and tools. Journal of Biotechnology,701

261, 169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198702

Holst-Jensen, A., Vaage, M., Schumacher, T., & Johansen, S. (1999). Structural characteris-703

tics and possible horizontal transfer of group I introns between closely related plant704

pathogenic fungi. Molecular Biology and Evolution, 16(1), 114–126. https://doi.org/705

10.1093/oxfordjournals.molbev.a026031706

Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology:707

Peeking into the black-box. Molecular Ecology, 10(8), 1855–1871. https://doi.org/10.708

1046/j.0962-1083.2001.01333.x709

Ihrmark, K., Bödeker, I. T. M., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck,710

J., Strid, Y., Stenlid, J., Brandström-Durling, M., Clemmensen, K. E., & Lindahl,711

B. D. (2012). New primers to amplify the fungal ITS2 region – evaluation by 454-712

sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82(3),713

666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x714

Jehl, P., Sievers, F., & Higgins, D. G. (2015). OD-seq: Outlier detection in multiple sequence715

alignments. BMC Bioinformatics, 16(1), 269. https://doi.org/10.1186/s12859-015-716

0702-1717

Kalvari, I., Nawrocki, E. P., Argasinska, J., Quinones‐Olvera, N., Finn, R. D., Bateman, A.,718

& Petrov, A. I. (2018). Non-Coding RNA Analysis Using the Rfam Database. Current719

Protocols in Bioinformatics, 62(1), e51. https://doi.org/10.1002/cpbi.51720

Kennedy, P. G., Cline, L. C., & Song, Z. (2018). Probing promise versus performance in721

longer read fungal metabarcoding. New Phytologist, 217 (3), 973–976.722

Legendre, P., & Legendre, L. F. J. (2012, July 21). Numerical Ecology. Elsevier.723

Lilleskov, E. A., Bruns, T. D., Horton, T. R., Taylor, D. L., & Grogan, P. (2004). Detection724

of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS725

Microbiology Ecology, 49(2), 319–332. https://doi.org/10.1016/j.femsec.2004.04.004726

Lindahl, B. D., Nilsson, R. H., Tedersoo, L., Abarenkov, K., Carlsen, T., Kjøller, R., Kõljalg,727

U., Pennanen, T., Rosendahl, S., Stenlid, J., et al. (2013). Fungal community analysis728

29

https://doi.org/10.1016/s0953-7562(09)80407-3
https://doi.org/10.1371/journal.pcbi.1005404
https://doi.org/10.1371/journal.pcbi.1005404
https://doi.org/10.1371/journal.pcbi.1005404
https://doi.org/XXXX
https://doi.org/10.1186/s12859-017-1952-x
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1093/oxfordjournals.molbev.a026031
https://doi.org/10.1093/oxfordjournals.molbev.a026031
https://doi.org/10.1093/oxfordjournals.molbev.a026031
https://doi.org/10.1046/j.0962-1083.2001.01333.x
https://doi.org/10.1046/j.0962-1083.2001.01333.x
https://doi.org/10.1046/j.0962-1083.2001.01333.x
https://doi.org/10.1111/j.1574-6941.2012.01437.x
https://doi.org/10.1186/s12859-015-0702-1
https://doi.org/10.1186/s12859-015-0702-1
https://doi.org/10.1186/s12859-015-0702-1
https://doi.org/10.1002/cpbi.51
https://doi.org/10.1016/j.femsec.2004.04.004


by high-throughput sequencing of amplified markers–a user’s guide. New Phytologist,729

199(1), 288–299.730

Loit, K., Adamson, K., Bahram, M., Puusepp, R., Anslan, S., Kiiker, R., Drenkhan, R., &731

Tedersoo, L. (2019). Relative Performance of MinION (Oxford Nanopore Technolo-732

gies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in733

Identification of Agricultural and Forest Fungal Pathogens. Applied and Environmen-734

tal Microbiology, 85(21)pmid 31444199. https://doi.org/10.1128/AEM.01368-19735

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing736

reads. EMBnet.journal, 17 (1), 10–12. https://doi.org/10.14806/ej.17.1.200737

Matsen, F. A., Kodner, R. B., & Armbrust, E. V. (2010). Pplacer: Linear time maximum-738

likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference739

tree. BMC Bioinformatics, 11(1), 538. https://doi.org/10.1186/1471-2105-11-538740

Michot, B., Hassouna, N., & Bachellerie, J.-P. (1984). Secondary structure of mouse 28S741

rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic742

Acids Research, 12(10), 4259–4279. https://doi.org/10.1093/nar/12.10.4259743

Moncalvo, J.-M., Nilsson, R. H., Koster, B., Dunham, S. M., Bernauer, T., Matheny, P. B.,744

Porter, T. M., Margaritescu, S., Weiß, M., Garnica, S., Danell, E., Langer, G., Langer,745

E., Larsson, E., Larsson, K.-H., & Vilgalys, R. (2006). The cantharelloid clade: Deal-746

ing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia,747

98(6), 937–948. https://doi.org/10.1080/15572536.2006.11832623748

Murali, A., Bhargava, A., & Wright, E. S. (2018a). IDTAXA: A novel approach for accurate749

taxonomic classification of microbiome sequences. Microbiome, 6(1), 140. https://doi.750

org/10.1186/s40168-018-0521-5751

Murali, A., Bhargava, A., & Wright, E. S. (2018b). IDTAXA: A novel approach for accurate752

taxonomic classification of microbiome sequences. Microbiome, 6(1), 140. https://doi.753

org/10.1186/s40168-018-0521-5754

Nawrocki, E. P., & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches.755

Bioinformatics, 29(22), 2933–2935. https://doi.org/10.1093/bioinformatics/btt509756

Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S.,757

& Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal758

community datasets by ecological guild. Fungal Ecology, 20, 241–248.759

Nilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel,760

D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., &761

Abarenkov, K. (2019). The UNITE database for molecular identification of fungi:762

Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research,763

47 (D1), D259–D264. https://doi.org/10.1093/nar/gky1022764

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin,765

P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., &766

Wagner, H. (2019). Vegan: Community ecology package [R package version 2.5-6]. R767

package version 2.5-6. https://CRAN.R-project.org/package=vegan768

Pacific Biosciences. (2019, February 22). Consensus library and applications. Contribute to769

PacificBiosciences/unanimity development by creating an account on GitHub. Re-770

trieved March 11, 2019, from https://github.com/PacificBiosciences/unanimity771

30

https://doi.org/10.1128/AEM.01368-19
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1186/1471-2105-11-538
https://doi.org/10.1093/nar/12.10.4259
https://doi.org/10.1080/15572536.2006.11832623
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.1093/nar/gky1022
https://CRAN.R-project.org/package=vegan
https://github.com/PacificBiosciences/unanimity


Pickles, B. J., Genney, D. R., Anderson, I. C., & Alexander, I. J. (2012). Spatial analysis of772

ectomycorrhizal fungi reveals that root tip communities are structured by competitive773

interactions. Molecular Ecology, 21(20), 5110–5123. https://doi.org/10.1111/j.1365-774

294X.2012.05739.x775

Raué, H. A., Klootwijk, J., & Musters, W. (1988). Evolutionary conservation of structure776

and function of high molecular weight ribosomal RNA. Progress in Biophysics and777

Molecular Biology, 51(2), 77–129. https://doi.org/10.1016/0079-6107(88)90011-9778

Rinaldi, A., Comandini, O., & Kuyper, T. W. (2008). Ectomycorrhizal fungal diversity:779

Seperating the wheat from the chaff. Fungal Diversity, 33, 1–45.780

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile781

open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.782

2584783

Ryberg, M. (2015). Molecular operational taxonomic units as approximations of species in784

the light of evolutionary models and empirical data from Fungi. Molecular Ecology,785

24(23), 5770–5777. https://doi.org/10.1111/mec.13444786

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen,787

W., & Consortium, F. B. (2012). Nuclear ribosomal internal transcribed spacer (ITS)788

region as a universal DNA barcode marker for Fungi. Proceedings of the National789

Academy of Sciences, 109(16)pmid 22454494, 6241–6246. https://doi.org/10.1073/790

pnas.1117018109791

Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. Academic press.792

Somervuo, P., Koskela, S., Pennanen, J., Henrik Nilsson, R., & Ovaskainen, O. (2016). Unbi-793

ased probabilistic taxonomic classification for DNA barcoding. Bioinformatics, 32(19),794

2920–2927. https://doi.org/10.1093/bioinformatics/btw346795

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis796

of large phylogenies. Bioinformatics, 30(9), 1312–1313. https ://doi .org/10.1093/797

bioinformatics/btu033798

Tedersoo, L. (2017a). Proposal for practical multi-kingdom classification of eukaryotes based799

on monophyly and comparable divergence time criteria. bioRxiv, 240929. https://doi.800

org/10.1101/240929801

[Dataset] Tedersoo, L. (2017b). Proposed practical classification of the domain Eukarya based802

on the NCBI system and monophyly and comparable divergence time criteria. PlutoF.803

https://doi.org/10.15156/BIO/587483804

Tedersoo, L., Anslan, S., Bahram, M., Põlme, S., Riit, T., Liiv, I., Kõljalg, U., Kisand, V.,805

Nilsson, H., Hildebrand, F., Bork, P., & Abarenkov, K. (2015). Shotgun metagenomes806

and multiple primer pair-barcode combinations of amplicons reveal biases in metabar-807

coding analyses of fungi. MycoKeys, 10, 1–43. https://doi.org/10.3897/mycokeys.10.808

4852809

Tedersoo, L., Bahram, M., Jairus, T., Bechem, E., Chinoya, S., Mpumba, R., Leal, M.,810

Randrianjohany, E., Razafimandimbison, S., Sadam, A., et al. (2011). Spatial structure811

and the effects of host and soil environments on communities of ectomycorrhizal fungi812

in wooded savannas and rain forests of Continental Africa and Madagascar. Molecular813

31

https://doi.org/10.1111/j.1365-294X.2012.05739.x
https://doi.org/10.1111/j.1365-294X.2012.05739.x
https://doi.org/10.1111/j.1365-294X.2012.05739.x
https://doi.org/10.1016/0079-6107(88)90011-9
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1111/mec.13444
https://doi.org/10.1073/pnas.1117018109
https://doi.org/10.1073/pnas.1117018109
https://doi.org/10.1073/pnas.1117018109
https://doi.org/10.1093/bioinformatics/btw346
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1101/240929
https://doi.org/10.1101/240929
https://doi.org/10.1101/240929
https://doi.org/10.15156/BIO/587483
https://doi.org/10.3897/mycokeys.10.4852
https://doi.org/10.3897/mycokeys.10.4852
https://doi.org/10.3897/mycokeys.10.4852


Ecology, 20(14), 3071–3080. Retrieved March 10, 2016, from http://onlinelibrary .814

wiley.com/doi/10.1111/j.1365-294X.2011.05145.x/full815

Tedersoo, L., Sánchez-Ramírez, S., Kõljalg, U., Bahram, M., Döring, M., Schigel, D., May,816

T., Ryberg, M., & Abarenkov, K. (2018). High-level classification of the Fungi and a817

tool for evolutionary ecological analyses. Fungal Diversity. https://doi.org/10.1007/818

s13225-018-0401-0819

Tedersoo, L., Tooming-Klunderud, A., & Anslan, S. (2018). PacBio metabarcoding of Fungi820

and other eukaryotes: Errors, biases and perspectives. New Phytologist, 217 (3), 1370–821

1385.822

Urbina, H., Scofield, D. G., Cafaro, M., & Rosling, A. (2016). DNA-metabarcoding uncovers823

the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. Mycoscience,824

57 (3), 217–227. https://doi.org/10.1016/j.myc.2016.02.001825

Vesterinen, E. J., Ruokolainen, L., Wahlberg, N., Peña, C., Roslin, T., Laine, V. N., Vasko,826

V., Sääksjärvi, I. E., Norrdahl, K., & Lilley, T. M. (2016). What you need is what you827

eat? Prey selection by the bat Myotis daubentonii. Molecular Ecology, 25(7), 1581–828

1594. https://doi.org/10.1111/mec.13564829

Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically830

amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology,831

172(8)pmid 2376561, 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990832

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian Classifier833

for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl.834

Environ. Microbiol., 73(16)pmid 17586664, 5261–5267. https ://doi .org/10 .1128/835

AEM.00062-07836

White, T., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of837

fungal ribosomal RNA genes for phylogenetics. In M. Innis, D. Gelfand, J. Sninsky, &838

T. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322).839

Academic Press, Inc.840

Wong, R. G., Wu, J. R., & Gloor, G. B. (2016). Expanding the UniFrac Toolbox. PLOS841

ONE, 11(9), e0161196. https://doi.org/10.1371/journal.pone.0161196842

Wright, E. S. (2015). DECIPHER: Harnessing local sequence context to improve protein843

multiple sequence alignment. BMC Bioinformatics, 16(1), 322. https://doi.org/10.844

1186/s12859-015-0749-z845

Data Accessibility846

• Sequence data, including raw reads and ASV sequences, will be deposited at the Eu-847

ropean Nucleotide Archive (ENA) prior to final publication.848

• Nucleotide alignment and ML tree will be deposited at Dryad prior to final publication849

32

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2011.05145.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2011.05145.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2011.05145.x/full
https://doi.org/10.1007/s13225-018-0401-0
https://doi.org/10.1007/s13225-018-0401-0
https://doi.org/10.1007/s13225-018-0401-0
https://doi.org/10.1016/j.myc.2016.02.001
https://doi.org/10.1111/mec.13564
https://doi.org/10.1128/jb.172.8.4238-4246.1990
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1371/journal.pone.0161196
https://doi.org/10.1186/s12859-015-0749-z
https://doi.org/10.1186/s12859-015-0749-z
https://doi.org/10.1186/s12859-015-0749-z


(Furneaux et al., 2020).850

• R packages LSUx, tzara, phylotax, and FUNGuildR are available on Github at851

https://github.com/brendanf/LSUx, https://github.com/brendanf/tzara, https:852

//github.com/brendanf/phylotax, and https://github.com/brendanf/FUNGuildR.853

These packages are currently being prepared for submission to Bioconductor. If they854

are not accepted at Bioconductor prior to final publication, they will be archived at855

Dryad.856

• FASTA-format files for the RDP, Warcup, and Unite reference databases with unified857

classifications, as well as scripts used to generate them, are available at https://github.858

com/brendanf/reannotate. The versions used in this paper will be archived at Dryad859

prior to publication.860

• Bioinformatics pipeline and analysis scripts are available at https://github.com/oueme-861

fungi/oueme-fungi-transect.862

Author Contributions863

Sampling was planned and carried out by BF, NSY, and MR. Bioinformatics and data analysis864

were performed by BF with input from MB, AR, and MR. Scripts and R packages were865

written by BF. The manuscript was drafted by BF and MR. All authors contributed to and866

approved the final version of the manuscript.867

33

https://github.com/brendanf/LSUx
https://github.com/brendanf/tzara
https://github.com/brendanf/phylotax
https://github.com/brendanf/phylotax
https://github.com/brendanf/phylotax
https://github.com/brendanf/FUNGuildR
https://github.com/brendanf/reannotate
https://github.com/brendanf/reannotate
https://github.com/brendanf/reannotate
https://github.com/oueme-fungi/oueme-fungi-transect
https://github.com/oueme-fungi/oueme-fungi-transect
https://github.com/oueme-fungi/oueme-fungi-transect


List of Figures868

1 Venn diagrams of shared ASVs and OTUs between different sequencing tech-869

nologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35870

2 Comparison between read numbers for different sequencing strategies . . . . 36871

3 Summary of taxonomic assignments . . . . . . . . . . . . . . . . . . . . . . . 37872

4 Taxonomic composition of fungal community at the class level . . . . . . . . 38873

5 Distance-decay plot for community dissimilarities and spatio-temporal distance 39874

34



a

19
0.01

896
0.03

9415
0.14

46
0.05/0.03

10
0.00/0.00

3047
0.18/0.20

489
0.94/0.77/0.66

b

6
0.01

289
0.00

3467
0.01

2
0.00/0.00

2
0.00/0.00

2840
0.08/0.10

523
0.99/0.92/0.89

PacBio Short Illumina Ion Torrent

c

387
0.21

13318
0.28

604
0.79/0.72

d

331
0.20

6529
0.15

600
0.80/0.85

Long amplicon Short amplicon

Figure 1: Venn diagrams showing shared ITS2-based ASVs (a, c) and 97% OTUs
(b, d) between different sequencing technologies from the same short amplicon li-
brary (a, b), and between long and short amplicon libraries (c, d). In each region,
the number of ASVs/OTUs is given above, while the fractions of reads for each
sequencing strategy are shown below. For short amplicons in c and d, ASV/OTU
counts reflect detection by any of the three technologies, and read counts represent
the mean fraction of reads across the three technologies.
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Figure 2: Comparison between read numbers for different sequencing strategies, by
ASV (a) and 97% OTU (b). ASVs/OTUs which were detected by one sequencing
strategy but not the other are plotted as tick marks along the axes. Dashed line
represents a constant ratio of read numbers. The blue line is a LOESS smooth of
the data, with associated uncertainty in grey shading. 𝑅2 value displayed is for
log-transformed non-zero read numbers.36
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Figure 3: Fraction of ASVs (left) and reads (right) assigned to each taxonomic
rank, for different sequencing technologies (PacBio RS II, Illumina MiSeq, Ion Tor-
rent Ion S5), amplicons (Long, Short), reference databases (Unite, Warcup, RDP),
and assignment algorithms (PHYLOTAX, Consensus, RDPC, SINTAX, IDTAXA).
Consensus and PHYLOTAX assignments are based on the consensus of RDPC,
SINTAX, and IDTAXA, using all available databases and, in the case of PHY-
LOTAX, phylogenetic information. These two methods are plotted in each column
to compare with results for the individual databases.
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Figure 4: Taxonomic composition of fungal community at the class level. Values
represent the fraction of all ASVs, OTUs, or reads which were assigned to kingdom
Fungi. Assignments based on PHYLOTAX. Classes which represented less than 2%
of reads, OTUs, and ASVs in all datasets are grouped together as “other”.
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Figure 5: Distance-decay plot for community dissimilarities and spatio-temporal
distance. Circles represent community data from short (top two rows) and long
(bottom two rows) amplicon libraries, sequenced by Illumina MiSeq (top row) or
PacBio RS II (bottom three rows). Community dissimilarities are calculated us-
ing the Bray-Curtis dissimilarity for all datasets (top three rows) and using the
weighted UNIFRAC dissimilarity for the long amplicon library, for which a phy-
logenetic tree could be constructed (bottom row). The left column represents the
full fungal community, and the right column only sequences identified as ECM. The
color of each circle represents the time lag between samples being compared (0 or
1 year), and the size represents the number of comparisons for that spatial distance
and time lag. Lines are the best-fit lines for an exponential decay to max model.
The model was only fit for datasets where the Mantel test indicated a significant
relationship between community dissimilarity and spatial (for the 0 year timelag)
or spatiotemporal (for the 1 year time lag) distance.
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