References
Al-Raawi, D., Abu-El-Zahab, H., El-Shinawi, M., & Mohamed, M. M.
(2011). Membrane type-1 matrix metalloproteinase (MT1-MMP) correlates
with the expression and activation of matrix metalloproteinase-2 (MMP-2)
in inflammatory breast cancer. Int J Clin Exp Med, 4 (4), 265-275.
Allen, S. G., Chen, Y.-C., Madden, J. M., Fournier, C. L., Altemus, M.
A., Hiziroglu, A. B., . . . Merajver, S. D. (2016). Macrophages Enhance
Migration in Inflammatory Breast Cancer Cells via RhoC GTPase Signaling.Sci Rep, 6 , 39190. doi:10.1038/srep39190
Alpaugh, M. L., Tomlinson, J. S., Kasraeian, S., & Barsky, S. H.
(2002). Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient
MUC1 in the passive dissemination of tumor emboli in inflammatory breast
carcinoma. Oncogene, 21 (22), 3631-3643.
doi:10.1038/sj.onc.1205389
Alpaugh, M. L., Tomlinson, J. S., Shao, Z. M., & Barsky, S. H. (1999).
A novel human xenograft model of inflammatory breast cancer.Cancer research, 59 (20), 5079-5084.
Arora, J., Sauer, S. J., Tarpley, M., Vermeulen, P., Rypens, C., Laere,
S. V., . . . Dewhirst, M. W. (2017). Inflammatory breast cancer tumor
emboli express high levels of anti-apoptotic proteins: use of a
quantitative high content and high-throughput 3D IBC spheroid assay to
identify targeting strategies. Oncotarget, 8 (16), 25848-25863.
doi:10.18632/oncotarget.15667
Azzi, S., Hebda, J. K., & Gavard, J. (2013). Vascular permeability and
drug delivery in cancers. Front Oncol, 3 , 211.
doi:10.3389/fonc.2013.00211
Bersini, S., Jeon, J. S., Dubini, G., Arrigoni, C., Chung, S., Charest,
J. L., . . . Kamm, R. D. (2014). A Microfluidic 3D In Vitro Model for
Specificity of Breast Cancer Metastasis to Bone. Biomaterials,
35 (8), 2454-2461. doi:10.1016/j.biomaterials.2013.11.050
Brenner, W., Langer, P., Oesch, F., Edgell, C. J., & Wieser, R. J.
(1995). Tumor cell–endothelium adhesion in an artificial venule.Anal Biochem, 225 (2), 213-219. doi:10.1006/abio.1995.1146
Buchanan, C. F., Szot, C. S., Wilson, T. D., Akman, S., Metheny-Barlow,
L. J., Robertson, J. L., . . . Rylander, M. N. (2012). Cross-talk
between endothelial and breast cancer cells regulates reciprocal
expression of angiogenic factors in vitro. J Cell Biochem,
113 (4), 1142-1151. doi:10.1002/jcb.23447
Buchanan, C. F., Verbridge, S. S., Vlachos, P. P., & Rylander, M. N.
(2014a). Flow shear stress regulates endothelial barrier function and
expression of angiogenic factors in a 3D microfluidic tumor vascular
model. Cell Adh Migr, 8 (5), 517-524.
doi:10.4161/19336918.2014.970001
Buchanan, C. F., Voigt, E. E., Szot, C. S., Freeman, J. W., Vlachos, P.
P., & Rylander, M. N. (2014b). Three-dimensional microfluidic collagen
hydrogels for investigating flow-mediated tumor-endothelial signaling
and vascular organization. Tissue Eng Part C Methods, 20 (1),
64-75. doi:10.1089/ten.TEC.2012.0731
Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer.Oncology, 69 Suppl 3 , 4-10. doi:10.1159/000088478
Castells, M., Thibault, B., Delord, J.-P., & Couderc, B. (2012).
Implication of Tumor Microenvironment in Chemoresistance:
Tumor-Associated Stromal Cells Protect Tumor Cells from Cell Death.Int J Mol Sci, 13 (8), 9545-9571. doi:10.3390/ijms13089545
CDC - Breast Cancer Statistics. (2017, 2017-06-26T16:17:11Z).
Charafe-Jauffret, E., Ginestier, C., Iovino, F., Tarpin, C., Diebel, M.,
Esterni, B., . . . Wicha, M. S. (2010). Aldehyde dehydrogenase
1-positive cancer stem cells mediate metastasis and poor clinical
outcome in inflammatory breast cancer. Clin Cancer Res, 16 (1),
45-55. doi:10.1158/1078-0432.ccr-09-1630
Claesson-Welsh, L. (2015). Vascular permeability–the essentials.Ups J Med Sci, 120 (3), 135-143. doi:10.3109/03009734.2015.1064501
Colpaert, C. G., Vermeulen, P. B., Benoy, I., Soubry, A., van Roy, F.,
van Beest, P., . . . van Marck, E. A. (2003). Inflammatory breast cancer
shows angiogenesis with high endothelial proliferation rate and strong
E-cadherin expression. Br J Cancer, 88 (5), 718-725.
doi:10.1038/sj.bjc.6600807
Costa, R., Santa-Maria, C. A., Rossi, G., Carneiro, B. A., Chae, Y. K.,
Gradishar, W. J., . . . Cristofanilli, M. (2017). Developmental
therapeutics for inflammatory breast cancer: Biology and translational
directions. Oncotarget, 8 (7), 12417-12432.
doi:10.18632/oncotarget.13778
Crosby, C. O., & Zoldan, J. (2019). An In Vitro 3D Model and
Computational Pipeline to Quantify the Vasculogenic Potential of
iPSC-Derived Endothelial Progenitors. JoVE (Journal of Visualized
Experiments) (147), e59342. doi:10.3791/59342
Debeb, B. G., Lacerda, L., Anfossi, S., Diagaradjane, P., Chu, K.,
Bambhroliya, A., . . . Woodward, W. A. (2016). miR-141-Mediated
Regulation of Brain Metastasis From Breast Cancer. J Natl Cancer
Inst, 108 (8). doi:10.1093/jnci/djw026
Duinen, V. v., Heuvel, A. v. d., Trietsch, S. J., Lanz, H. L., Gils, J.
M. v., Zonneveld, A. J. v., . . . Hankemeier, T. (2017). 96 perfusable
blood vessels to study vascular permeability in vitro. Sci Rep,
7 (1), 1-11. doi:10.1038/s41598-017-14716-y
Female Breast Cancer - Cancer Stat Facts.
Fernandez, S. V., Robertson, F. M., Pei, J., Aburto-Chumpitaz, L., Mu,
Z., Chu, K., . . . Ye, Z. (2013). Inflammatory breast cancer (IBC):
clues for targeted therapies. Breast cancer research and
treatment, 140 (1), 23-33.
Fouad, T. M., Barrera, A. M. G., Reuben, J. M., Lucci, A., Woodward, W.
A., Stauder, M. C., . . . Ueno, N. T. (2017). Inflammatory breast
cancer: a proposed conceptual shift in the UICC-AJCC TNM staging system.Lancet Oncol, 18 (4), e228-e232. doi:10.1016/s1470-2045(17)30192-4
Fouad, T. M., Kogawa, T., Reuben, J. M., & Ueno, N. T. (2014). The role
of inflammation in inflammatory breast cancer Inflammation and
Cancer (pp. 53-73): Springer.
Gadde, M., Marrinan, D., Michna, R. J., & Rylander, M. N. (2018). Three
Dimensional In Vitro Tumor Platforms for Cancer Discovery. In S. Soker
& A. Skardal (Eds.), Tumor Organoids (pp. 71-94): Springer
International Publishing.
Giordano, S. H., & Hortobagyi, G. N. (2003). Clinical progress and the
main problems that must be addressed. Breast Cancer Research,
5 (6), 284-288.
Grainger, S. J., & Putnam, A. J. (2011). Assessing the permeability of
engineered capillary networks in a 3D culture. PLoS One, 6 (7),
e22086. doi:10.1371/journal.pone.0022086
Guzman, A., Ziperstein, M. J., & Kaufman, L. J. (2014). The effect of
fibrillar matrix architecture on tumor cell invasion of physically
challenging environments. Biomaterials, 35 (25), 6954-6963.
doi:10.1016/j.biomaterials.2014.04.086
Haidari, M., Zhang, W., Caivano, A., Chen, Z., Ganjehei, L., Mortazavi,
A., . . . Dixon, R. A. (2012). Integrin alpha2beta1 mediates tyrosine
phosphorylation of vascular endothelial cadherin induced by invasive
breast cancer cells. J Biol Chem, 287 (39), 32981-32992.
doi:10.1074/jbc.M112.395905
Haidari, M., Zhang, W., & Wakame, K. (2013). Disruption of endothelial
adherens junction by invasive breast cancer cells is mediated by
reactive oxygen species and is attenuated by AHCC. Life Sci,
93 (25-26), 994-1003. doi:10.1016/j.lfs.2013.10.027
Hance, K. W., Anderson, W. F., Devesa, S. S., Young, H. A., & Levine,
P. H. (2005). Trends in inflammatory breast carcinoma incidence and
survival: the surveillance, epidemiology, and end results program at the
National Cancer Institute. J Natl Cancer Inst, 97 (13), 966-975.
doi:10.1093/jnci/dji172
Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G.,
Roberge, S., . . . McDonald, D. M. (2000). Openings between defective
endothelial cells explain tumor vessel leakiness. Am J Pathol,
156 (4), 1363-1380. doi:10.1016/s0002-9440(10)65006-7
Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A.
T., & De Bruijn, E. A. (2004). Vascular endothelial growth factor and
angiogenesis. Pharmacol Rev, 56 (4), 549-580.
doi:10.1124/pr.56.4.3
Hoffmeyer, M. R., Wall, K. M., & Dharmawardhane, S. F. (2005). In vitro
analysis of the invasive phenotype of SUM 149, an inflammatory breast
cancer cell line. Cancer Cell Int, 5 (1), 11.
doi:10.1186/1475-2867-5-11
Holle, A. W., Young, J. L., & Spatz, J. P. (2016). In vitro cancer
cell-ECM interactions inform in vivo cancer treatment. Adv Drug
Deliv Rev, 97 , 270-279. doi:10.1016/j.addr.2015.10.007
Huang, C.-J., & Chang, Y.-C. (2019). Construction of
Cell–Extracellular Matrix Microenvironments by Conjugating ECM Proteins
on Supported Lipid Bilayers. Frontiers in Materials, 6 .
doi:10.3389/fmats.2019.00039
Jain, R. K., Martin, J. D., & Stylianopoulos, T. (2014). The role of
mechanical forces in tumor growth and therapy. Annu Rev Biomed
Eng, 16 , 321-346. doi:10.1146/annurev-bioeng-071813-105259
Jang, S. H., Wientjes, M. G., Lu, D., & Au, J. L.-S. (2003). Drug
delivery and transport to solid tumors. Pharmaceutical research,
20 (9), 1337-1350.
Jeon, J. S., Bersini, S., Gilardi, M., Dubini, G., Charest, J. L.,
Moretti, M., & Kamm, R. D. (2015). Human 3D vascularized organotypic
microfluidic assays to study breast cancer cell extravasation.Proceedings of the National Academy of Sciences, 112 (1), 214-219.
doi:10.1073/pnas.1417115112
Jeon, J. S., Zervantonakis, I. K., Chung, S., Kamm, R. D., & Charest,
J. L. (2013). In vitro model of tumor cell extravasation. PLoS
One, 8 (2), e56910. doi:10.1371/journal.pone.0056910
Kebers, F., Lewalle, J. M., Desreux, J., Munaut, C., Devy, L., Foidart,
J. M., & Noel, A. (1998). Induction of endothelial cell apoptosis by
solid tumor cells. Exp Cell Res, 240 (2), 197-205.
doi:10.1006/excr.1998.3935
Kerschnitzki, M., Kollmannsberger, P., Burghammer, M., Duda, G. N.,
Weinkamer, R., Wagermaier, W., & Fratzl, P. (2013). Architecture of the
osteocyte network correlates with bone material quality. Journal
of Bone and Mineral Research: The Official Journal of the American
Society for Bone and Mineral Research, 28 (8), 1837-1845.
doi:10.1002/jbmr.1927
Kim, B. J., & Wu, M. (2012). Microfluidics for mammalian cell
chemotaxis. Annals of biomedical engineering, 40 (6), 1316-1327.
Kim, J., Chung, M., Kim, S., Jo, D. H., Kim, J. H., & Jeon, N. L.
(2015). Engineering of a Biomimetic Pericyte-Covered 3D Microvascular
Network. PLoS One, 10 (7), e0133880.
doi:10.1371/journal.pone.0133880
Kim, S., Chung, M., Ahn, J., Lee, S., & Li Jeon, N. (2016).
Interstitial flow regulates the angiogenic response and phenotype of
endothelial cells in a 3D culture model. Lab on a Chip, 16 (21),
4189-4199. doi:10.1039/C6LC00910G
Kim, S., Kim, W., Lim, S., & Jeon, J. S. (2017). Vasculature-On-A-Chip
for In Vitro Disease Models. Bioengineering (Basel), 4 (1).
doi:10.3390/bioengineering4010008
Kim, S., Lee, H., Chung, M., & Jeon, N. L. (2013). Engineering of
functional, perfusable 3D microvascular networks on a chip. Lab
Chip, 13 (8), 1489-1500. doi:10.1039/c3lc41320a
Kleer, C. G., Golen, K. L. v., Braun, T., & Merajver, S. D. (2001).
Persistent E-Cadherin Expression in Inflammatory Breast Cancer.Modern Pathology, 14 (5), 458-464. doi:10.1038/modpathol.3880334
Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L.,
. . . Woodward, W. A. (2010). Mesenchymal stem cells promote mammosphere
formation and decrease E-cadherin in normal and malignant breast cells.PLoS One, 5 (8), e12180. doi:10.1371/journal.pone.0012180
Ko, J., Ahn, J., Kim, S., Lee, Y., Lee, J., Park, D., & Jeon, N. L.
(2019). Tumor spheroid-on-a-chip: a standardized microfluidic culture
platform for investigating tumor angiogenesis. Lab on a Chip,
19 (17), 2822-2833. doi:10.1039/C9LC00140A
Koh, W., Stratman, A. N., Sacharidou, A., & Davis, G. E. (2008).
Chapter 5 In Vitro Three Dimensional Collagen Matrix Models of
Endothelial Lumen Formation During Vasculogenesis and AngiogenesisMethods in Enzymology (Vol. 443, pp. 83-101): Academic Press.
Kollmannsberger, P., Kerschnitzki, M., Repp, F., Wagermaier, W.,
Weinkamer, R., & Fratzl, P. (2017). The small world of osteocytes:
connectomics of the lacuno-canalicular network in bone. New J
Phys, 19 (7), 073019. doi:10.1088/1367-2630/aa764b
Lacerda, L., Debeb, B. G., Smith, D., Larson, R., Solley, T., Xu, W., .
. . Buchholz, T. (2015). Mesenchymal stem cells mediate the clinical
phenotype of inflammatory breast cancer in a preclinical model.Breast Cancer Research, 17 (1), 42.
Lacerda, L., Reddy, J. P., Liu, D., Larson, R., Li, L., Masuda, H., . .
. Hortobágyi, G. N. (2014). Simvastatin radiosensitizes differentiated
and stem-like breast cancer cell lines and is associated with improved
local control in inflammatory breast cancer patients treated with
postmastectomy radiation. Stem cells translational medicine,
3 (7), 849.
Lang, N. R., Skodzek, K., Hurst, S., Mainka, A., Steinwachs, J.,
Schneider, J., . . . Fabry, B. (2015). Biphasic response of cell
invasion to matrix stiffness in three-dimensional biopolymer networks.Acta Biomater, 13 , 61-67. doi:10.1016/j.actbio.2014.11.003
Lautscham, L. A., Kammerer, C., Lange, J. R., Kolb, T., Mark, C.,
Schilling, A., . . . Fabry, B. (2015). Migration in Confined 3D
Environments Is Determined by a Combination of Adhesiveness, Nuclear
Volume, Contractility, and Cell Stiffness. Biophysical Journal,
109 (5), 900-913. doi:10.1016/j.bpj.2015.07.025
Lee, H., Kim, S., Chung, M., Kim, J. H., & Jeon, N. L. (2014a). A
bioengineered array of 3D microvessels for vascular permeability assay.Microvasc Res, 91 , 90-98. doi:10.1016/j.mvr.2013.12.001
Lee, H., Park, W., Ryu, H., & Jeon, N. L. (2014b). A microfluidic
platform for quantitative analysis of cancer angiogenesis and
intravasation. Biomicrofluidics, 8 (5), 054102.
doi:10.1063/1.4894595
Lehman, H. L., Dashner, E. J., Lucey, M., Vermeulen, P., Dirix, L.,
Laere, S. V., & van Golen, K. L. (2013). Modeling and characterization
of inflammatory breast cancer emboli grown in vitro. International
Journal of Cancer, 132 (10), 2283-2294.
Lim, B., Woodward, W. A., Wang, X., Reuben, J. M., & Ueno, N. T.
(2018). Inflammatory breast cancer biology: the tumour microenvironment
is key. Nature Reviews Cancer , 1. doi:10.1038/s41568-018-0010-y
Ma, Y.-H. V., Middleton, K., You, L., & Sun, Y. (2018). A review of
microfluidic approaches for investigating cancer extravasation during
metastasis. Microsystems & Nanoengineering, 4 , 17104.
doi:10.1038/micronano.2017.104
Mahooti, S., Porter, K., Alpaugh, M. L., Ye, Y., Xiao, Y., Jones, S., .
. . Barsky, S. H. (2010). Breast carcinomatous tumoral emboli can result
from encircling lymphovasculogenesis rather than lymphovascular
invasion. Oncotarget, 1 (2), 131-147.
doi:10.18632/oncotarget.100609
Malandrino, A., Kamm, R. D., & Moeendarbary, E. (2018). In Vitro
Modeling of Mechanics in Cancer Metastasis. ACS Biomaterials
Science & Engineering, 4 (2), 294-301.
doi:10.1021/acsbiomaterials.7b00041
Meer, A. D. v. d., Orlova, V. V., Dijke, P. t., Berg, A. v. d., &
Mummery, C. L. (2013). Three-dimensional co-cultures of human
endothelial cells and embryonic stem cell-derived pericytes inside a
microfluidic device. Lab on a Chip, 13 (18), 3562-3568.
doi:10.1039/C3LC50435B
Mendoza, E., Burd, R., Wachsberger, P., & Dicker, A. P. (2008).
Normalization of Tumor Vasculature and Improvement of Radiation Response
by Antiangiogenic Agents Antiangiogenic Agents in Cancer Therapy(pp. 311-321): Humana Press.
Michna, R., Gadde, M., Ozkan, A., DeWitt, M., & Rylander, M. (2018).
Vascularized microfluidic platforms to mimic the tumor microenvironment.Biotechnology and Bioengineering . doi:10.1002/bit.26778
Mierke, C. T. (2011). Cancer cells regulate biomechanical properties of
human microvascular endothelial cells. J Biol Chem, 286 (46),
40025-40037. doi:10.1074/jbc.M111.256172
Mohamed, M. M., Cavallo-Medved, D., & Sloane, B. F. (2008). Human
monocytes augment invasiveness and proteolytic activity of inflammatory
breast cancer. Biological chemistry, 389 (8), 1117-1121.
Mohamed, M. M., El-Ghonaimy, E. A., Nouh, M. A., Schneider, R. J.,
Sloane, B. F., & El-Shinawi, M. (2014). Cytokines secreted by
macrophages isolated from tumor microenvironment of inflammatory breast
cancer patients possess chemotactic properties. The International
Journal of Biochemistry & Cell Biology, 46 , 138-147.
doi:10.1016/j.biocel.2013.11.015
Morales, J., & Alpaugh, M. L. (2009). Gain in cellular organization of
inflammatory breast cancer: A 3D in vitro model that mimics the in vivo
metastasis. BMC cancer, 9 (1), 462. doi:10.1186/1471-2407-9-462
Nguyen, D.-H. T., Stapleton, S. C., Yang, M. T., Cha, S. S., Choi, C.
K., Galie, P. A., & Chen, C. S. (2013). Biomimetic model to
reconstitute angiogenic sprouting morphogenesis in vitro.Proceedings of the National Academy of Sciences, 110 (17),
6712-6717. doi:10.1073/pnas.1221526110
Nokes, B. T., Cunliffe, H. E., LaFleur, B., Mount, D. W., Livingston, R.
B., Futscher, B. W., & Lang, J. E. (2013). In Vitro Assessment of the
Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single
Nucleotide Polymorphisms in the RNase L Gene. J Cancer, 4 (2),
104-116. doi:10.7150/jca.5002
Osaki, T., Serrano, J. C., & Kamm, R. D. (2018). Cooperative Effects of
Vascular Angiogenesis and Lymphangiogenesis. Regenerative
Engineering and Translational Medicine, 4 (3), 120-132.
doi:10.1007/s40883-018-0054-2
Ozcelikkale, A., Moon, H.-r., Linnes, M., & Han, B. (2017). In vitro
Microfluidic Models of Tumor Microenvironment to Screen Transport of
Drugs and Nanoparticles. Wiley interdisciplinary reviews.
Nanomedicine and nanobiotechnology, 9 (5). doi:10.1002/wnan.1460
Pagano, G., Ventre, M., Iannone, M., Greco, F., Maffettone, P. L., &
Netti, P. A. (2014). Optimizing design and fabrication of microfluidic
devices for cell cultures: An effective approach to control cell
microenvironment in three dimensions. Biomicrofluidics, 8 (4).
doi:10.1063/1.4893913
Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G.
I., Gefen, A., . . . Weaver, V. M. (2005). Tensional homeostasis and the
malignant phenotype. Cancer cell, 8 (3), 241-254.
doi:10.1016/j.ccr.2005.08.010
Peyri, N., Berard, M., Fauvel-Lafeve, F., Trochon, V., Arbeille, B., Lu,
H., . . . Crepin, M. (2009). Breast tumor cells transendothelial
migration induces endothelial cell anoikis through extracellular matrix
degradation. Anticancer Res, 29 (6), 2347-2355.
Pouliot, N., Pearson, H. B., & Burrows, A. (2013). Investigating
Metastasis Using In Vitro Platforms : Landes Bioscience.
Pradhan, S., Smith, A. M., Garson, C. J., Hassani, I., Seeto, W. J.,
Pant, K., . . . Lipke, E. A. (2018). A Microvascularized Tumor-mimetic
Platform for Assessing Anti-cancer Drug Efficacy. Sci Rep, 8 .
doi:10.1038/s41598-018-21075-9
Privratsky, J. R., & Newman, P. J. (2014). PECAM-1: regulator of
endothelial junctional integrity. Cell and tissue research,
355 (3), 607-619. doi:10.1007/s00441-013-1779-3
Reid, S. E., Kay, E. J., Neilson, L. J., Henze, A.-T., Serneels, J.,
McGhee, E. J., . . . Zanivan, S. (2017). Tumor matrix stiffness promotes
metastatic cancer cell interaction with the endothelium. The EMBO
Journal , e201694912. doi:10.15252/embj.201694912
Rhodes, J. M., & Simons, M. (2007). The extracellular matrix and blood
vessel formation: not just a scaffold. Journal of cellular and
molecular medicine, 11 (2), 176-205.
doi:10.1111/j.1582-4934.2007.00031.x
Rizwan, A., Cheng, M., Bhujwalla, Z. M., Krishnamachary, B., Jiang, L.,
& Glunde, K. (2015). Breast cancer cell adhesome and degradome interact
to drive metastasis. npj Breast Cancer, 1 , 15017.
doi:10.1038/npjbcancer.2015.17
Robertson, F. M., Chu, K., Fernandez, S. V., Mu, Z., Zhang, X., Liu, H.,
. . . Cristofanilli, M. (2012). Genomic Profiling of Pre-Clinical Models
of Inflammatory Breast Cancer Identifies a Signature of Epithelial
Plasticity and Suppression of TGFò Signaling. Journal of
Clinical & Experimental Pathology, 2 (5), 1-12.
doi:10.4172/2161-0681.1000119
Sabeh, F., Ota, I., Holmbeck, K., Birkedal-Hansen, H., Soloway, P.,
Balbin, M., . . . Weiss, S. J. (2004). Tumor cell traffic through the
extracellular matrix is controlled by the membrane-anchored collagenase
MT1-MMP. J Cell Biol, 167 (4), 769-781. doi:10.1083/jcb.200408028
Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009).
Protease-dependent versus -independent cancer cell invasion programs:
three-dimensional amoeboid movement revisited. J Cell Biol,
185 (1), 11-19. doi:10.1083/jcb.200807195
Schaaf, M. B., Garg, A. D., & Agostinis, P. (2018). Defining the role
of the tumor vasculature in antitumor immunity and immunotherapy.Cell Death Dis, 9 (2), 115. doi:10.1038/s41419-017-0061-0
Senthebane, D. A., Rowe, A., Thomford, N. E., Shipanga, H., Munro, D.,
Al Mazeedi, M. A. M., . . . Dzobo, K. (2017). The Role of Tumor
Microenvironment in Chemoresistance: To Survive, Keep Your Enemies
Closer. Int J Mol Sci, 18 (7). doi:10.3390/ijms18071586
Seo, B. R., DelNero, P., & Fischbach, C. (2014). In vitro models of
tumor vessels and matrix: engineering approaches to investigate
transport limitations and drug delivery in cancer. Adv Drug Deliv
Rev, 69-70 , 205-216. doi:10.1016/j.addr.2013.11.011
Shang, M., Soon, R. H., Lim, C. T., Khoo, B. L., & Han, J. (2019).
Microfluidic modelling of the tumor microenvironment for anti-cancer
drug development. Lab on a Chip, 19 (3), 369-386.
doi:10.1039/C8LC00970H
Shenoy, A. K., & Lu, J. (2016). Cancer cells remodel themselves and
vasculature to overcome the endothelial barrier. Cancer Lett,
380 (2), 534-544. doi:10.1016/j.canlet.2014.10.031
Shirakawa, K., Kobayashi, H., Sobajima, J., Hashimoto, D., Shimizu, A.,
& Wakasugi, H. (2003). Inflammatory breast cancer: Vasculogenic mimicry
and its hemodynamics of an inflammatory breast cancer xenograft model.Breast Cancer Research, 5 (3), 136. doi:10.1186/bcr585
Shirakawa, K., Shibuya, M., Heike, Y., Takashima, S., Watanabe, I.,
Konishi, F., . . . Wakasugi, H. (2002). Tumor-infiltrating endothelial
cells and endothelial precursor cells in inflammatory breast cancer.Int J Cancer, 99 (3), 344-351. doi:10.1002/ijc.10336
Silvera, D., Arju, R., Darvishian, F., Levine, P. H., Zolfaghari, L.,
Goldberg, J., . . . Schneider, R. J. (2009a). Essential role for eIF4GI
overexpression in the pathogenesis of inflammatory breast cancer.Nat Cell Biol, 11 (7), 903-908. doi:10.1038/ncb1900
Silvera, D., & Schneider, R. J. (2009b). Inflammatory breast cancer
cells are constitutively adapted to hypoxia. Cell Cycle, 8 (19),
3091-3096. doi:10.4161/cc.8.19.9637
Sleeboom, J. J. F., Eslami Amirabadi, H., Nair, P., Sahlgren, C. M., &
den Toonder, J. M. J. (2018). Metastasis in context: modeling the tumor
microenvironment with cancer-on-a-chip approaches. Disease Models
& Mechanisms, 11 (3). doi:10.1242/dmm.033100
Sontheimer-Phelps, A., Hassell, B. A., & Ingber, D. E. (2019).
Modelling cancer in microfluidic human organs-on-chips. Nature
Reviews Cancer, 19 (2), 65-81. doi:10.1038/s41568-018-0104-6
Sugino, T., Kusakabe, T., Hoshi, N., Yamaguchi, T., Kawaguchi, T.,
Goodison, S., . . . Suzuki, T. (2002). An Invasion-Independent Pathway
of Blood-Borne Metastasis. Am J Pathol, 160 (6), 1973-1980.
Szot, C. S., Buchanan, C. F., Freeman, J. W., & Rylander, M. N. (2011).
3D in vitro bioengineered tumors based on collagen I hydrogels.Biomaterials, 32 (31), 7905-7912.
doi:10.1016/j.biomaterials.2011.07.001
Szot, C. S., Buchanan, C. F., Freeman, J. W., & Rylander, M. N. (2013).
In vitro angiogenesis induced by tumor-endothelial cell co-culture in
bilayered, collagen I hydrogel bioengineered tumors. Tissue Eng
Part C Methods, 19 (11), 864-874. doi:10.1089/ten.TEC.2012.0684
Tang, Y., Soroush, F., Sheffield, J. B., Wang, B., Prabhakarpandian, B.,
& Kiani, M. F. (2017). A Biomimetic Microfluidic Tumor Microenvironment
Platform Mimicking the EPR Effect for Rapid Screening of Drug Delivery
Systems. Sci Rep, 7 (1), 9359. doi:10.1038/s41598-017-09815-9
Terrell-Hall, T. B., Ammer, A. G., Griffith, J. I., & Lockman, P. R.
(2017). Permeability across a novel microfluidic blood-tumor barrier
model. Fluids Barriers CNS, 14 (1), 3.
doi:10.1186/s12987-017-0050-9
Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug
resistance and the solid tumor microenvironment. Journal of the
National Cancer Institute, 99 (19), 1441-1454.
Tsai, H. F., Trubelja, A., Shen, A. Q., & Bao, G. (2017).
Tumour-on-a-chip: microfluidic models of tumour morphology, growth and
microenvironment. J R Soc Interface, 14 (131).
doi:10.1098/rsif.2017.0137
Uldry, E., Faes, S., Demartines, N., & Dormond, O. (2017). Fine-Tuning
Tumor Endothelial Cells to Selectively Kill Cancer. Int J Mol Sci,
18 (7). doi:10.3390/ijms18071401
Ungefroren, H., Sebens, S., Seidl, D., Lehnert, H., & Hass, R. (2011).
Interaction of tumor cells with the microenvironment. Cell
Communication and Signaling : CCS, 9 , 18. doi:10.1186/1478-811X-9-18
van Golen, K. L., Bao, L., DiVito, M. M., Wu, Z., Prendergast, G. C., &
Merajver, S. D. (2002a). Reversion of RhoC GTPase-induced inflammatory
breast cancer phenotype by treatment with a farnesyl transferase
inhibitor. Mol Cancer Ther, 1 (8), 575-583.
van Golen, K. L., Bao, L. W., Pan, Q., Miller, F. R., Wu, Z. F., &
Merajver, S. D. (2002b). Mitogen activated protein kinase pathway is
involved in RhoC GTPase induced motility, invasion and angiogenesis in
inflammatory breast cancer. Clin Exp Metastasis, 19 (4), 301-311.
van Golen, K. L., Wu, Z. F., Qiao, X. T., Bao, L., & Merajver, S. D.
(2000a). RhoC GTPase overexpression modulates induction of angiogenic
factors in breast cells. Neoplasia, 2 (5), 418-425.
van Golen, K. L., Wu, Z. F., Qiao, X. T., Bao, L. W., & Merajver, S. D.
(2000b). RhoC GTPase, a novel transforming oncogene for human mammary
epithelial cells that partially recapitulates the inflammatory breast
cancer phenotype. Cancer Res, 60 (20), 5832-5838.
van Uden, D. J., van Laarhoven, H. W., Westenberg, A. H., de Wilt, J.
H., & Blanken-Peeters, C. F. (2015). Inflammatory breast cancer: an
overview. Crit Rev Oncol Hematol, 93 (2), 116-126.
doi:10.1016/j.critrevonc.2014.09.003
Vermeulen, P. B., van Golen, K. L., & Dirix, L. Y. (2010).
Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in
inflammatory breast cancer: a review of the current knowledge.Cancer, 116 (11 Suppl), 2748-2754. doi:10.1002/cncr.25169
Vickerman, V., Blundo, J., Chung, S., & Kamm, R. D. (2008). Design,
Fabrication and Implementation of a Novel Multi Parameter Control
Microfluidic Platform for Three-Dimensional Cell Culture and Real-Time
Imaging. Lab on a Chip, 8 (9), 1468-1477. doi:10.1039/b802395f
Whiteside, T. (2008). The tumor microenvironment and its role in
promoting tumor growth. Oncogene, 27 (45), 5904-5912.
doi:10.1038/onc.2008.271
Wolf, K., & Friedl, P. (2011). Extracellular matrix determinants of
proteolytic and non-proteolytic cell migration. Trends Cell Biol,
21 (12), 736-744. doi:10.1016/j.tcb.2011.09.006
Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J.,
Willis, A. L., . . . Friedl, P. (2013). Physical limits of cell
migration: control by ECM space and nuclear deformation and tuning by
proteolysis and traction force. J Cell Biol, 201 (7), 1069-1084.
doi:10.1083/jcb.201210152
Wolf, K., Wu, Y. I., Liu, Y., Geiger, J., Tam, E., Overall, C., . . .
Friedl, P. (2007). Multi-step pericellular proteolysis controls the
transition from individual to collective cancer cell invasion. Nat
Cell Biol, 9 (8), 893-904. doi:10.1038/ncb1616
Wolfe, A. R., Trenton, N. J., Debeb, B. G., Larson, R., Ruffell, B.,
Chu, K., . . . Woodward, W. A. (2016). Mesenchymal stem cells and
macrophages interact through IL-6 to promote inflammatory breast cancer
in pre-clinical models. Oncotarget, 7 (50), 82482-82492.
doi:10.18632/oncotarget.12694
Wurth, R., Tarn, K., Jernigan, D., Fernandez, S. V., Cristofanilli, M.,
Fatatis, A., & Meucci, O. (2015). A Preclinical Model of Inflammatory
Breast Cancer to Study the Involvement of CXCR4 and ACKR3 in the
Metastatic Process. Translational Oncology, 8 (5), 358-367.
doi:10.1016/j.tranon.2015.07.002
Zervantonakis, I. K., Hughes-Alford, S. K., Charest, J. L., Condeelis,
J. S., Gertler, F. B., & Kamm, R. D. (2012). Three-dimensional
microfluidic model for tumor cell intravasation and endothelial barrier
function. Proc Natl Acad Sci U S A, 109 (34), 13515-13520.
doi:10.1073/pnas.1210182109
Zhang, H., Wong, C. C., Wei, H., Gilkes, D. M., Korangath, P.,
Chaturvedi, P., . . . Semenza, G. L. (2012). HIF-1-dependent expression
of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic
breast cancer cells to the lungs. Oncogene, 31 (14), 1757-1770.
doi:10.1038/onc.2011.365