References
ARANEGA-BOU, P., DE LA O LEYVA, M., FINITI, I., GARCÍA-AGUSTÍN, P. & GONZÁLEZ-BOSCH, C. 2014. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science,5.
CANTU, D., BLANCO-ULATE, B., YANG, L., LABAVITCH, J. M., BENNETT, A. B. & POWELL, A. L. T. 2009. Ripening-Regulated Susceptibility of Tomato Fruit to <em>Botrytis cinerea</em> Requires <em>NOR</em> But Not <em>RIN</em> or Ethylene.Plant Physiology, 150, 1434-1449.
CLOUGH, S. J. & BENT, A. F. 1998. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana.The Plant Journal, 16, 735-743.
CONRATH, U., BECKERS, G. J. M., FLORS, V., GARCÍA-AGUSTÍN, P., JAKAB, G., MAUCH, F., NEWMAN, M.-A., PIETERSE, C. M. J., POINSSOT, B., POZO, M. J., PUGIN, A., SCHAFFRATH, U., TON, J., WENDEHENNE, D., ZIMMERLI, L. & MAUCH-MANI, B. 2006. Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 19, 1062-1071.
DURRANT, W. E., ROWLAND, O., PIEDRAS, P., HAMMOND-KOSACK, K. E. & JONES, J. D. G. 2000. cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles.The Plant Cell, 12, 963-977.
EL OIRDI, M., EL RAHMAN, T. A., RIGANO, L., EL HADRAMI, A., RODRIGUEZ, M. C., DAAYF, F., VOJNOV, A. & BOUARAB, K. 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant cell, 23,2405-2421.
FARETRA, F. & POLLASTRO, S. 1991. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea). Mycological Research, 95, 943-951.
FERNÁNDEZ-CRESPO, E., NAVARRO, J. A., SERRA-SORIANO, M., FINITI, I., GARCÍA-AGUSTÍN, P., PALLÁS, V. & GONZÁLEZ-BOSCH, C. 2017. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation.Frontiers in Plant Science, 8.
FINITI, I., DE LA O. LEYVA, M., VICEDO, B., GÓMEZ-PASTOR, R., LÓPEZ-CRUZ, J., GARCÍA-AGUSTÍN, P., REAL, M. D. & GONZÁLEZ-BOSCH, C. 2014. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Molecular Plant Pathology, 15, 550-562.
FORCAT, S., BENNETT, M. H., MANSFIELD, J. W. & GRANT, M. R. 2008. A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods, 4, 16.
GAMIR, J., PASTOR, V., KAEVER, A., CEREZO, M. & FLORS, V. 2014. Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina. The Plant Journal, 78,227-240.
GILROY, E. M., TAYLOR, R. M., HEIN, I., BOEVINK, P., SADANANDOM, A. & BIRCH, P. R. J. 2011. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytologist,190, 653-666.
GOY, R. C., BRITTO, D. D. & ASSIS, O. B. G. 2009. A review of the antimicrobial activity of chitosan. Polímeros, 19,241-247.
GUAN, Y.-J., HU, J., WANG, X.-J. & SHAO, C.-X. 2009. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University. Science. B, 10, 427-433.
HAMEED, A., SHEIKH, M. A., FAROOQ, T., BASRA, S. & JAMIL, A. 2013. Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica,57, 97-110.
KOHLER, A., SCHWINDLING, S. & CONRATH, U. 2002. Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen Infection, Wounding, and Infiltration of Water into Leaves Requires the <em>NPR1/NIM1</em> Gene in Arabidopsis. Plant Physiology, 128, 1046-1056.
KRÓL, P., IGIELSKI, R., POLLMANN, S. & KĘPCZYŃSKA, E. 2015. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Journal of Plant Physiology, 179, 122-132.
LA CAMERA, S., L’HARIDON, F., ASTIER, J., ZANDER, M., ABOU-MANSOUR, E., PAGE, G., THUROW, C., WENDEHENNE, D., GATZ, C., MÉTRAUX, J.-P. & LAMOTTE, O. 2011. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. The Plant Journal, 68, 507-519.
LUNA, E. 2016. Using Green Vaccination to Brighten the Agronomic Future. 27, 136-140(5).
LUNA, E., BEARDON, E., RAVNSKOV, S., SCHOLES, J. & TON, J. 2016. Optimizing Chemically Induced Resistance in Tomato Against Botrytis cinerea. Plant Disease, 100, 704-710.
LUNA, E., LÓPEZ, A., KOOIMAN, J. & TON, J. 2014. Role of NPR1 and KYP in long-lasting induced resistance by β-aminobutyric acid.Frontiers in plant science, 5, 184-184.
LUNA, E., PASTOR, V., ROBERT, J., FLORS, V., MAUCH-MANI, B. & TON, J. 2011. Callose Deposition: A Multifaceted Plant Defense Response.Molecular Plant-Microbe Interactions, 24, 183-193.
MARTINEZ-MEDINA, A., FLORS, V., HEIL, M., MAUCH-MANI, B., PIETERSE, C. M. J., POZO, M. J., TON, J., VAN DAM, N. M. & CONRATH, U. 2016. Recognizing Plant Defense Priming. Trends in Plant Science,21, 818-822.
MAUCH-MANI, B., BACCELLI, I., LUNA, E. & FLORS, V. 2017. Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68, 485-512.
MCLELLAN, H., BOEVINK, P. C., ARMSTRONG, M. R., PRITCHARD, L., GOMEZ, S., MORALES, J., WHISSON, S. C., BEYNON, J. L. & BIRCH, P. R. J. 2013. An RxLR Effector from Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus. PLOS Pathogens, 9, e1003670.
MOFFAT, C. S., INGLE, R. A., WATHUGALA, D. L., SAUNDERS, N. J., KNIGHT, H. & KNIGHT, M. R. 2012. ERF5 and ERF6 Play Redundant Roles as Positive Regulators of JA/Et-Mediated Defense against Botrytis cinerea in Arabidopsis. PLOS ONE, 7, e35995.
MUÑOZ, Z. & MORET, A. 2010. Sensitivity of Botrytis cinerea to chitosan and acibenzolar-S-methyl. Pest Management Science, 66,974-979.
OERKE, E. C. 2006. Crop losses to pests. The Journal of Agricultural Science, 144, 31-43.
OIDE, S., BEJAI, S., STAAL, J., GUAN, N., KALIFF, M. & DIXELIUS, C. 2013. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytologist, 200, 1187-1199.
PAPPAS, A. C. 1997. Evolution of fungicide resistance in Botrytis cinerea in protected crops in Greece. Crop Protection,16, 257-263.
POGÁNY, M., DANKÓ, T., KÁMÁN-TÓTH, E., SCHWARCZINGER, I. & BOZSÓ, Z. 2015. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.International journal of molecular sciences, 16,23177-23194.
POZO, M. J., LÓPEZ-RÁEZ, J. A., AZCÓN-AGUILAR, C. & GARCÍA-GARRIDO, J. M. 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist,205, 1431-1436.
QIN, P., FAN, S., DENG, L., ZHONG, G., ZHANG, S., LI, M., CHEN, W., WANG, G., TU, B., WANG, Y., CHEN, X., MA, B. & LI, S. 2018. LML1, Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with SPL33 in Rice. Plant and Cell Physiology, 59, 887-902.
RAAFAT, D. & SAHL, H.-G. 2009. Chitosan and its antimicrobial potential–a critical literature survey. Microbial biotechnology, 2, 186-201.
RAMÍREZ-CARRASCO, G., MARTÍNEZ-AGUILAR, K. & ALVAREZ-VENEGAS, R. 2017. Transgenerational Defense Priming for Crop Protection against Plant Pathogens: A Hypothesis. Frontiers in Plant Science, 8,696.
REDMAN, A., CIPOLLINI, D. & SCHULTZ, J. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum.Oecologia, 126, 380-385.
REECE-HOYES, J. S. & WALHOUT, A. J. M. 2018. Gateway Recombinational Cloning. Cold Spring Harbor protocols, 2018,pdb.top094912-pdb.top094912.
REJEB, I. B., PASTOR, V., GRAVEL, V. & MAUCH-MANI, B. 2018. Impact of β-aminobutyric acid on induced resistance in tomato plants exposed to a combination of abiotic and biotic stress. Journal of Agricultural Science and Botany, 2.
ROBERT-SEILANIANTZ, A., GRANT, M. & JONES, J. D. G. 2011. Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology,49, 317-343.
ROMANAZZI, G., FELIZIANI, E., SANTINI, M. & LANDI, L. 2013. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry.Postharvest Biology and Technology, 75, 24-27.
SATHIYABAMA, M., AKILA, G. & EINSTEIN CHARLES, R. 2014. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer.Archives of Phytopathology and Plant Protection, 47,1777-1787.
SAVARY, S., FICKE, A., AUBERTOT, J. N. & HOLLIER, C. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519-537.
SCALSCHI, L., SANMARTÍN, M., CAMAÑES, G., TRONCHO, P., SÁNCHEZ-SERRANO, J. J., GARCÍA-AGUSTÍN, P. & VICEDO, B. 2015. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. The Plant Journal, 81, 304-315.
SERRANO, I., CAMPOS, L. & RIVAS, S. 2018. Roles of E3 Ubiquitin-Ligases in Nuclear Protein Homeostasis during Plant Stress Responses.Frontiers in plant science, 9, 139-139.
SLAUGHTER, A., DANIEL, X., FLORS, V., LUNA, E., HOHN, B. & MAUCH-MANI, B. 2012. Descendants of Primed Arabidopsis Plants Exhibit Resistance to Biotic Stress. Plant Physiology, 158, 835-843.
TEMME, N. & TUDZYNSKI, P. 2009. Does Botrytis cinerea Ignore H 2 O 2 -Induced Oxidative Stress During Infection? Characterization of Botrytis Activator Protein 1. Molecular plant-microbe interactions : MPMI,22, 987-98.
THOMAS, P. D., CAMPBELL, M. J., KEJARIWAL, A., MI, H., KARLAK, B., DAVERMAN, R., DIEMER, K., MURUGANUJAN, A. & NARECHANIA, A. 2003. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Research, 13, 2129-2141.
TON, J., JAKAB, G., TOQUIN, V., FLORS, V., IAVICOLI, A., MAEDER, M. N., MÉTRAUX, J.-P. & MAUCH-MANI, B. 2005. Dissecting the β-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. The Plant Cell,17, 987-999.
VAN DEN BURG, H. A., TSITSIGIANNIS, D. I., ROWLAND, O., LO, J., RALLAPALLI, G., MACLEAN, D., TAKKEN, F. L. W. & JONES, J. D. G. 2008. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato.The Plant cell, 20, 697-719.
VAN HULTEN, M., PELSER, M., VAN LOON, L. C., PIETERSE, C. M. J. & TON, J. 2006. Costs and benefits of priming for defense in <em>Arabidopsis</em>.Proceedings of the National Academy of Sciences, 103,5602-5607.
VASSEUR, F., BRESSON, J., WANG, G., SCHWAB, R. & WEIGEL, D. 2018. Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods [Online], 14. [Accessed 2018].
WANG, K., LIAO, Y., KAN, J., HAN, L. & ZHENG, Y. 2014. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries.International journal of food microbiology, 194C, 32-39.
WARD, N. & MORENO-HAGELSIEB, G. 2014. Quickly Finding Orthologs as Reciprocal Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss?PLOS ONE, 9, e101850.
WILKINSON, S. W., PASTOR, V., PAPLAUSKAS, S., PÉTRIACQ, P. & LUNA, E. 2018. Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology,67, 30-41.
WILLIAMSON, B., TUDZYNSKI, B., TUDZYNSKI, P. & VAN KAN, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561-580.
WORRALL, D., HOLROYD, G. H., MOORE, J. P., GLOWACZ, M., CROFT, P., TAYLOR, J. E., PAUL, N. D. & ROBERTS, M. R. 2012. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193, 770-778.
YANG, L., MCLELLAN, H., NAQVI, S., HE, Q., BOEVINK, P. C., ARMSTRONG, M., GIULIANI, L. M., ZHANG, W., TIAN, Z., ZHAN, J., GILROY, E. M. & BIRCH, P. R. J. 2016. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a <em>Phytophthora infestans</em> RXLR Effector, Is a Susceptibility Factor. Plant Physiology, 171, 645-657.
YOUNES, I., HAJJI, S., FRACHET, V., RINAUDO, M., JELLOULI, K. & NASRI, M. 2014. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan.International Journal of Biological Macromolecules, 69,489-498.
ZIMMERLI, L., JAKAB, G., MÉTRAUX, J.-P. & MAUCH-MANI, B. 2000. Potentiation of pathogen-specific defense mechanisms in <em>Arabidopsis</em> by β-aminobutyric acid. Proceedings of the National Academy of Sciences, 97, 12920-12925.