References
ARANEGA-BOU, P., DE LA O LEYVA, M., FINITI, I., GARCÍA-AGUSTÍN, P. &
GONZÁLEZ-BOSCH, C. 2014. Priming of plant resistance by natural
compounds. Hexanoic acid as a model. Frontiers in Plant Science,5.
CANTU, D., BLANCO-ULATE, B., YANG, L., LABAVITCH, J. M., BENNETT, A. B.
& POWELL, A. L. T. 2009. Ripening-Regulated Susceptibility of Tomato
Fruit to <em>Botrytis
cinerea</em> Requires
<em>NOR</em> But Not
<em>RIN</em> or Ethylene.Plant Physiology, 150, 1434-1449.
CLOUGH, S. J. & BENT, A. F. 1998. Floral dip: a simplified method for
Agrobacterium -mediated transformation of Arabidopsis thaliana.The Plant Journal, 16, 735-743.
CONRATH, U., BECKERS, G. J. M., FLORS, V., GARCÍA-AGUSTÍN, P., JAKAB,
G., MAUCH, F., NEWMAN, M.-A., PIETERSE, C. M. J., POINSSOT, B., POZO, M.
J., PUGIN, A., SCHAFFRATH, U., TON, J., WENDEHENNE, D., ZIMMERLI, L. &
MAUCH-MANI, B. 2006. Priming: Getting Ready for Battle. Molecular
Plant-Microbe Interactions, 19, 1062-1071.
DURRANT, W. E., ROWLAND, O., PIEDRAS, P., HAMMOND-KOSACK, K. E. &
JONES, J. D. G. 2000. cDNA-AFLP Reveals a Striking Overlap in
Race-Specific Resistance and Wound Response Gene Expression Profiles.The Plant Cell, 12, 963-977.
EL OIRDI, M., EL RAHMAN, T. A., RIGANO, L., EL HADRAMI, A., RODRIGUEZ,
M. C., DAAYF, F., VOJNOV, A. & BOUARAB, K. 2011. Botrytis cinerea
manipulates the antagonistic effects between immune pathways to promote
disease development in tomato. The Plant cell, 23,2405-2421.
FARETRA, F. & POLLASTRO, S. 1991. Genetic basis of resistance to
benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana
(Botrytis cinerea). Mycological Research, 95, 943-951.
FERNÁNDEZ-CRESPO, E., NAVARRO, J. A., SERRA-SORIANO, M., FINITI, I.,
GARCÍA-AGUSTÍN, P., PALLÁS, V. & GONZÁLEZ-BOSCH, C. 2017. Hexanoic Acid
Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by
Priming Callose Deposition Correlating SA and OPDA Accumulation.Frontiers in Plant Science, 8.
FINITI, I., DE LA O. LEYVA, M., VICEDO, B., GÓMEZ-PASTOR, R.,
LÓPEZ-CRUZ, J., GARCÍA-AGUSTÍN, P., REAL, M. D. & GONZÁLEZ-BOSCH, C.
2014. Hexanoic acid protects tomato plants against Botrytis cinerea by
priming defence responses and reducing oxidative stress. Molecular
Plant Pathology, 15, 550-562.
FORCAT, S., BENNETT, M. H., MANSFIELD, J. W. & GRANT, M. R. 2008. A
rapid and robust method for simultaneously measuring changes in the
phytohormones ABA, JA and SA in plants following biotic and abiotic
stress. Plant Methods, 4, 16.
GAMIR, J., PASTOR, V., KAEVER, A., CEREZO, M. & FLORS, V. 2014.
Targeting novel chemical and constitutive primed metabolites against
Plectosphaerella cucumerina. The Plant Journal, 78,227-240.
GILROY, E. M., TAYLOR, R. M., HEIN, I., BOEVINK, P., SADANANDOM, A. &
BIRCH, P. R. J. 2011. CMPG1-dependent cell death follows perception of
diverse pathogen elicitors at the host plasma membrane and is suppressed
by Phytophthora infestans RXLR effector AVR3a. New Phytologist,190, 653-666.
GOY, R. C., BRITTO, D. D. & ASSIS, O. B. G. 2009. A review of the
antimicrobial activity of chitosan. Polímeros, 19,241-247.
GUAN, Y.-J., HU, J., WANG, X.-J. & SHAO, C.-X. 2009. Seed priming with
chitosan improves maize germination and seedling growth in relation to
physiological changes under low temperature stress. Journal of
Zhejiang University. Science. B, 10, 427-433.
HAMEED, A., SHEIKH, M. A., FAROOQ, T., BASRA, S. & JAMIL, A. 2013.
Chitosan priming enhances the seed germination, antioxidants, hydrolytic
enzymes, soluble proteins and sugars in wheat seeds. Agrochimica,57, 97-110.
KOHLER, A., SCHWINDLING, S. & CONRATH, U. 2002.
Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen
Infection, Wounding, and Infiltration of Water into Leaves Requires the
<em>NPR1/NIM1</em> Gene in
Arabidopsis. Plant Physiology, 128, 1046-1056.
KRÓL, P., IGIELSKI, R., POLLMANN, S. & KĘPCZYŃSKA, E. 2015. Priming of
seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium
oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid,
salicylic acid, and flavonol accumulation. Journal of Plant
Physiology, 179, 122-132.
LA CAMERA, S., L’HARIDON, F., ASTIER, J., ZANDER, M., ABOU-MANSOUR, E.,
PAGE, G., THUROW, C., WENDEHENNE, D., GATZ, C., MÉTRAUX, J.-P. &
LAMOTTE, O. 2011. The glutaredoxin ATGRXS13 is required to facilitate
Botrytis cinerea infection of Arabidopsis thaliana plants. The
Plant Journal, 68, 507-519.
LUNA, E. 2016. Using Green Vaccination to Brighten the Agronomic Future.
27, 136-140(5).
LUNA, E., BEARDON, E., RAVNSKOV, S., SCHOLES, J. & TON, J. 2016.
Optimizing Chemically Induced Resistance in Tomato Against Botrytis
cinerea. Plant Disease, 100, 704-710.
LUNA, E., LÓPEZ, A., KOOIMAN, J. & TON, J. 2014. Role of NPR1 and KYP
in long-lasting induced resistance by β-aminobutyric acid.Frontiers in plant science, 5, 184-184.
LUNA, E., PASTOR, V., ROBERT, J., FLORS, V., MAUCH-MANI, B. & TON, J.
2011. Callose Deposition: A Multifaceted Plant Defense Response.Molecular Plant-Microbe Interactions, 24, 183-193.
MARTINEZ-MEDINA, A., FLORS, V., HEIL, M., MAUCH-MANI, B., PIETERSE, C.
M. J., POZO, M. J., TON, J., VAN DAM, N. M. & CONRATH, U. 2016.
Recognizing Plant Defense Priming. Trends in Plant Science,21, 818-822.
MAUCH-MANI, B., BACCELLI, I., LUNA, E. & FLORS, V. 2017. Defense
Priming: An Adaptive Part of Induced Resistance. Annual Review of
Plant Biology, 68, 485-512.
MCLELLAN, H., BOEVINK, P. C., ARMSTRONG, M. R., PRITCHARD, L., GOMEZ,
S., MORALES, J., WHISSON, S. C., BEYNON, J. L. & BIRCH, P. R. J. 2013.
An RxLR Effector from Phytophthora infestans Prevents Re-localisation of
Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to
the Nucleus. PLOS Pathogens, 9, e1003670.
MOFFAT, C. S., INGLE, R. A., WATHUGALA, D. L., SAUNDERS, N. J., KNIGHT,
H. & KNIGHT, M. R. 2012. ERF5 and ERF6 Play Redundant Roles as Positive
Regulators of JA/Et-Mediated Defense against Botrytis cinerea in
Arabidopsis. PLOS ONE, 7, e35995.
MUÑOZ, Z. & MORET, A. 2010. Sensitivity of Botrytis cinerea to chitosan
and acibenzolar-S-methyl. Pest Management Science, 66,974-979.
OERKE, E. C. 2006. Crop losses to pests. The Journal of
Agricultural Science, 144, 31-43.
OIDE, S., BEJAI, S., STAAL, J., GUAN, N., KALIFF, M. & DIXELIUS, C.
2013. A novel role of PR2 in abscisic acid (ABA) mediated,
pathogen-induced callose deposition in Arabidopsis thaliana. New
Phytologist, 200, 1187-1199.
PAPPAS, A. C. 1997. Evolution of fungicide resistance in Botrytis
cinerea in protected crops in Greece. Crop Protection,16, 257-263.
POGÁNY, M., DANKÓ, T., KÁMÁN-TÓTH, E., SCHWARCZINGER, I. & BOZSÓ, Z.
2015. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.International journal of molecular sciences, 16,23177-23194.
POZO, M. J., LÓPEZ-RÁEZ, J. A., AZCÓN-AGUILAR, C. & GARCÍA-GARRIDO, J.
M. 2015. Phytohormones as integrators of environmental signals in the
regulation of mycorrhizal symbioses. New Phytologist,205, 1431-1436.
QIN, P., FAN, S., DENG, L., ZHONG, G., ZHANG, S., LI, M., CHEN, W.,
WANG, G., TU, B., WANG, Y., CHEN, X., MA, B. & LI, S. 2018. LML1,
Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell
Death and Pathogen Resistance by Forming a Conserved Complex with SPL33
in Rice. Plant and Cell Physiology, 59, 887-902.
RAAFAT, D. & SAHL, H.-G. 2009. Chitosan and its antimicrobial
potential–a critical literature survey. Microbial
biotechnology, 2, 186-201.
RAMÍREZ-CARRASCO, G., MARTÍNEZ-AGUILAR, K. & ALVAREZ-VENEGAS, R. 2017.
Transgenerational Defense Priming for Crop Protection against Plant
Pathogens: A Hypothesis. Frontiers in Plant Science, 8,696.
REDMAN, A., CIPOLLINI, D. & SCHULTZ, J. 2001. Fitness costs of jasmonic
acid-induced defense in tomato, Lycopersicon esculentum.Oecologia, 126, 380-385.
REECE-HOYES, J. S. & WALHOUT, A. J. M. 2018. Gateway Recombinational
Cloning. Cold Spring Harbor protocols, 2018,pdb.top094912-pdb.top094912.
REJEB, I. B., PASTOR, V., GRAVEL, V. & MAUCH-MANI, B. 2018. Impact of
β-aminobutyric acid on induced resistance in tomato plants exposed to a
combination of abiotic and biotic stress. Journal of Agricultural
Science and Botany, 2.
ROBERT-SEILANIANTZ, A., GRANT, M. & JONES, J. D. G. 2011. Hormone
Crosstalk in Plant Disease and Defense: More Than Just
JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology,49, 317-343.
ROMANAZZI, G., FELIZIANI, E., SANTINI, M. & LANDI, L. 2013.
Effectiveness of postharvest treatment with chitosan and other
resistance inducers in the control of storage decay of strawberry.Postharvest Biology and Technology, 75, 24-27.
SATHIYABAMA, M., AKILA, G. & EINSTEIN CHARLES, R. 2014.
Chitosan-induced defence responses in tomato plants against early blight
disease caused by Alternaria solani (Ellis and Martin) Sorauer.Archives of Phytopathology and Plant Protection, 47,1777-1787.
SAVARY, S., FICKE, A., AUBERTOT, J. N. & HOLLIER, C. 2012. Crop losses
due to diseases and their implications for global food production losses
and food security. Food Security, 4, 519-537.
SCALSCHI, L., SANMARTÍN, M., CAMAÑES, G., TRONCHO, P., SÁNCHEZ-SERRANO,
J. J., GARCÍA-AGUSTÍN, P. & VICEDO, B. 2015. Silencing of OPR3 in
tomato reveals the role of OPDA in callose deposition during the
activation of defense responses against Botrytis cinerea. The
Plant Journal, 81, 304-315.
SERRANO, I., CAMPOS, L. & RIVAS, S. 2018. Roles of E3 Ubiquitin-Ligases
in Nuclear Protein Homeostasis during Plant Stress Responses.Frontiers in plant science, 9, 139-139.
SLAUGHTER, A., DANIEL, X., FLORS, V., LUNA, E., HOHN, B. & MAUCH-MANI,
B. 2012. Descendants of Primed Arabidopsis Plants Exhibit Resistance to
Biotic Stress. Plant Physiology, 158, 835-843.
TEMME, N. & TUDZYNSKI, P. 2009. Does Botrytis cinerea Ignore H 2 O 2
-Induced Oxidative Stress During Infection? Characterization of Botrytis
Activator Protein 1. Molecular plant-microbe interactions : MPMI,22, 987-98.
THOMAS, P. D., CAMPBELL, M. J., KEJARIWAL, A., MI, H., KARLAK, B.,
DAVERMAN, R., DIEMER, K., MURUGANUJAN, A. & NARECHANIA, A. 2003.
PANTHER: A Library of Protein Families and Subfamilies Indexed by
Function. Genome Research, 13, 2129-2141.
TON, J., JAKAB, G., TOQUIN, V., FLORS, V., IAVICOLI, A., MAEDER, M. N.,
MÉTRAUX, J.-P. & MAUCH-MANI, B. 2005. Dissecting the β-Aminobutyric
Acid–Induced Priming Phenomenon in Arabidopsis. The Plant Cell,17, 987-999.
VAN DEN BURG, H. A., TSITSIGIANNIS, D. I., ROWLAND, O., LO, J.,
RALLAPALLI, G., MACLEAN, D., TAKKEN, F. L. W. & JONES, J. D. G. 2008.
The F-box protein ACRE189/ACIF1 regulates cell death and defense
responses activated during pathogen recognition in tobacco and tomato.The Plant cell, 20, 697-719.
VAN HULTEN, M., PELSER, M., VAN LOON, L. C., PIETERSE, C. M. J. & TON,
J. 2006. Costs and benefits of priming for defense in
<em>Arabidopsis</em>.Proceedings of the National Academy of Sciences, 103,5602-5607.
VASSEUR, F., BRESSON, J., WANG, G., SCHWAB, R. & WEIGEL, D. 2018.
Image-based methods for phenotyping growth dynamics and fitness
components in Arabidopsis thaliana. Plant Methods [Online],
14. [Accessed 2018].
WANG, K., LIAO, Y., KAN, J., HAN, L. & ZHENG, Y. 2014. Response of
direct or priming defense against Botrytis cinerea to methyl jasmonate
treatment at different concentrations in grape berries.International journal of food microbiology, 194C, 32-39.
WARD, N. & MORENO-HAGELSIEB, G. 2014. Quickly Finding Orthologs as
Reciprocal Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss?PLOS ONE, 9, e101850.
WILKINSON, S. W., PASTOR, V., PAPLAUSKAS, S., PÉTRIACQ, P. & LUNA, E.
2018. Long-lasting β-aminobutyric acid-induced resistance protects
tomato fruit against Botrytis cinerea. Plant Pathology,67, 30-41.
WILLIAMSON, B., TUDZYNSKI, B., TUDZYNSKI, P. & VAN KAN, J. A. L. 2007.
Botrytis cinerea: the cause of grey mould disease. Molecular Plant
Pathology, 8, 561-580.
WORRALL, D., HOLROYD, G. H., MOORE, J. P., GLOWACZ, M., CROFT, P.,
TAYLOR, J. E., PAUL, N. D. & ROBERTS, M. R. 2012. Treating seeds with
activators of plant defence generates long-lasting priming of resistance
to pests and pathogens. New Phytologist, 193, 770-778.
YANG, L., MCLELLAN, H., NAQVI, S., HE, Q., BOEVINK, P. C., ARMSTRONG,
M., GIULIANI, L. M., ZHANG, W., TIAN, Z., ZHAN, J., GILROY, E. M. &
BIRCH, P. R. J. 2016. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by
a <em>Phytophthora
infestans</em> RXLR Effector, Is a Susceptibility
Factor. Plant Physiology, 171, 645-657.
YOUNES, I., HAJJI, S., FRACHET, V., RINAUDO, M., JELLOULI, K. & NASRI,
M. 2014. Chitin extraction from shrimp shell using enzymatic treatment.
Antitumor, antioxidant and antimicrobial activities of chitosan.International Journal of Biological Macromolecules, 69,489-498.
ZIMMERLI, L., JAKAB, G., MÉTRAUX, J.-P. & MAUCH-MANI, B. 2000.
Potentiation of pathogen-specific defense mechanisms in
<em>Arabidopsis</em> by
β-aminobutyric acid. Proceedings of the National Academy of
Sciences, 97, 12920-12925.